Model systems for regeneration: zebrafish
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can h...
Saved in:
Published in | Development (Cambridge) Vol. 146; no. 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
20.09.2019
|
Online Access | Get full text |
ISSN | 0950-1991 1477-9129 1477-9129 |
DOI | 10.1242/dev.167692 |
Cover
Abstract | Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field. |
---|---|
AbstractList | Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field. Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field. |
Author | Marques, Ines J. Mercader, Nadia Lupi, Eleonora |
Author_xml | – sequence: 1 givenname: Ines J. orcidid: 0000-0003-1254-9394 surname: Marques fullname: Marques, Ines J. organization: Institute of Anatomy, University of Bern, Bern 3012, Switzerland – sequence: 2 givenname: Eleonora orcidid: 0000-0003-0509-3616 surname: Lupi fullname: Lupi, Eleonora organization: Institute of Anatomy, University of Bern, Bern 3012, Switzerland, Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany – sequence: 3 givenname: Nadia orcidid: 0000-0002-0905-6399 surname: Mercader fullname: Mercader, Nadia organization: Institute of Anatomy, University of Bern, Bern 3012, Switzerland, Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain |
BookMark | eNptkE1LxDAURYOMYGd04y_oUoWOeWnSJO5kGD9gxI2uQ5q-aKXTjElHGH-91XElrh4Xzr08zpRM-tAjIadA58A4u2zwYw6VrDQ7IBlwKQsNTE9IRrWgBWgNR2Sa0hultKykzMj5Q2iwy9MuDbhOuQ8xj_iCPUY7tKG_yj-xjta36fWYHHrbJTz5vTPyfLN8WtwVq8fb-8X1qnAMBCuUVlR6ykHQurRcgJNSNJXyXIyxdgBlA0KU6KpSO1pZrr1noMALqupGlTNytt_dxPC-xTSYdZscdp3tMWyTYUwLrjhIGFG6R10MKUX0xrXDz99DtG1ngJpvK2a0YvZWxsrFn8omtmsbd__BXw6RYxA |
CitedBy_id | crossref_primary_10_1038_s42003_023_05686_1 crossref_primary_10_1101_gad_350164_122 crossref_primary_10_1515_hsz_2020_0269 crossref_primary_10_3390_w14233857 crossref_primary_10_3390_cells9091925 crossref_primary_10_1016_j_celrep_2024_114162 crossref_primary_10_1254_fpj_20067 crossref_primary_10_3389_fcell_2024_1485773 crossref_primary_10_1016_j_gocm_2023_05_003 crossref_primary_10_1002_dvdy_244 crossref_primary_10_1016_j_gde_2020_05_020 crossref_primary_10_3389_fmars_2022_931903 crossref_primary_10_1210_endocr_bqad136 crossref_primary_10_1016_j_ydbio_2022_01_007 crossref_primary_10_1007_s00223_024_01282_5 crossref_primary_10_1038_s41598_020_68016_z crossref_primary_10_1016_j_devcel_2024_01_004 crossref_primary_10_1293_tox_2020_0021 crossref_primary_10_1002_jbio_202400376 crossref_primary_10_1007_s11033_024_09814_w crossref_primary_10_1186_s12915_023_01633_y crossref_primary_10_3390_geriatrics7020045 crossref_primary_10_1002_dvdy_518 crossref_primary_10_1007_s11427_020_1915_y crossref_primary_10_1007_s11626_022_00664_z crossref_primary_10_3390_ph14060536 crossref_primary_10_3390_ijms25095030 crossref_primary_10_1016_j_neuroscience_2021_07_009 crossref_primary_10_1089_ten_teb_2023_0224 crossref_primary_10_3389_fcell_2021_743421 crossref_primary_10_7554_eLife_76987 crossref_primary_10_1161_CIRCRESAHA_122_320396 crossref_primary_10_1016_j_heliyon_2025_e41833 crossref_primary_10_3390_ijms24076468 crossref_primary_10_1016_j_biopha_2020_110836 crossref_primary_10_3390_ijms222413417 crossref_primary_10_1101_cshperspect_a041240 crossref_primary_10_3390_ijms25169078 crossref_primary_10_1002_glia_24220 crossref_primary_10_3390_cells14040282 crossref_primary_10_1111_jfb_15585 crossref_primary_10_1093_toxsci_kfaa143 crossref_primary_10_3390_cells10020391 crossref_primary_10_3389_fcell_2021_652466 crossref_primary_10_1007_s10534_025_00671_z crossref_primary_10_1111_wrr_13029 crossref_primary_10_3389_fcell_2020_605120 crossref_primary_10_3389_fcell_2024_1384423 crossref_primary_10_1186_s12864_024_11175_4 crossref_primary_10_1016_j_ijbiomac_2024_130155 crossref_primary_10_1111_ahg_12408 crossref_primary_10_1038_s41536_024_00351_5 crossref_primary_10_1007_s00018_021_03760_7 crossref_primary_10_1101_pdb_top100966 crossref_primary_10_3389_fcell_2021_655048 crossref_primary_10_1038_s41536_022_00209_8 crossref_primary_10_1016_j_cub_2020_06_089 crossref_primary_10_1016_j_cophys_2020_02_002 crossref_primary_10_1101_cshperspect_a040931 crossref_primary_10_1038_s41536_021_00179_3 crossref_primary_10_1152_ajpcell_00403_2022 crossref_primary_10_3389_fcell_2023_1206157 crossref_primary_10_3390_cells13211749 crossref_primary_10_1111_wrr_12998 crossref_primary_10_1242_dev_202315 crossref_primary_10_1111_brv_12801 crossref_primary_10_3390_cells12101436 crossref_primary_10_1016_j_bone_2022_116611 crossref_primary_10_3390_biomedicines9010065 crossref_primary_10_1161_ATVBAHA_121_316539 crossref_primary_10_3389_fphys_2022_906110 crossref_primary_10_1242_dmm_049753 crossref_primary_10_1098_rsob_200300 crossref_primary_10_3389_fcell_2023_1134451 crossref_primary_10_3390_ijms24043253 crossref_primary_10_1002_mrm_29066 crossref_primary_10_1039_D1QM00193K crossref_primary_10_3390_biom12010035 crossref_primary_10_1186_s13619_024_00195_w crossref_primary_10_3389_fnmol_2023_1160707 crossref_primary_10_1002_jbmr_4256 crossref_primary_10_1111_pbi_70028 crossref_primary_10_3389_fcell_2022_813314 crossref_primary_10_1038_s42003_023_05551_1 crossref_primary_10_3389_fcell_2023_1123299 crossref_primary_10_1016_j_gene_2021_145440 crossref_primary_10_1186_s12964_024_01993_0 crossref_primary_10_3390_life14050594 crossref_primary_10_3390_molecules27196231 crossref_primary_10_3389_fcell_2020_587320 crossref_primary_10_1016_j_phymed_2024_155553 crossref_primary_10_3389_fevo_2022_783818 crossref_primary_10_1111_wrr_12892 crossref_primary_10_3389_fcell_2022_849905 crossref_primary_10_1016_j_jep_2021_114638 crossref_primary_10_1016_j_semcdb_2024_12_005 crossref_primary_10_15446_abc_v27n1_88309 crossref_primary_10_1177_2472555220926920 crossref_primary_10_1002_dvdy_583 crossref_primary_10_1016_j_ydbio_2021_01_005 crossref_primary_10_1177_10915818231207966 crossref_primary_10_3389_fgene_2020_627259 crossref_primary_10_1038_s41467_022_30468_4 crossref_primary_10_3390_ma17030745 crossref_primary_10_3390_biology14030274 crossref_primary_10_1016_j_freeradbiomed_2022_11_016 crossref_primary_10_1016_j_watbs_2022_100081 crossref_primary_10_1016_j_ygcen_2022_114033 crossref_primary_10_1093_nar_gkae085 crossref_primary_10_1038_s41596_023_00821_y crossref_primary_10_1016_j_carpta_2025_100709 crossref_primary_10_3389_fgene_2021_655550 crossref_primary_10_1242_dev_199767 crossref_primary_10_3389_fevo_2021_613157 crossref_primary_10_1111_febs_17231 crossref_primary_10_1371_journal_pgen_1009628 crossref_primary_10_1242_dev_202944 crossref_primary_10_3389_fnins_2021_671249 crossref_primary_10_1111_acel_13464 crossref_primary_10_1242_dev_167718 crossref_primary_10_1016_j_brainresbull_2022_10_001 crossref_primary_10_3389_fendo_2023_1122351 |
Cites_doi | 10.1016/j.devcel.2012.03.006 10.1016/j.devcel.2017.10.015 10.1039/c1mb05116d 10.1002/dvdy.24668 10.1016/j.pbiomolbio.2018.07.005 10.1016/j.ydbio.2012.07.007 10.1038/nature17644 10.1038/s41467-017-00143-0 10.1523/JNEUROSCI.5317-06.2007 10.2108/zs170004 10.1038/jid.2013.16 10.1186/1471-213X-12-24 10.1371/journal.pone.0104112 10.1186/gb-2007-8-s1-s7 10.1002/reg2.83 10.1242/dev.02101 10.1016/j.devcel.2017.11.010 10.1002/1097-4695(20000905)44:3<289::AID-NEU1>3.0.CO;2-H 10.1016/j.devcel.2018.06.018 10.1016/j.ydbio.2017.03.004 10.1016/S0925-4773(02)00218-6 10.1016/j.ydbio.2011.01.002 10.1242/dev.079756 10.1242/bio.016865 10.1002/dvdy.23989 10.1242/dev.058156 10.1073/pnas.0904132106 10.1016/j.tig.2018.01.004 10.1242/dev.129155 10.1242/dev.068080 10.1126/science.aaa2729 10.1093/ptj/69.12.1014 10.1073/pnas.0408708102 10.1074/jbc.M112.349126 10.1002/dvdy.21100 10.2337/db17-1223 10.1089/zeb.2012.0834 10.1038/nature11682 10.1016/j.cub.2018.10.052 10.1073/pnas.1716713115 10.1242/dev.087346 10.1126/science.1200708 10.1002/jcb.25487 10.1016/j.devcel.2017.01.013 10.7554/eLife.25605 10.1038/nprot.2015.130 10.1111/wrr.12633 10.1186/1471-213X-11-21 10.1126/science.1228773 10.1073/pnas.0610774104 10.1016/j.gde.2016.05.011 10.1016/j.ymeth.2017.03.005 10.1073/pnas.202320599 10.1111/tra.12621 10.3791/51912 10.15252/embr.201643795 10.1016/j.devcel.2019.01.001 10.1089/zeb.2012.0742 10.1126/science.1077857 10.1006/excr.2000.4805 10.1111/j.1440-169X.2009.01090.x 10.1016/0736-5748(96)80313-3 10.1007/s11886-018-0979-6 10.1016/j.matbio.2018.07.005 10.1073/pnas.1311705111 10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-# 10.1016/j.devcel.2015.06.017 10.1371/journal.pone.0018503 10.1371/journal.pone.0027395 10.1016/j.celrep.2018.10.072 10.1016/j.bone.2006.08.019 10.1016/j.ydbio.2012.02.031 10.3389/fcell.2019.00013 10.1093/ilar.42.4.285 10.1038/cr.2015.35 10.1242/dev.001123 10.1038/nature08899 10.1089/zeb.2015.1205 10.1038/ng.3929 10.1073/pnas.1308335110 10.1002/jcp.21172 10.1038/nature08804 10.1016/j.devcel.2016.02.017 10.1038/nbt.2501 10.1016/j.cell.2014.01.044 10.1371/journal.pone.0122665 10.15252/embj.201592903 10.1186/s12861-014-0049-2 10.1242/dev.098459 10.1038/nbt.4124 10.7554/eLife.35136 10.1038/ncomms13787 10.1016/j.bbagrm.2017.08.011 10.1242/dev.060897 10.1007/s002449900493 10.1242/dev.010363 10.1186/1471-213X-10-105 10.1016/j.celrep.2015.07.064 10.1002/(SICI)1096-9861(19961209)376:2<253::AID-CNE7>3.0.CO;2-2 10.1002/reg2.33 10.1242/dmm.006312 10.1093/nar/gks938 10.1126/science.1164680 10.1371/journal.pgen.1007754 10.1242/dev.129.11.2607 10.1038/nmeth1059 10.1073/pnas.0906348106 10.1016/j.devbrainres.2004.03.002 10.1016/j.devcel.2018.01.021 10.1002/dvdy.20630 10.1371/journal.pone.0022820 10.1016/j.devcel.2015.12.010 10.1371/journal.pone.0004640 10.1016/j.celrep.2013.12.007 10.1073/pnas.1605431113 10.1002/dvdy.22710 10.1242/bio.012112 10.1016/j.devcel.2015.04.001 10.1038/s41598-017-03050-y 10.1101/498899 10.1242/dev.119701 10.1002/reg2.77 10.3389/fcell.2018.00088 10.1038/nature09669 10.1186/1471-213X-6-36 10.1242/dev.102053 10.1016/j.devcel.2011.01.010 10.3791/56249 10.1073/pnas.1834204100 10.1002/dvdy.24676 10.1016/bs.mcb.2016.01.009 10.1089/zeb.2008.0530 10.1002/wdev.73 10.1242/dev.123018 10.1371/journal.pone.0008737 10.1016/j.cell.2006.08.052 10.1074/mcp.M111.014118 10.1006/dbio.2000.9722 10.1038/ncomms15151 10.1371/journal.pone.0032348 10.1093/cvr/cvy243 10.1053/j.gastro.2013.10.019 10.1242/dev.103.2.403 10.1242/dev.078543 10.1038/nmeth.4224 10.1038/nprot.2011.416 10.1073/pnas.97.21.11403 10.1242/dev.068601 10.1016/0006-8993(70)90151-4 10.1016/j.ydbio.2006.08.016 10.1073/pnas.0906464106 10.1016/j.celrep.2013.12.036 10.1242/dev.120.7.1861 10.1242/dev.065391 10.1007/s004410050878 10.1007/s10162-002-3022-x 10.1006/bbrc.1997.7124 10.1073/pnas.1620755114 10.1371/journal.pone.0115604 10.3109/08860229509026246 10.3791/3632 10.1096/fj.09-131730 10.1101/cshperspect.a018820 10.3390/ijms20061290 10.1242/dev.072587 10.1016/j.mod.2006.11.005 10.1038/s41467-018-07036-w 10.1016/j.cbpc.2014.02.002 10.1038/291293a0 10.1093/genetics/141.4.1583 10.1074/jbc.M706640200 10.1126/science.aaf2679 10.1371/journal.pone.0037877 10.3791/52756 10.1126/science.1192949 |
ContentType | Journal Article |
Copyright | 2019. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2019. Published by The Company of Biologists Ltd. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1242/dev.167692 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
ExternalDocumentID | 10_1242_dev_167692 |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XSW 7X8 |
ID | FETCH-LOGICAL-c2152-89807f04150b3a451c775d68f453a4bc113d1553ec639c06a49ff2181f508bd83 |
ISSN | 0950-1991 1477-9129 |
IngestDate | Fri Sep 05 10:51:20 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Tue Jul 01 00:45:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2152-89807f04150b3a451c775d68f453a4bc113d1553ec639c06a49ff2181f508bd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1254-9394 0000-0002-0905-6399 0000-0003-0509-3616 |
OpenAccessLink | https://doi.org/10.1242/dev.167692 |
PQID | 2295484171 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2295484171 crossref_citationtrail_10_1242_dev_167692 crossref_primary_10_1242_dev_167692 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190920 |
PublicationDateYYYYMMDD | 2019-09-20 |
PublicationDate_xml | – month: 09 year: 2019 text: 20190920 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Development (Cambridge) |
PublicationYear | 2019 |
References | Flinn (2021042623410152700_DEV167692C47) 2018; 115 Stoick-Cooper (2021042623410152700_DEV167692C154) 2007; 134 White (2021042623410152700_DEV167692C172) 1994; 120 Honkoop (2021042623410152700_DEV167692C67) 2018 Spanjaard (2021042623410152700_DEV167692C150) 2018; 36 Wang (2021042623410152700_DEV167692C167) 2011; 138 Simon (2021042623410152700_DEV167692C146) 2013; 2 Power (2021042623410152700_DEV167692C129) 2017; 14 Berberoglu (2021042623410152700_DEV167692C12) 2017; 424 Akitake (2021042623410152700_DEV167692C2) 2011; 352 Stockdale (2021042623410152700_DEV167692C153) 2018; 25 Nechiporuk (2021042623410152700_DEV167692C114) 2002; 129 Mokalled (2021042623410152700_DEV167692C109) 2016; 354 Geraudie (2021042623410152700_DEV167692C49) 1993; 383B Conedera (2021042623410152700_DEV167692C32) 2017; 128 Rafferty (2021042623410152700_DEV167692C131) 2018; 138 Johnson (2021042623410152700_DEV167692C74) 1995; 141 LeClair (2021042623410152700_DEV167692C92) 2010; 5 Moore (2021042623410152700_DEV167692C110) 2012; 7 Howe (2021042623410152700_DEV167692C68) 2013; 41 Yang (2021042623410152700_DEV167692C178) 2018; 248 Diep (2021042623410152700_DEV167692C37) 2011; 470 Halpern (2021042623410152700_DEV167692C59) 2008; 5 Kan (2021042623410152700_DEV167692C78) 2009; 23 Strahle (2021042623410152700_DEV167692C155) 2010; 3 Wehner (2021042623410152700_DEV167692C171) 2017; 8 Wehner (2021042623410152700_DEV167692C170) 2015; 100 Azevedo (2021042623410152700_DEV167692C6) 2011; 6 Bernhardt (2021042623410152700_DEV167692C15) 1996; 376 Suster (2021042623410152700_DEV167692C160) 2011; 6 Koth (2021042623410152700_DEV167692C87) 2017; 7 Nemoto (2021042623410152700_DEV167692C115) 2007; 40 Chablais (2021042623410152700_DEV167692C25) 2012; 139 Kroehne (2021042623410152700_DEV167692C88) 2011; 138 Rothenaigner (2021042623410152700_DEV167692C137) 2011; 138 Jungke (2021042623410152700_DEV167692C76) 2013; 10 Hein (2021042623410152700_DEV167692C65) 2015; 10 Parrilla (2021042623410152700_DEV167692C119) 2012; 7 Kikuchi (2021042623410152700_DEV167692C84) 2011; 20 Lim (2021042623410152700_DEV167692C96) 2016; 8 Felker (2021042623410152700_DEV167692C45) 2016; 135 Hans (2021042623410152700_DEV167692C61) 2009; 4 Ádám (2021042623410152700_DEV167692C1) 2000; 256 Bergemann (2021042623410152700_DEV167692C13) 2018; 26 Strahle (2021042623410152700_DEV167692C156) 2012; 9 Fimbel (2021042623410152700_DEV167692C46) 2007; 27 Li (2021042623410152700_DEV167692C95) 2012; 287 Chassot (2021042623410152700_DEV167692C27) 2016; 5 Thummel (2021042623410152700_DEV167692C162) 2006; 235 Watanabe (2021042623410152700_DEV167692C168) 2009; 51 Hui (2021042623410152700_DEV167692C69) 2017; 43 Thermes (2021042623410152700_DEV167692C161) 2002; 118 Mosimann (2021042623410152700_DEV167692C111) 2013; 242 Stewart (2021042623410152700_DEV167692C151) 2012; 365 Stewart (2021042623410152700_DEV167692C152) 2009; 106 Becker (2021042623410152700_DEV167692C10) 1998; 377 Wills (2021042623410152700_DEV167692C173) 2008; 135 Pisharath (2021042623410152700_DEV167692C125) 2007; 124 Cox (2021042623410152700_DEV167692C33) 2014; 6 Mateus (2021042623410152700_DEV167692C104) 2015; 142 Hardy (2021042623410152700_DEV167692C62) 1989; 69 Raymond (2021042623410152700_DEV167692C133) 2006; 6 Dong (2021042623410152700_DEV167692C39) 2019; 20 Feil (2021042623410152700_DEV167692C44) 1997; 237 Kamei (2021042623410152700_DEV167692C77) 2015; 102 Porrello (2021042623410152700_DEV167692C126) 2011; 331 Smith (2021042623410152700_DEV167692C149) 2006; 299 Bednarek (2021042623410152700_DEV167692C11) 2015; 12 Hwang (2021042623410152700_DEV167692C70) 2013; 31 Lepilina (2021042623410152700_DEV167692C94) 2006; 127 Kawakami (2021042623410152700_DEV167692C80) 2007; 8 Chen (2021042623410152700_DEV167692C29) 2013; 140 Albadri (2021042623410152700_DEV167692C3) 2017; 121-122 Rowlerson (2021042623410152700_DEV167692C138) 1997; 289 Pandey (2021042623410152700_DEV167692C118) 2019; 20 Hesselson (2021042623410152700_DEV167692C66) 2009; 106 Petrie (2021042623410152700_DEV167692C121) 2014; 141 Senyo (2021042623410152700_DEV167692C144) 2013; 493 Xu (2021042623410152700_DEV167692C177) 2015; 10 Kyritsis (2021042623410152700_DEV167692C89) 2012; 338 Han (2021042623410152700_DEV167692C60) 2019; 48 González-Rosa (2021042623410152700_DEV167692C56) 2018; 44 März (2021042623410152700_DEV167692C103) 2011; 240 Goessling (2021042623410152700_DEV167692C50) 2007; 4 Rabinowitz (2021042623410152700_DEV167692C130) 2017; 114 Langenau (2021042623410152700_DEV167692C91) 2005; 102 Lu (2021042623410152700_DEV167692C100) 2016; 35 Michalopoulos (2021042623410152700_DEV167692C108) 2007; 213 Dupret (2021042623410152700_DEV167692C41) 2017; 1860 Harrison (2021042623410152700_DEV167692C64) 2015; 33 Ohnmacht (2021042623410152700_DEV167692C116) 2016; 143 Becker (2021042623410152700_DEV167692C9) 2008; 26 Sánchez-Iranzo (2021042623410152700_DEV167692C140) 2018; 115 Patterson (2021042623410152700_DEV167692C120) 2017; 49 Liu (2021042623410152700_DEV167692C98) 2004; 150 Unal Eroglu (2021042623410152700_DEV167692C165) 2018; 6 González-Rosa (2021042623410152700_DEV167692C54) 2014; 9 Cano-Martinez (2021042623410152700_DEV167692C21) 2010; 80 Stuart (2021042623410152700_DEV167692C158) 1988; 103 Del Bene (2021042623410152700_DEV167692C36) 2010; 330 Bernstein (2021042623410152700_DEV167692C16) 1970; 20 Sehring (2021042623410152700_DEV167692C143) 2016; 40 Dray (2021042623410152700_DEV167692C40) 2015; 142 Nauroy (2021042623410152700_DEV167692C113) 2019; 75-76 Barbosa (2021042623410152700_DEV167692C8) 2015; 348 Burg (2021042623410152700_DEV167692C18) 2018; 14 Jopling (2021042623410152700_DEV167692C75) 2010; 464 Young (2021042623410152700_DEV167692C179) 2000 Poss (2021042623410152700_DEV167692C127) 2000; 222 Harris (2021042623410152700_DEV167692C63) 2003; 4 Münch (2021042623410152700_DEV167692C112) 2013; 140 Chen (2021042623410152700_DEV167692C30) 2016; 36 Pfefferli (2021042623410152700_DEV167692C123) 2017; 8 Saxena (2021042623410152700_DEV167692C141) 2012; 11 Mahmoud (2021042623410152700_DEV167692C101) 2015; 34 Goldman (2021042623410152700_DEV167692C51) 2017; 40 Singh (2021042623410152700_DEV167692C147) 2012; 22 Azevedo (2021042623410152700_DEV167692C7) 2012; 12 Choi (2021042623410152700_DEV167692C31) 2014; 146 Wosczyna (2021042623410152700_DEV167692C174) 2018; 46 Haffter (2021042623410152700_DEV167692C58) 1996; 123 Kirchgeorg (2021042623410152700_DEV167692C85) 2018; 247 Otsuka (2021042623410152700_DEV167692C117) 2017; 34 Caskey (2021042623410152700_DEV167692C24) 1948; 101 Carrillo (2021042623410152700_DEV167692C23) 2016; 117 Wehner (2021042623410152700_DEV167692C169) 2014; 6 Gonzalez-Rosa (2021042623410152700_DEV167692C53) 2012; 370 Kang (2021042623410152700_DEV167692C79) 2016; 532 Kikuchi (2021042623410152700_DEV167692C83) 2010; 464 Blum (2021042623410152700_DEV167692C17) 2012; 139 Reimschuessel (2021042623410152700_DEV167692C135) 1995; 17 Wu (2021042623410152700_DEV167692C175) 2016; 36 Reimschuessel (2021042623410152700_DEV167692C134) 2001; 42 Kizil (2021042623410152700_DEV167692C86) 2011; 6 Matsuda (2021042623410152700_DEV167692C106) 2018; 67 Xiao (2021042623410152700_DEV167692C176) 2016; 7 Ding (2021042623410152700_DEV167692C38) 2018; 20 Lee (2021042623410152700_DEV167692C93) 2005; 132 Vihtelic (2021042623410152700_DEV167692C166) 2000; 44 Gonzalez-Rosa (2021042623410152700_DEV167692C52) 2011; 138 Pfefferli (2021042623410152700_DEV167692C122) 2015; 2 Jao (2021042623410152700_DEV167692C73) 2013; 110 Poss (2021042623410152700_DEV167692C128) 2002; 298 Ando (2021042623410152700_DEV167692C5) 2017; 43 Simões (2021042623410152700_DEV167692C145) 2014; 14 Gonzalez-Rosa (2021042623410152700_DEV167692C55) 2017; 4 Liu (2021042623410152700_DEV167692C97) 2019; 7 Mathew (2021042623410152700_DEV167692C105) 2007; 282 Tsarouchas (2021042623410152700_DEV167692C163) 2018; 9 Hyde (2021042623410152700_DEV167692C71) 2012; 61 Long (2021042623410152700_DEV167692C99) 2015; 25 Ando (2021042623410152700_DEV167692C4) 2002; 99 Burkhardt-Holm (2021042623410152700_DEV167692C19) 1999; 37 Lai (2021042623410152700_DEV167692C90) 2017; 6 Schnabel (2021042623410152700_DEV167692C142) 2011; 6 Pinto-Teixeira (2021042623410152700_DEV167692C124) 2015; 4 Mescher (2021042623410152700_DEV167692C107) 2017; 4 Raya (2021042623410152700_DEV167692C132) 2003; 100 Streisinger (2021042623410152700_DEV167692C157) 1981; 291 Grivas (2021042623410152700_DEV167692C57) 2014; 163 Bussmann (2021042623410152700_DEV167692C20) 2011; 138 Early (2021042623410152700_DEV167692C42) 2018; 7 Itou (2021042623410152700_DEV167692C72) 2012; 139 Slack (2021042623410152700_DEV167692C148) 2017; 18 Sadler (2021042623410152700_DEV167692C139) 2007; 104 Cox (2021042623410152700_DEV167692C34) 2018; 28 Marín-Juez (2021042623410152700_DEV167692C102) 2016; 113 Zhao (2021042623410152700_DEV167692C180) 2014; 111 Kawakami (2021042623410152700_DEV167692C82) 2010; 10 Curado (2021042623410152700_DEV167692C35) 2007; 236 Ernst (2021042623410152700_DEV167692C43) 2014; 156 Kawakami (2021042623410152700_DEV167692C81) 2000; 97 Bergmann (2021042623410152700_DEV167692C14) 2009; 324 Carney (2021042623410152700_DEV167692C22) 2018; 34 Chablais (2021042623410152700_DEV167692C26) 2011; 11 Tsuji (2021042623410152700_DEV167692C164) 2014; 9 Richardson (2021042623410152700_DEV167692C136) 2013; 133 Chatterjee (2021042623410152700_DEV167692C28) 2011; 7 Geisler (2021042623410152700_DEV167692C48) 2016; 13 Sugiyama (2021042623410152700_DEV167692C159) 2009; 106 |
References_xml | – volume: 22 start-page: 879 year: 2012 ident: 2021042623410152700_DEV167692C147 article-title: Regeneration of amputated zebrafish fin rays from de novo osteoblasts publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.03.006 – volume: 43 start-page: 643 year: 2017 ident: 2021042623410152700_DEV167692C5 article-title: Osteoblast production by reserved progenitor cells in zebrafish bone regeneration and maintenance publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.10.015 – volume: 7 start-page: 2345 year: 2011 ident: 2021042623410152700_DEV167692C28 article-title: Fishing for function: zebrafish BAC transgenics for functional genomics publication-title: Mol. Biosyst. doi: 10.1039/c1mb05116d – volume: 247 start-page: 1146 year: 2018 ident: 2021042623410152700_DEV167692C85 article-title: Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish publication-title: Dev. Dyn. doi: 10.1002/dvdy.24668 – volume: 138 start-page: 3 year: 2018 ident: 2021042623410152700_DEV167692C131 article-title: A beginner's guide to understanding and implementing the genetic modification of zebrafish publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2018.07.005 – volume: 370 start-page: 173 year: 2012 ident: 2021042623410152700_DEV167692C53 article-title: Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2012.07.007 – volume: 532 start-page: 201 year: 2016 ident: 2021042623410152700_DEV167692C79 article-title: Modulation of tissue repair by regeneration enhancer elements publication-title: Nature doi: 10.1038/nature17644 – volume: 8 start-page: 126 year: 2017 ident: 2021042623410152700_DEV167692C171 article-title: Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish publication-title: Nat. Commun. doi: 10.1038/s41467-017-00143-0 – volume: 27 start-page: 1712 year: 2007 ident: 2021042623410152700_DEV167692C46 article-title: Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5317-06.2007 – volume: 34 start-page: 179 year: 2017 ident: 2021042623410152700_DEV167692C117 article-title: Targeted ablation of pancreatic beta cells in medaka publication-title: Zoolog. Sci. doi: 10.2108/zs170004 – volume: 133 start-page: 1655 year: 2013 ident: 2021042623410152700_DEV167692C136 article-title: Adult zebrafish as a model system for cutaneous wound-healing research publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2013.16 – volume: 12 start-page: 24 year: 2012 ident: 2021042623410152700_DEV167692C7 article-title: An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-12-24 – volume: 9 start-page: e104112 year: 2014 ident: 2021042623410152700_DEV167692C164 article-title: Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation publication-title: PLoS ONE doi: 10.1371/journal.pone.0104112 – volume: 8 year: 2007 ident: 2021042623410152700_DEV167692C80 article-title: Tol2: a versatile gene transfer vector in vertebrates publication-title: Genome Biol. doi: 10.1186/gb-2007-8-s1-s7 – volume: 4 start-page: 105 year: 2017 ident: 2021042623410152700_DEV167692C55 article-title: Zebrafish heart regeneration: 15 years of discoveries publication-title: Regeneration doi: 10.1002/reg2.83 – volume: 132 start-page: 5173 year: 2005 ident: 2021042623410152700_DEV167692C93 article-title: Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration publication-title: Development doi: 10.1242/dev.02101 – volume: 43 start-page: 659 year: 2017 ident: 2021042623410152700_DEV167692C69 article-title: Zebrafish regulatory T cells mediate organ-specific regenerative programs publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.11.010 – volume: 44 start-page: 289 year: 2000 ident: 2021042623410152700_DEV167692C166 article-title: Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina publication-title: J. Neurobiol. doi: 10.1002/1097-4695(20000905)44:3<289::AID-NEU1>3.0.CO;2-H – volume: 46 start-page: 135 year: 2018 ident: 2021042623410152700_DEV167692C174 article-title: A muscle stem cell support group: coordinated cellular responses in muscle regeneration publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.06.018 – volume: 424 start-page: 162 year: 2017 ident: 2021042623410152700_DEV167692C12 article-title: Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2017.03.004 – volume: 118 start-page: 91 year: 2002 ident: 2021042623410152700_DEV167692C161 article-title: I-SceI meganuclease mediates highly efficient transgenesis in fish publication-title: Mech. Dev. doi: 10.1016/S0925-4773(02)00218-6 – volume: 352 start-page: 191 year: 2011 ident: 2021042623410152700_DEV167692C2 article-title: Transgenerational analysis of transcriptional silencing in zebrafish publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2011.01.002 – volume: 139 start-page: 4133 year: 2012 ident: 2021042623410152700_DEV167692C72 article-title: Migration of cardiomyocytes is essential for heart regeneration in zebrafish publication-title: Development doi: 10.1242/dev.079756 – volume: 5 start-page: 819 year: 2016 ident: 2021042623410152700_DEV167692C27 article-title: Zebrafish fin regeneration after cryoinjury-induced tissue damage publication-title: Biol. Open doi: 10.1242/bio.016865 – volume: 242 start-page: 949 year: 2013 ident: 2021042623410152700_DEV167692C111 article-title: Site-directed zebrafish transgenesis into single landing sites with the phiC31 integrase system publication-title: Dev. Dyn. doi: 10.1002/dvdy.23989 – volume: 138 start-page: 1459 year: 2011 ident: 2021042623410152700_DEV167692C137 article-title: Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate publication-title: Development doi: 10.1242/dev.058156 – volume: 106 start-page: 19889 year: 2009 ident: 2021042623410152700_DEV167692C152 article-title: A histone demethylase is necessary for regeneration in zebrafish publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904132106 – volume: 34 start-page: 362 year: 2018 ident: 2021042623410152700_DEV167692C22 article-title: Switch and trace: recombinase genetics in zebrafish publication-title: Trends Genet. doi: 10.1016/j.tig.2018.01.004 – volume: 143 start-page: 1464 year: 2016 ident: 2021042623410152700_DEV167692C116 article-title: Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish publication-title: Development doi: 10.1242/dev.129155 – volume: 138 start-page: 4327 year: 2011 ident: 2021042623410152700_DEV167692C20 article-title: Rapid BAC selection for tol2-mediated transgenesis in zebrafish publication-title: Development doi: 10.1242/dev.068080 – volume: 348 start-page: 789 year: 2015 ident: 2021042623410152700_DEV167692C8 article-title: Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain publication-title: Science doi: 10.1126/science.aaa2729 – volume: 69 start-page: 1014 year: 1989 ident: 2021042623410152700_DEV167692C62 article-title: The biology of scar formation publication-title: Phys. Ther. doi: 10.1093/ptj/69.12.1014 – volume: 101 start-page: 710 year: 1948 ident: 2021042623410152700_DEV167692C24 article-title: The cellular basis of regeneration of the caudal fin of the goldfish publication-title: Anat. Rec. – volume: 102 start-page: 6068 year: 2005 ident: 2021042623410152700_DEV167692C91 article-title: Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0408708102 – volume: 287 start-page: 25353 year: 2012 ident: 2021042623410152700_DEV167692C95 article-title: Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.349126 – volume: 236 start-page: 1025 year: 2007 ident: 2021042623410152700_DEV167692C35 article-title: Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies publication-title: Dev. Dyn. doi: 10.1002/dvdy.21100 – volume: 67 start-page: 2268 year: 2018 ident: 2021042623410152700_DEV167692C106 article-title: Whole organism chemical screening identifies modulators of pancreatic beta cell function publication-title: Diabetes doi: 10.2337/db17-1223 – volume: 10 start-page: 259 year: 2013 ident: 2021042623410152700_DEV167692C76 article-title: The zebrafish CreZoo: an easy-to-handle database for novel CreER(T2)-driver lines publication-title: Zebrafish doi: 10.1089/zeb.2012.0834 – volume: 493 start-page: 433 year: 2013 ident: 2021042623410152700_DEV167692C144 article-title: Mammalian heart renewal by pre-existing cardiomyocytes publication-title: Nature doi: 10.1038/nature11682 – volume: 28 start-page: 3937 year: 2018 ident: 2021042623410152700_DEV167692C34 article-title: In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.10.052 – volume: 115 start-page: 4188 year: 2018 ident: 2021042623410152700_DEV167692C140 article-title: Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716713115 – volume: 140 start-page: 1402 year: 2013 ident: 2021042623410152700_DEV167692C112 article-title: Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration publication-title: Development doi: 10.1242/dev.087346 – volume: 331 start-page: 1078 year: 2011 ident: 2021042623410152700_DEV167692C126 article-title: Transient regenerative potential of the neonatal mouse heart publication-title: Science doi: 10.1126/science.1200708 – volume: 117 start-page: 1880 year: 2016 ident: 2021042623410152700_DEV167692C23 article-title: Macrophage Recruitment contributes to regeneration of mechanosensory hair cells in the zebrafish lateral line publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25487 – volume: 40 start-page: 392 year: 2017 ident: 2021042623410152700_DEV167692C51 article-title: Resolving heart regeneration by replacement histone profiling publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.01.013 – volume: 6 start-page: e25605 year: 2017 ident: 2021042623410152700_DEV167692C90 article-title: Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration publication-title: eLife doi: 10.7554/eLife.25605 – volume: 10 start-page: 2064 year: 2015 ident: 2021042623410152700_DEV167692C177 article-title: Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.130 – volume: 26 start-page: 238 year: 2018 ident: 2021042623410152700_DEV167692C13 article-title: Nifurpirinol: a more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations publication-title: Wound Repair. Regen. doi: 10.1111/wrr.12633 – volume: 11 start-page: 21 year: 2011 ident: 2021042623410152700_DEV167692C26 article-title: The zebrafish heart regenerates after cryoinjury-induced myocardial infarction publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-11-21 – volume: 338 start-page: 1353 year: 2012 ident: 2021042623410152700_DEV167692C89 article-title: Acute inflammation initiates the regenerative response in the adult zebrafish brain publication-title: Science doi: 10.1126/science.1228773 – volume: 104 start-page: 1570 year: 2007 ident: 2021042623410152700_DEV167692C139 article-title: Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610774104 – volume: 40 start-page: 48 year: 2016 ident: 2021042623410152700_DEV167692C143 article-title: Zebrafish fin and heart: what's special about regeneration? publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2016.05.011 – volume: 121-122 start-page: 77 year: 2017 ident: 2021042623410152700_DEV167692C3 article-title: Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish publication-title: Methods doi: 10.1016/j.ymeth.2017.03.005 – volume: 99 start-page: 12651 year: 2002 ident: 2021042623410152700_DEV167692C4 article-title: An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.202320599 – volume: 20 start-page: 71 year: 2019 ident: 2021042623410152700_DEV167692C39 article-title: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in zebrafish publication-title: Traffic doi: 10.1111/tra.12621 – volume: 102 start-page: e51912 year: 2015 ident: 2021042623410152700_DEV167692C77 article-title: Kidney regeneration in adult zebrafish by gentamicin induced injury publication-title: J. Vis. Exp. doi: 10.3791/51912 – volume: 18 start-page: 1497 year: 2017 ident: 2021042623410152700_DEV167692C148 article-title: Animal regeneration: ancestral character or evolutionary novelty? publication-title: EMBO Rep. doi: 10.15252/embr.201643795 – volume: 48 start-page: 853 year: 2019 ident: 2021042623410152700_DEV167692C60 article-title: Vitamin D stimulates cardiomyocyte proliferation and controls organ size and regeneration in zebrafish publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.01.001 – volume: 9 start-page: 90 year: 2012 ident: 2021042623410152700_DEV167692C156 article-title: EuFishBioMed (COST Action BM0804): a European network to promote the use of small fishes in biomedical research publication-title: Zebrafish doi: 10.1089/zeb.2012.0742 – volume: 298 start-page: 2188 year: 2002 ident: 2021042623410152700_DEV167692C128 article-title: Heart regeneration in zebrafish publication-title: Science doi: 10.1126/science.1077857 – volume: 256 start-page: 282 year: 2000 ident: 2021042623410152700_DEV167692C1 article-title: Heat-inducible expression of a reporter gene detected by transient assay in zebrafish publication-title: Exp. Cell Res. doi: 10.1006/excr.2000.4805 – volume: 51 start-page: 135 year: 2009 ident: 2021042623410152700_DEV167692C168 article-title: Kidney regeneration through nephron neogenesis in medaka publication-title: Dev. Growth Differ. doi: 10.1111/j.1440-169X.2009.01090.x – volume: 123 start-page: 1 year: 1996 ident: 2021042623410152700_DEV167692C58 article-title: The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio publication-title: Development doi: 10.1016/0736-5748(96)80313-3 – volume: 20 start-page: 35 year: 2018 ident: 2021042623410152700_DEV167692C38 article-title: Light-sheet imaging to elucidate cardiovascular injury and repair publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-018-0979-6 – volume: 75-76 start-page: 82 year: 2019 ident: 2021042623410152700_DEV167692C113 article-title: Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane publication-title: Matrix Biol. doi: 10.1016/j.matbio.2018.07.005 – volume: 111 start-page: 1403 year: 2014 ident: 2021042623410152700_DEV167692C180 article-title: Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1311705111 – volume: 377 start-page: 577 year: 1998 ident: 2021042623410152700_DEV167692C10 article-title: Axonal regrowth after spinal cord transection in adult zebrafish publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-# – volume: 34 start-page: 387 year: 2015 ident: 2021042623410152700_DEV167692C101 article-title: Nerves regulate cardiomyocyte proliferation and heart regeneration publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.06.017 – volume: 6 start-page: e18503 year: 2011 ident: 2021042623410152700_DEV167692C142 article-title: Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation publication-title: PLoS ONE doi: 10.1371/journal.pone.0018503 – volume: 6 start-page: e27395 year: 2011 ident: 2021042623410152700_DEV167692C86 article-title: Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0027395 – volume: 25 start-page: 1997 year: 2018 ident: 2021042623410152700_DEV167692C153 article-title: Heart regeneration in the mexican cavefish publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.10.072 – volume: 40 start-page: 399 year: 2007 ident: 2021042623410152700_DEV167692C115 article-title: Multinucleate osteoclasts in medaka as evidence of active bone remodeling publication-title: Bone doi: 10.1016/j.bone.2006.08.019 – volume: 365 start-page: 339 year: 2012 ident: 2021042623410152700_DEV167692C151 article-title: Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2012.02.031 – volume: 7 start-page: 13 year: 2019 ident: 2021042623410152700_DEV167692C97 article-title: Expanding the CRISPR toolbox in zebrafish for studying development and disease publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00013 – volume: 42 start-page: 285 year: 2001 ident: 2021042623410152700_DEV167692C134 article-title: A fish model of renal regeneration and development publication-title: ILAR J. doi: 10.1093/ilar.42.4.285 – volume: 25 start-page: 638 year: 2015 ident: 2021042623410152700_DEV167692C99 article-title: Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio publication-title: Cell Res. doi: 10.1038/cr.2015.35 – volume: 134 start-page: 479 year: 2007 ident: 2021042623410152700_DEV167692C154 article-title: Distinct Wnt signaling pathways have opposing roles in appendage regeneration publication-title: Development doi: 10.1242/dev.001123 – volume: 464 start-page: 606 year: 2010 ident: 2021042623410152700_DEV167692C75 article-title: Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation publication-title: Nature doi: 10.1038/nature08899 – volume: 13 start-page: S19 issue: Suppl. 1 year: 2016 ident: 2021042623410152700_DEV167692C48 article-title: Maintenance of zebrafish lines at the european zebrafish resource center publication-title: Zebrafish doi: 10.1089/zeb.2015.1205 – volume: 49 start-page: 1346 year: 2017 ident: 2021042623410152700_DEV167692C120 article-title: Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration publication-title: Nat. Genet. doi: 10.1038/ng.3929 – volume: 110 start-page: 13904 year: 2013 ident: 2021042623410152700_DEV167692C73 article-title: Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1308335110 – volume: 213 start-page: 286 year: 2007 ident: 2021042623410152700_DEV167692C108 article-title: Liver regeneration publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21172 – volume: 464 start-page: 601 year: 2010 ident: 2021042623410152700_DEV167692C83 article-title: Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes publication-title: Nature doi: 10.1038/nature08804 – volume: 36 start-page: 668 year: 2016 ident: 2021042623410152700_DEV167692C30 article-title: Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.02.017 – volume: 31 start-page: 227 year: 2013 ident: 2021042623410152700_DEV167692C70 article-title: Efficient genome editing in zebrafish using a CRISPR-Cas system publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2501 – volume: 156 start-page: 1072 year: 2014 ident: 2021042623410152700_DEV167692C43 article-title: Neurogenesis in the striatum of the adult human brain publication-title: Cell doi: 10.1016/j.cell.2014.01.044 – volume: 10 start-page: e0122665 year: 2015 ident: 2021042623410152700_DEV167692C65 article-title: Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury publication-title: PLoS ONE doi: 10.1371/journal.pone.0122665 – volume: 35 start-page: 2026 year: 2016 ident: 2021042623410152700_DEV167692C100 article-title: IGFBP1 increases beta-cell regeneration by promoting alpha- to beta-cell transdifferentiation publication-title: EMBO J. doi: 10.15252/embj.201592903 – volume: 14 start-page: 49 year: 2014 ident: 2021042623410152700_DEV167692C145 article-title: Denervation impairs regeneration of amputated zebrafish fins publication-title: BMC Dev. Biol. doi: 10.1186/s12861-014-0049-2 – volume: 141 start-page: 2581 year: 2014 ident: 2021042623410152700_DEV167692C121 article-title: Macrophages modulate adult zebrafish tail fin regeneration publication-title: Development doi: 10.1242/dev.098459 – volume: 36 start-page: 469 year: 2018 ident: 2021042623410152700_DEV167692C150 article-title: Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4124 – volume: 7 start-page: e35136 year: 2018 ident: 2021042623410152700_DEV167692C42 article-title: An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination publication-title: eLife doi: 10.7554/eLife.35136 – volume: 7 start-page: 13787 year: 2016 ident: 2021042623410152700_DEV167692C176 article-title: Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish publication-title: Nat. Commun. doi: 10.1038/ncomms13787 – volume: 1860 start-page: 1079 year: 2017 ident: 2021042623410152700_DEV167692C41 article-title: The histone lysine methyltransferase Ezh2 is required for maintenance of the intestine integrity and for caudal fin regeneration in zebrafish publication-title: Biochim. Biophys. Acta. Gene Regul. Mech. doi: 10.1016/j.bbagrm.2017.08.011 – volume: 138 start-page: 1663 year: 2011 ident: 2021042623410152700_DEV167692C52 article-title: Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish publication-title: Development doi: 10.1242/dev.060897 – volume: 37 start-page: 85 year: 1999 ident: 2021042623410152700_DEV167692C19 article-title: Toxicity of 4-chloroaniline in early life stages of zebrafish (Danio rerio): II. Cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4-chloroaniline publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s002449900493 – volume: 135 start-page: 183 year: 2008 ident: 2021042623410152700_DEV167692C173 article-title: Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish publication-title: Development doi: 10.1242/dev.010363 – volume: 10 start-page: 105 year: 2010 ident: 2021042623410152700_DEV167692C82 article-title: zTrap: zebrafish gene trap and enhancer trap database publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-10-105 – volume: 12 start-page: 1691 year: 2015 ident: 2021042623410152700_DEV167692C11 article-title: Telomerase is essential for zebrafish heart regeneration publication-title: Cell Reports doi: 10.1016/j.celrep.2015.07.064 – volume: 376 start-page: 253 year: 1996 ident: 2021042623410152700_DEV167692C15 article-title: Increased expression of specific recognition molecules by retinal ganglion cells and by optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19961209)376:2<253::AID-CNE7>3.0.CO;2-2 – volume: 2 start-page: 72 year: 2015 ident: 2021042623410152700_DEV167692C122 article-title: The art of fin regeneration in zebrafish publication-title: Regeneration doi: 10.1002/reg2.33 – volume-title: Wheater's Functional Histology: A Text and Colour Atlas year: 2000 ident: 2021042623410152700_DEV167692C179 – volume: 3 start-page: 689 year: 2010 ident: 2021042623410152700_DEV167692C155 article-title: The zebrafish embryo as a model for assessing off-target drug effects publication-title: Dis. Model. Mech. doi: 10.1242/dmm.006312 – volume: 41 start-page: D854 year: 2013 ident: 2021042623410152700_DEV167692C68 article-title: ZFIN, the zebrafish model organism database: increased support for mutants and transgenics publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks938 – volume: 324 start-page: 98 year: 2009 ident: 2021042623410152700_DEV167692C14 article-title: Evidence for cardiomyocyte renewal in humans publication-title: Science doi: 10.1126/science.1164680 – volume: 14 start-page: e1007754 year: 2018 ident: 2021042623410152700_DEV167692C18 article-title: Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1007754 – volume: 129 start-page: 2607 year: 2002 ident: 2021042623410152700_DEV167692C114 article-title: A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration publication-title: Development doi: 10.1242/dev.129.11.2607 – volume: 4 start-page: 551 year: 2007 ident: 2021042623410152700_DEV167692C50 article-title: Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors publication-title: Nat. Methods doi: 10.1038/nmeth1059 – volume: 106 start-page: 14896 year: 2009 ident: 2021042623410152700_DEV167692C66 article-title: Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906348106 – volume: 150 start-page: 63 year: 2004 ident: 2021042623410152700_DEV167692C98 article-title: Cadherin-2 and cadherin-4 in developing, adult and regenerating zebrafish cerebellum publication-title: Brain Res. Dev. Brain Res. doi: 10.1016/j.devbrainres.2004.03.002 – volume: 44 start-page: 433 year: 2018 ident: 2021042623410152700_DEV167692C56 article-title: Myocardial polyploidization creates a barrier to heart regeneration in zebrafish publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.01.021 – volume: 235 start-page: 336 year: 2006 ident: 2021042623410152700_DEV167692C162 article-title: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb publication-title: Dev. Dyn. doi: 10.1002/dvdy.20630 – volume: 6 start-page: e22820 year: 2011 ident: 2021042623410152700_DEV167692C6 article-title: The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations publication-title: PLoS ONE doi: 10.1371/journal.pone.0022820 – volume: 36 start-page: 36 year: 2016 ident: 2021042623410152700_DEV167692C175 article-title: Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.12.010 – volume: 4 year: 2009 ident: 2021042623410152700_DEV167692C61 article-title: Temporally-controlled site-specific recombination in zebrafish publication-title: PLoS ONE doi: 10.1371/journal.pone.0004640 – volume: 6 start-page: 56 year: 2014 ident: 2021042623410152700_DEV167692C33 article-title: S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury publication-title: Cell Reports doi: 10.1016/j.celrep.2013.12.007 – volume: 113 start-page: 11237 year: 2016 ident: 2021042623410152700_DEV167692C102 article-title: Fast revascularization of the injured area is essential to support zebrafish heart regeneration publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1605431113 – volume: 240 start-page: 2221 year: 2011 ident: 2021042623410152700_DEV167692C103 article-title: Regenerative response following stab injury in the adult zebrafish telencephalon publication-title: Dev. Dyn. doi: 10.1002/dvdy.22710 – volume: 4 start-page: 903 year: 2015 ident: 2021042623410152700_DEV167692C124 article-title: Inexhaustible hair-cell regeneration in young and aged zebrafish publication-title: Biol. Open doi: 10.1242/bio.012112 – volume: 33 start-page: 442 year: 2015 ident: 2021042623410152700_DEV167692C64 article-title: Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.04.001 – volume: 7 start-page: 2917 year: 2017 ident: 2021042623410152700_DEV167692C87 article-title: High-resolution magnetic resonance imaging of the regenerating adult zebrafish heart publication-title: Sci. Rep. doi: 10.1038/s41598-017-03050-y – start-page: 498899 year: 2018 ident: 2021042623410152700_DEV167692C67 article-title: A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart publication-title: bioRxiv doi: 10.1101/498899 – volume: 142 start-page: 2752 year: 2015 ident: 2021042623410152700_DEV167692C104 article-title: Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration publication-title: Development doi: 10.1242/dev.119701 – volume: 4 start-page: 39 year: 2017 ident: 2021042623410152700_DEV167692C107 article-title: Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration publication-title: Regeneration doi: 10.1002/reg2.77 – volume: 6 start-page: 88 year: 2018 ident: 2021042623410152700_DEV167692C165 article-title: Multiplexed CRISPR/Cas9 targeting of genes implicated in retinal regeneration and degeneration publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2018.00088 – volume: 470 start-page: 95 year: 2011 ident: 2021042623410152700_DEV167692C37 article-title: Identification of adult nephron progenitors capable of kidney regeneration in zebrafish publication-title: Nature doi: 10.1038/nature09669 – volume: 6 start-page: 36 year: 2006 ident: 2021042623410152700_DEV167692C133 article-title: Molecular characterization of retinal stem cells and their niches in adult zebrafish publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-6-36 – volume: 140 start-page: 4988 year: 2013 ident: 2021042623410152700_DEV167692C29 article-title: zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish publication-title: Development doi: 10.1242/dev.102053 – volume: 20 start-page: 397 year: 2011 ident: 2021042623410152700_DEV167692C84 article-title: Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.01.010 – volume: 128 start-page: e56249 year: 2017 ident: 2021042623410152700_DEV167692C32 article-title: Muller glia cell activation in a laser-induced retinal degeneration and regeneration model in zebrafish publication-title: J. Vis. Exp doi: 10.3791/56249 – volume: 100 start-page: 11889 issue: Suppl. 1 year: 2003 ident: 2021042623410152700_DEV167692C132 article-title: Activation of Notch signaling pathway precedes heart regeneration in zebrafish publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1834204100 – volume: 248 start-page: 34 year: 2018 ident: 2021042623410152700_DEV167692C178 article-title: Tissue regeneration enhancer elements: a way to unlock endogenous healing power publication-title: Dev. Dyn. doi: 10.1002/dvdy.24676 – volume: 135 start-page: 219 year: 2016 ident: 2021042623410152700_DEV167692C45 article-title: Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments publication-title: Methods Cell Biol. doi: 10.1016/bs.mcb.2016.01.009 – volume: 5 start-page: 97 year: 2008 ident: 2021042623410152700_DEV167692C59 article-title: Gal4/UAS transgenic tools and their application to zebrafish publication-title: Zebrafish doi: 10.1089/zeb.2008.0530 – volume: 2 start-page: 291 year: 2013 ident: 2021042623410152700_DEV167692C146 article-title: Limb regeneration publication-title: Wiley Interdiscip. Rev. Dev. Biol. doi: 10.1002/wdev.73 – volume: 142 start-page: 3592 year: 2015 ident: 2021042623410152700_DEV167692C40 article-title: Large-scale live imaging of adult neural stem cells in their endogenous niche publication-title: Development doi: 10.1242/dev.123018 – volume: 5 start-page: e8737 year: 2010 ident: 2021042623410152700_DEV167692C92 article-title: Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair publication-title: PLoS ONE doi: 10.1371/journal.pone.0008737 – volume: 127 start-page: 607 year: 2006 ident: 2021042623410152700_DEV167692C94 article-title: A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration publication-title: Cell doi: 10.1016/j.cell.2006.08.052 – volume: 11 start-page: M111.014118 year: 2012 ident: 2021042623410152700_DEV167692C141 article-title: Proteomic analysis of zebrafish caudal fin regeneration publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.014118 – volume: 222 start-page: 347 year: 2000 ident: 2021042623410152700_DEV167692C127 article-title: Roles for Fgf signaling during zebrafish fin regeneration publication-title: Dev. Biol. doi: 10.1006/dbio.2000.9722 – volume: 8 start-page: 15151 year: 2017 ident: 2021042623410152700_DEV167692C123 article-title: The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin publication-title: Nat. Commun. doi: 10.1038/ncomms15151 – volume: 7 start-page: e32348 year: 2012 ident: 2021042623410152700_DEV167692C119 article-title: Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration publication-title: PLoS ONE doi: 10.1371/journal.pone.0032348 – volume: 115 start-page: 570 year: 2018 ident: 2021042623410152700_DEV167692C47 article-title: Yap is required for scar formation but not myocyte proliferation during heart regeneration in zebrafish publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvy243 – volume: 146 start-page: 776 year: 2014 ident: 2021042623410152700_DEV167692C31 article-title: Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.10.019 – volume: 103 start-page: 403 year: 1988 ident: 2021042623410152700_DEV167692C158 article-title: Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos publication-title: Development doi: 10.1242/dev.103.2.403 – volume: 139 start-page: 1921 year: 2012 ident: 2021042623410152700_DEV167692C25 article-title: The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling publication-title: Development doi: 10.1242/dev.078543 – volume: 14 start-page: 360 year: 2017 ident: 2021042623410152700_DEV167692C129 article-title: A guide to light-sheet fluorescence microscopy for multiscale imaging publication-title: Nat. Methods doi: 10.1038/nmeth.4224 – volume: 6 start-page: 1998 year: 2011 ident: 2021042623410152700_DEV167692C160 article-title: Transposon-mediated BAC transgenesis in zebrafish publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.416 – volume: 97 start-page: 11403 year: 2000 ident: 2021042623410152700_DEV167692C81 article-title: Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.21.11403 – volume: 138 start-page: 3421 year: 2011 ident: 2021042623410152700_DEV167692C167 article-title: The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion publication-title: Development doi: 10.1242/dev.068601 – volume: 20 start-page: 33 year: 1970 ident: 2021042623410152700_DEV167692C16 article-title: Regeneration of the long spinal tracts in the goldfish publication-title: Brain Res. doi: 10.1016/0006-8993(70)90151-4 – volume: 299 start-page: 438 year: 2006 ident: 2021042623410152700_DEV167692C149 article-title: Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.08.016 – volume: 106 start-page: 20812 year: 2009 ident: 2021042623410152700_DEV167692C159 article-title: Illuminating cell-cycle progression in the developing zebrafish embryo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906464106 – volume: 6 start-page: 467 year: 2014 ident: 2021042623410152700_DEV167692C169 article-title: Wnt/beta-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.12.036 – volume: 120 start-page: 1861 year: 1994 ident: 2021042623410152700_DEV167692C172 article-title: A zebrafish retinoic acid receptor expressed in the regenerating caudal fin publication-title: Development doi: 10.1242/dev.120.7.1861 – volume: 139 start-page: 107 year: 2012 ident: 2021042623410152700_DEV167692C17 article-title: Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration publication-title: Development doi: 10.1242/dev.065391 – volume: 26 start-page: 71 year: 2008 ident: 2021042623410152700_DEV167692C9 article-title: Adult zebrafish as a model for successful central nervous system regeneration publication-title: Restor. Neurol. Neurosci. – volume: 289 start-page: 311 year: 1997 ident: 2021042623410152700_DEV167692C138 article-title: Regeneration of skeletal muscle in two teleost fish: Sparus aurata and Brachydanio rerio publication-title: Cell Tissue Res. doi: 10.1007/s004410050878 – volume: 4 start-page: 219 year: 2003 ident: 2021042623410152700_DEV167692C63 article-title: Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio) publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-002-3022-x – volume: 237 start-page: 752 year: 1997 ident: 2021042623410152700_DEV167692C44 article-title: Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7124 – volume: 114 start-page: E717 year: 2017 ident: 2021042623410152700_DEV167692C130 article-title: Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620755114 – volume: 9 start-page: e115604 year: 2014 ident: 2021042623410152700_DEV167692C54 article-title: Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish publication-title: PLoS ONE doi: 10.1371/journal.pone.0115604 – volume: 17 start-page: 101 year: 1995 ident: 2021042623410152700_DEV167692C135 article-title: Development of new nephrons in adult kidneys following gentamicin-induced nephrotoxicity publication-title: Ren. Fail. doi: 10.3109/08860229509026246 – volume: 61 start-page: 3632 year: 2012 ident: 2021042623410152700_DEV167692C71 article-title: In vivo electroporation of morpholinos into the regenerating adult zebrafish tail fin publication-title: J. Vis. Exp. doi: 10.3791/3632 – volume: 23 start-page: 3516 year: 2009 ident: 2021042623410152700_DEV167692C78 article-title: Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy publication-title: FASEB J. doi: 10.1096/fj.09-131730 – volume: 8 start-page: a018820 year: 2016 ident: 2021042623410152700_DEV167692C96 article-title: The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a018820 – volume: 20 start-page: E1290 year: 2019 ident: 2021042623410152700_DEV167692C118 article-title: A smart imaging workflow for organ-specific screening in a cystic kidney zebrafish disease model publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20061290 – volume: 138 start-page: 4831 year: 2011 ident: 2021042623410152700_DEV167692C88 article-title: Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors publication-title: Development doi: 10.1242/dev.072587 – volume: 124 start-page: 218 year: 2007 ident: 2021042623410152700_DEV167692C125 article-title: Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase publication-title: Mech. Dev. doi: 10.1016/j.mod.2006.11.005 – volume: 9 start-page: 4670 year: 2018 ident: 2021042623410152700_DEV167692C163 article-title: Dynamic control of proinflammatory cytokines Il-1beta and Tnf-alpha by macrophages in zebrafish spinal cord regeneration publication-title: Nat. Commun. doi: 10.1038/s41467-018-07036-w – volume: 163 start-page: 14 year: 2014 ident: 2021042623410152700_DEV167692C57 article-title: Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. doi: 10.1016/j.cbpc.2014.02.002 – volume: 291 start-page: 293 year: 1981 ident: 2021042623410152700_DEV167692C157 article-title: Production of clones of homozygous diploid zebra fish (Brachydanio rerio) publication-title: Nature doi: 10.1038/291293a0 – volume: 141 start-page: 1583 year: 1995 ident: 2021042623410152700_DEV167692C74 article-title: Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration publication-title: Genetics doi: 10.1093/genetics/141.4.1583 – volume: 282 start-page: 35202 year: 2007 ident: 2021042623410152700_DEV167692C105 article-title: Unraveling tissue regeneration pathways using chemical genetics publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706640200 – volume: 354 start-page: 630 year: 2016 ident: 2021042623410152700_DEV167692C109 article-title: Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish publication-title: Science doi: 10.1126/science.aaf2679 – volume: 7 start-page: e37877 year: 2012 ident: 2021042623410152700_DEV167692C110 article-title: Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs) publication-title: PLoS ONE doi: 10.1371/journal.pone.0037877 – volume: 383B start-page: 803 year: 1993 ident: 2021042623410152700_DEV167692C49 article-title: Is exogenous retinoic acid necessary to alter positional information during regeneration of the fin in zebrafish? publication-title: Prog. Clin. Biol. Res. – volume: 80 start-page: 79 year: 2010 ident: 2021042623410152700_DEV167692C21 article-title: Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation publication-title: Arch. Cardiol. Mex. – volume: 100 start-page: e52756 year: 2015 ident: 2021042623410152700_DEV167692C170 article-title: Use of the TetON system to study molecular mechanisms of zebrafish regeneration publication-title: J. Vis. Exp. doi: 10.3791/52756 – volume: 330 start-page: 669 year: 2010 ident: 2021042623410152700_DEV167692C36 article-title: Filtering of visual information in the tectum by an identified neural circuit publication-title: Science doi: 10.1126/science.1192949 |
SSID | ssj0003677 |
Score | 2.632157 |
SecondaryResourceType | review_article |
Snippet | Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
Title | Model systems for regeneration: zebrafish |
URI | https://www.proquest.com/docview/2295484171 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60ongRn_gmopci0WyzedSbSIuPVi8tFC9hs9loQRJJW0F_vTObzUPoQb2Edli2Zb5k5svOi5AzFzitF4UUHiTJTWYz1_Spzc02j11wCfB0Max37j-6t0N2P3JG1TxNVV0yDS_E19y6kv-gCjLAFatk_4BsuSkI4DPgC1dAGK6_whgHmb3pZsyqr8J5Jl9UH-kiZeML48LxePJaJ6G1RCEVxC3KtmqnAn2eocPILYicVMGj3ux9nKeDyTRJs9Ko92WGmfZZbrGjMa8fJ1CVL9WyahaQYUyX6h-Uc2SF2dRHh_r-8OfaYyAAoMRIflxQzKVtVV6niLQ_PgXdYa8XDDqjwSJZanlAgZDb3j2UDtV21QDN8l_oLrOw92W1809e8dOtKq4wWCdrmuQb1zliG2RBJptkOR_7-blJVvo6oQGEz6kSbpGmAtPQYBoAplEH88ooodwmw25ncHNr6jkWpsCpwabf9i0vxl4IVmhz5lDheU7k-jFz4GsoKLUjHN8kBdBFYbmcteMYqVcM7DmMfHuHNJI0kbvE8ICyCd-yJQ0j5ghsvthyhCM46EB4sb1HmoUWAqGbvOOskbcAX_ZAYwFoLMg1tkdOy7XveWuTuatOCmUGYHkwnMQTmc4mAQ6CZz6jHt3_xZoDslrdboekMc1m8gj43DQ8Vmh_A4h9Ryw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+systems+for+regeneration%3A+zebrafish&rft.jtitle=Development+%28Cambridge%29&rft.au=Marques%2C+Ines+J&rft.au=Lupi%2C+Eleonora&rft.au=Mercader%2C+Nadia&rft.date=2019-09-20&rft.issn=1477-9129&rft.eissn=1477-9129&rft.volume=146&rft.issue=18&rft_id=info:doi/10.1242%2Fdev.167692&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |