Model systems for regeneration: zebrafish

Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can h...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 146; no. 18
Main Authors Marques, Ines J., Lupi, Eleonora, Mercader, Nadia
Format Journal Article
LanguageEnglish
Published 20.09.2019
Online AccessGet full text
ISSN0950-1991
1477-9129
1477-9129
DOI10.1242/dev.167692

Cover

Abstract Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
AbstractList Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Author Marques, Ines J.
Mercader, Nadia
Lupi, Eleonora
Author_xml – sequence: 1
  givenname: Ines J.
  orcidid: 0000-0003-1254-9394
  surname: Marques
  fullname: Marques, Ines J.
  organization: Institute of Anatomy, University of Bern, Bern 3012, Switzerland
– sequence: 2
  givenname: Eleonora
  orcidid: 0000-0003-0509-3616
  surname: Lupi
  fullname: Lupi, Eleonora
  organization: Institute of Anatomy, University of Bern, Bern 3012, Switzerland, Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
– sequence: 3
  givenname: Nadia
  orcidid: 0000-0002-0905-6399
  surname: Mercader
  fullname: Mercader, Nadia
  organization: Institute of Anatomy, University of Bern, Bern 3012, Switzerland, Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
BookMark eNptkE1LxDAURYOMYGd04y_oUoWOeWnSJO5kGD9gxI2uQ5q-aKXTjElHGH-91XElrh4Xzr08zpRM-tAjIadA58A4u2zwYw6VrDQ7IBlwKQsNTE9IRrWgBWgNR2Sa0hultKykzMj5Q2iwy9MuDbhOuQ8xj_iCPUY7tKG_yj-xjta36fWYHHrbJTz5vTPyfLN8WtwVq8fb-8X1qnAMBCuUVlR6ykHQurRcgJNSNJXyXIyxdgBlA0KU6KpSO1pZrr1noMALqupGlTNytt_dxPC-xTSYdZscdp3tMWyTYUwLrjhIGFG6R10MKUX0xrXDz99DtG1ngJpvK2a0YvZWxsrFn8omtmsbd__BXw6RYxA
CitedBy_id crossref_primary_10_1038_s42003_023_05686_1
crossref_primary_10_1101_gad_350164_122
crossref_primary_10_1515_hsz_2020_0269
crossref_primary_10_3390_w14233857
crossref_primary_10_3390_cells9091925
crossref_primary_10_1016_j_celrep_2024_114162
crossref_primary_10_1254_fpj_20067
crossref_primary_10_3389_fcell_2024_1485773
crossref_primary_10_1016_j_gocm_2023_05_003
crossref_primary_10_1002_dvdy_244
crossref_primary_10_1016_j_gde_2020_05_020
crossref_primary_10_3389_fmars_2022_931903
crossref_primary_10_1210_endocr_bqad136
crossref_primary_10_1016_j_ydbio_2022_01_007
crossref_primary_10_1007_s00223_024_01282_5
crossref_primary_10_1038_s41598_020_68016_z
crossref_primary_10_1016_j_devcel_2024_01_004
crossref_primary_10_1293_tox_2020_0021
crossref_primary_10_1002_jbio_202400376
crossref_primary_10_1007_s11033_024_09814_w
crossref_primary_10_1186_s12915_023_01633_y
crossref_primary_10_3390_geriatrics7020045
crossref_primary_10_1002_dvdy_518
crossref_primary_10_1007_s11427_020_1915_y
crossref_primary_10_1007_s11626_022_00664_z
crossref_primary_10_3390_ph14060536
crossref_primary_10_3390_ijms25095030
crossref_primary_10_1016_j_neuroscience_2021_07_009
crossref_primary_10_1089_ten_teb_2023_0224
crossref_primary_10_3389_fcell_2021_743421
crossref_primary_10_7554_eLife_76987
crossref_primary_10_1161_CIRCRESAHA_122_320396
crossref_primary_10_1016_j_heliyon_2025_e41833
crossref_primary_10_3390_ijms24076468
crossref_primary_10_1016_j_biopha_2020_110836
crossref_primary_10_3390_ijms222413417
crossref_primary_10_1101_cshperspect_a041240
crossref_primary_10_3390_ijms25169078
crossref_primary_10_1002_glia_24220
crossref_primary_10_3390_cells14040282
crossref_primary_10_1111_jfb_15585
crossref_primary_10_1093_toxsci_kfaa143
crossref_primary_10_3390_cells10020391
crossref_primary_10_3389_fcell_2021_652466
crossref_primary_10_1007_s10534_025_00671_z
crossref_primary_10_1111_wrr_13029
crossref_primary_10_3389_fcell_2020_605120
crossref_primary_10_3389_fcell_2024_1384423
crossref_primary_10_1186_s12864_024_11175_4
crossref_primary_10_1016_j_ijbiomac_2024_130155
crossref_primary_10_1111_ahg_12408
crossref_primary_10_1038_s41536_024_00351_5
crossref_primary_10_1007_s00018_021_03760_7
crossref_primary_10_1101_pdb_top100966
crossref_primary_10_3389_fcell_2021_655048
crossref_primary_10_1038_s41536_022_00209_8
crossref_primary_10_1016_j_cub_2020_06_089
crossref_primary_10_1016_j_cophys_2020_02_002
crossref_primary_10_1101_cshperspect_a040931
crossref_primary_10_1038_s41536_021_00179_3
crossref_primary_10_1152_ajpcell_00403_2022
crossref_primary_10_3389_fcell_2023_1206157
crossref_primary_10_3390_cells13211749
crossref_primary_10_1111_wrr_12998
crossref_primary_10_1242_dev_202315
crossref_primary_10_1111_brv_12801
crossref_primary_10_3390_cells12101436
crossref_primary_10_1016_j_bone_2022_116611
crossref_primary_10_3390_biomedicines9010065
crossref_primary_10_1161_ATVBAHA_121_316539
crossref_primary_10_3389_fphys_2022_906110
crossref_primary_10_1242_dmm_049753
crossref_primary_10_1098_rsob_200300
crossref_primary_10_3389_fcell_2023_1134451
crossref_primary_10_3390_ijms24043253
crossref_primary_10_1002_mrm_29066
crossref_primary_10_1039_D1QM00193K
crossref_primary_10_3390_biom12010035
crossref_primary_10_1186_s13619_024_00195_w
crossref_primary_10_3389_fnmol_2023_1160707
crossref_primary_10_1002_jbmr_4256
crossref_primary_10_1111_pbi_70028
crossref_primary_10_3389_fcell_2022_813314
crossref_primary_10_1038_s42003_023_05551_1
crossref_primary_10_3389_fcell_2023_1123299
crossref_primary_10_1016_j_gene_2021_145440
crossref_primary_10_1186_s12964_024_01993_0
crossref_primary_10_3390_life14050594
crossref_primary_10_3390_molecules27196231
crossref_primary_10_3389_fcell_2020_587320
crossref_primary_10_1016_j_phymed_2024_155553
crossref_primary_10_3389_fevo_2022_783818
crossref_primary_10_1111_wrr_12892
crossref_primary_10_3389_fcell_2022_849905
crossref_primary_10_1016_j_jep_2021_114638
crossref_primary_10_1016_j_semcdb_2024_12_005
crossref_primary_10_15446_abc_v27n1_88309
crossref_primary_10_1177_2472555220926920
crossref_primary_10_1002_dvdy_583
crossref_primary_10_1016_j_ydbio_2021_01_005
crossref_primary_10_1177_10915818231207966
crossref_primary_10_3389_fgene_2020_627259
crossref_primary_10_1038_s41467_022_30468_4
crossref_primary_10_3390_ma17030745
crossref_primary_10_3390_biology14030274
crossref_primary_10_1016_j_freeradbiomed_2022_11_016
crossref_primary_10_1016_j_watbs_2022_100081
crossref_primary_10_1016_j_ygcen_2022_114033
crossref_primary_10_1093_nar_gkae085
crossref_primary_10_1038_s41596_023_00821_y
crossref_primary_10_1016_j_carpta_2025_100709
crossref_primary_10_3389_fgene_2021_655550
crossref_primary_10_1242_dev_199767
crossref_primary_10_3389_fevo_2021_613157
crossref_primary_10_1111_febs_17231
crossref_primary_10_1371_journal_pgen_1009628
crossref_primary_10_1242_dev_202944
crossref_primary_10_3389_fnins_2021_671249
crossref_primary_10_1111_acel_13464
crossref_primary_10_1242_dev_167718
crossref_primary_10_1016_j_brainresbull_2022_10_001
crossref_primary_10_3389_fendo_2023_1122351
Cites_doi 10.1016/j.devcel.2012.03.006
10.1016/j.devcel.2017.10.015
10.1039/c1mb05116d
10.1002/dvdy.24668
10.1016/j.pbiomolbio.2018.07.005
10.1016/j.ydbio.2012.07.007
10.1038/nature17644
10.1038/s41467-017-00143-0
10.1523/JNEUROSCI.5317-06.2007
10.2108/zs170004
10.1038/jid.2013.16
10.1186/1471-213X-12-24
10.1371/journal.pone.0104112
10.1186/gb-2007-8-s1-s7
10.1002/reg2.83
10.1242/dev.02101
10.1016/j.devcel.2017.11.010
10.1002/1097-4695(20000905)44:3<289::AID-NEU1>3.0.CO;2-H
10.1016/j.devcel.2018.06.018
10.1016/j.ydbio.2017.03.004
10.1016/S0925-4773(02)00218-6
10.1016/j.ydbio.2011.01.002
10.1242/dev.079756
10.1242/bio.016865
10.1002/dvdy.23989
10.1242/dev.058156
10.1073/pnas.0904132106
10.1016/j.tig.2018.01.004
10.1242/dev.129155
10.1242/dev.068080
10.1126/science.aaa2729
10.1093/ptj/69.12.1014
10.1073/pnas.0408708102
10.1074/jbc.M112.349126
10.1002/dvdy.21100
10.2337/db17-1223
10.1089/zeb.2012.0834
10.1038/nature11682
10.1016/j.cub.2018.10.052
10.1073/pnas.1716713115
10.1242/dev.087346
10.1126/science.1200708
10.1002/jcb.25487
10.1016/j.devcel.2017.01.013
10.7554/eLife.25605
10.1038/nprot.2015.130
10.1111/wrr.12633
10.1186/1471-213X-11-21
10.1126/science.1228773
10.1073/pnas.0610774104
10.1016/j.gde.2016.05.011
10.1016/j.ymeth.2017.03.005
10.1073/pnas.202320599
10.1111/tra.12621
10.3791/51912
10.15252/embr.201643795
10.1016/j.devcel.2019.01.001
10.1089/zeb.2012.0742
10.1126/science.1077857
10.1006/excr.2000.4805
10.1111/j.1440-169X.2009.01090.x
10.1016/0736-5748(96)80313-3
10.1007/s11886-018-0979-6
10.1016/j.matbio.2018.07.005
10.1073/pnas.1311705111
10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#
10.1016/j.devcel.2015.06.017
10.1371/journal.pone.0018503
10.1371/journal.pone.0027395
10.1016/j.celrep.2018.10.072
10.1016/j.bone.2006.08.019
10.1016/j.ydbio.2012.02.031
10.3389/fcell.2019.00013
10.1093/ilar.42.4.285
10.1038/cr.2015.35
10.1242/dev.001123
10.1038/nature08899
10.1089/zeb.2015.1205
10.1038/ng.3929
10.1073/pnas.1308335110
10.1002/jcp.21172
10.1038/nature08804
10.1016/j.devcel.2016.02.017
10.1038/nbt.2501
10.1016/j.cell.2014.01.044
10.1371/journal.pone.0122665
10.15252/embj.201592903
10.1186/s12861-014-0049-2
10.1242/dev.098459
10.1038/nbt.4124
10.7554/eLife.35136
10.1038/ncomms13787
10.1016/j.bbagrm.2017.08.011
10.1242/dev.060897
10.1007/s002449900493
10.1242/dev.010363
10.1186/1471-213X-10-105
10.1016/j.celrep.2015.07.064
10.1002/(SICI)1096-9861(19961209)376:2<253::AID-CNE7>3.0.CO;2-2
10.1002/reg2.33
10.1242/dmm.006312
10.1093/nar/gks938
10.1126/science.1164680
10.1371/journal.pgen.1007754
10.1242/dev.129.11.2607
10.1038/nmeth1059
10.1073/pnas.0906348106
10.1016/j.devbrainres.2004.03.002
10.1016/j.devcel.2018.01.021
10.1002/dvdy.20630
10.1371/journal.pone.0022820
10.1016/j.devcel.2015.12.010
10.1371/journal.pone.0004640
10.1016/j.celrep.2013.12.007
10.1073/pnas.1605431113
10.1002/dvdy.22710
10.1242/bio.012112
10.1016/j.devcel.2015.04.001
10.1038/s41598-017-03050-y
10.1101/498899
10.1242/dev.119701
10.1002/reg2.77
10.3389/fcell.2018.00088
10.1038/nature09669
10.1186/1471-213X-6-36
10.1242/dev.102053
10.1016/j.devcel.2011.01.010
10.3791/56249
10.1073/pnas.1834204100
10.1002/dvdy.24676
10.1016/bs.mcb.2016.01.009
10.1089/zeb.2008.0530
10.1002/wdev.73
10.1242/dev.123018
10.1371/journal.pone.0008737
10.1016/j.cell.2006.08.052
10.1074/mcp.M111.014118
10.1006/dbio.2000.9722
10.1038/ncomms15151
10.1371/journal.pone.0032348
10.1093/cvr/cvy243
10.1053/j.gastro.2013.10.019
10.1242/dev.103.2.403
10.1242/dev.078543
10.1038/nmeth.4224
10.1038/nprot.2011.416
10.1073/pnas.97.21.11403
10.1242/dev.068601
10.1016/0006-8993(70)90151-4
10.1016/j.ydbio.2006.08.016
10.1073/pnas.0906464106
10.1016/j.celrep.2013.12.036
10.1242/dev.120.7.1861
10.1242/dev.065391
10.1007/s004410050878
10.1007/s10162-002-3022-x
10.1006/bbrc.1997.7124
10.1073/pnas.1620755114
10.1371/journal.pone.0115604
10.3109/08860229509026246
10.3791/3632
10.1096/fj.09-131730
10.1101/cshperspect.a018820
10.3390/ijms20061290
10.1242/dev.072587
10.1016/j.mod.2006.11.005
10.1038/s41467-018-07036-w
10.1016/j.cbpc.2014.02.002
10.1038/291293a0
10.1093/genetics/141.4.1583
10.1074/jbc.M706640200
10.1126/science.aaf2679
10.1371/journal.pone.0037877
10.3791/52756
10.1126/science.1192949
ContentType Journal Article
Copyright 2019. Published by The Company of Biologists Ltd.
Copyright_xml – notice: 2019. Published by The Company of Biologists Ltd.
DBID AAYXX
CITATION
7X8
DOI 10.1242/dev.167692
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
ExternalDocumentID 10_1242_dev_167692
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XSW
7X8
ID FETCH-LOGICAL-c2152-89807f04150b3a451c775d68f453a4bc113d1553ec639c06a49ff2181f508bd83
ISSN 0950-1991
1477-9129
IngestDate Fri Sep 05 10:51:20 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Tue Jul 01 00:45:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2152-89807f04150b3a451c775d68f453a4bc113d1553ec639c06a49ff2181f508bd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1254-9394
0000-0002-0905-6399
0000-0003-0509-3616
OpenAccessLink https://doi.org/10.1242/dev.167692
PQID 2295484171
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2295484171
crossref_citationtrail_10_1242_dev_167692
crossref_primary_10_1242_dev_167692
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190920
PublicationDateYYYYMMDD 2019-09-20
PublicationDate_xml – month: 09
  year: 2019
  text: 20190920
  day: 20
PublicationDecade 2010
PublicationTitle Development (Cambridge)
PublicationYear 2019
References Flinn (2021042623410152700_DEV167692C47) 2018; 115
Stoick-Cooper (2021042623410152700_DEV167692C154) 2007; 134
White (2021042623410152700_DEV167692C172) 1994; 120
Honkoop (2021042623410152700_DEV167692C67) 2018
Spanjaard (2021042623410152700_DEV167692C150) 2018; 36
Wang (2021042623410152700_DEV167692C167) 2011; 138
Simon (2021042623410152700_DEV167692C146) 2013; 2
Power (2021042623410152700_DEV167692C129) 2017; 14
Berberoglu (2021042623410152700_DEV167692C12) 2017; 424
Akitake (2021042623410152700_DEV167692C2) 2011; 352
Stockdale (2021042623410152700_DEV167692C153) 2018; 25
Nechiporuk (2021042623410152700_DEV167692C114) 2002; 129
Mokalled (2021042623410152700_DEV167692C109) 2016; 354
Geraudie (2021042623410152700_DEV167692C49) 1993; 383B
Conedera (2021042623410152700_DEV167692C32) 2017; 128
Rafferty (2021042623410152700_DEV167692C131) 2018; 138
Johnson (2021042623410152700_DEV167692C74) 1995; 141
LeClair (2021042623410152700_DEV167692C92) 2010; 5
Moore (2021042623410152700_DEV167692C110) 2012; 7
Howe (2021042623410152700_DEV167692C68) 2013; 41
Yang (2021042623410152700_DEV167692C178) 2018; 248
Diep (2021042623410152700_DEV167692C37) 2011; 470
Halpern (2021042623410152700_DEV167692C59) 2008; 5
Kan (2021042623410152700_DEV167692C78) 2009; 23
Strahle (2021042623410152700_DEV167692C155) 2010; 3
Wehner (2021042623410152700_DEV167692C171) 2017; 8
Wehner (2021042623410152700_DEV167692C170) 2015; 100
Azevedo (2021042623410152700_DEV167692C6) 2011; 6
Bernhardt (2021042623410152700_DEV167692C15) 1996; 376
Suster (2021042623410152700_DEV167692C160) 2011; 6
Koth (2021042623410152700_DEV167692C87) 2017; 7
Nemoto (2021042623410152700_DEV167692C115) 2007; 40
Chablais (2021042623410152700_DEV167692C25) 2012; 139
Kroehne (2021042623410152700_DEV167692C88) 2011; 138
Rothenaigner (2021042623410152700_DEV167692C137) 2011; 138
Jungke (2021042623410152700_DEV167692C76) 2013; 10
Hein (2021042623410152700_DEV167692C65) 2015; 10
Parrilla (2021042623410152700_DEV167692C119) 2012; 7
Kikuchi (2021042623410152700_DEV167692C84) 2011; 20
Lim (2021042623410152700_DEV167692C96) 2016; 8
Felker (2021042623410152700_DEV167692C45) 2016; 135
Hans (2021042623410152700_DEV167692C61) 2009; 4
Ádám (2021042623410152700_DEV167692C1) 2000; 256
Bergemann (2021042623410152700_DEV167692C13) 2018; 26
Strahle (2021042623410152700_DEV167692C156) 2012; 9
Fimbel (2021042623410152700_DEV167692C46) 2007; 27
Li (2021042623410152700_DEV167692C95) 2012; 287
Chassot (2021042623410152700_DEV167692C27) 2016; 5
Thummel (2021042623410152700_DEV167692C162) 2006; 235
Watanabe (2021042623410152700_DEV167692C168) 2009; 51
Hui (2021042623410152700_DEV167692C69) 2017; 43
Thermes (2021042623410152700_DEV167692C161) 2002; 118
Mosimann (2021042623410152700_DEV167692C111) 2013; 242
Stewart (2021042623410152700_DEV167692C151) 2012; 365
Stewart (2021042623410152700_DEV167692C152) 2009; 106
Becker (2021042623410152700_DEV167692C10) 1998; 377
Wills (2021042623410152700_DEV167692C173) 2008; 135
Pisharath (2021042623410152700_DEV167692C125) 2007; 124
Cox (2021042623410152700_DEV167692C33) 2014; 6
Mateus (2021042623410152700_DEV167692C104) 2015; 142
Hardy (2021042623410152700_DEV167692C62) 1989; 69
Raymond (2021042623410152700_DEV167692C133) 2006; 6
Dong (2021042623410152700_DEV167692C39) 2019; 20
Feil (2021042623410152700_DEV167692C44) 1997; 237
Kamei (2021042623410152700_DEV167692C77) 2015; 102
Porrello (2021042623410152700_DEV167692C126) 2011; 331
Smith (2021042623410152700_DEV167692C149) 2006; 299
Bednarek (2021042623410152700_DEV167692C11) 2015; 12
Hwang (2021042623410152700_DEV167692C70) 2013; 31
Lepilina (2021042623410152700_DEV167692C94) 2006; 127
Kawakami (2021042623410152700_DEV167692C80) 2007; 8
Chen (2021042623410152700_DEV167692C29) 2013; 140
Albadri (2021042623410152700_DEV167692C3) 2017; 121-122
Rowlerson (2021042623410152700_DEV167692C138) 1997; 289
Pandey (2021042623410152700_DEV167692C118) 2019; 20
Hesselson (2021042623410152700_DEV167692C66) 2009; 106
Petrie (2021042623410152700_DEV167692C121) 2014; 141
Senyo (2021042623410152700_DEV167692C144) 2013; 493
Xu (2021042623410152700_DEV167692C177) 2015; 10
Kyritsis (2021042623410152700_DEV167692C89) 2012; 338
Han (2021042623410152700_DEV167692C60) 2019; 48
González-Rosa (2021042623410152700_DEV167692C56) 2018; 44
März (2021042623410152700_DEV167692C103) 2011; 240
Goessling (2021042623410152700_DEV167692C50) 2007; 4
Rabinowitz (2021042623410152700_DEV167692C130) 2017; 114
Langenau (2021042623410152700_DEV167692C91) 2005; 102
Lu (2021042623410152700_DEV167692C100) 2016; 35
Michalopoulos (2021042623410152700_DEV167692C108) 2007; 213
Dupret (2021042623410152700_DEV167692C41) 2017; 1860
Harrison (2021042623410152700_DEV167692C64) 2015; 33
Ohnmacht (2021042623410152700_DEV167692C116) 2016; 143
Becker (2021042623410152700_DEV167692C9) 2008; 26
Sánchez-Iranzo (2021042623410152700_DEV167692C140) 2018; 115
Patterson (2021042623410152700_DEV167692C120) 2017; 49
Liu (2021042623410152700_DEV167692C98) 2004; 150
Unal Eroglu (2021042623410152700_DEV167692C165) 2018; 6
González-Rosa (2021042623410152700_DEV167692C54) 2014; 9
Cano-Martinez (2021042623410152700_DEV167692C21) 2010; 80
Stuart (2021042623410152700_DEV167692C158) 1988; 103
Del Bene (2021042623410152700_DEV167692C36) 2010; 330
Bernstein (2021042623410152700_DEV167692C16) 1970; 20
Sehring (2021042623410152700_DEV167692C143) 2016; 40
Dray (2021042623410152700_DEV167692C40) 2015; 142
Nauroy (2021042623410152700_DEV167692C113) 2019; 75-76
Barbosa (2021042623410152700_DEV167692C8) 2015; 348
Burg (2021042623410152700_DEV167692C18) 2018; 14
Jopling (2021042623410152700_DEV167692C75) 2010; 464
Young (2021042623410152700_DEV167692C179) 2000
Poss (2021042623410152700_DEV167692C127) 2000; 222
Harris (2021042623410152700_DEV167692C63) 2003; 4
Münch (2021042623410152700_DEV167692C112) 2013; 140
Chen (2021042623410152700_DEV167692C30) 2016; 36
Pfefferli (2021042623410152700_DEV167692C123) 2017; 8
Saxena (2021042623410152700_DEV167692C141) 2012; 11
Mahmoud (2021042623410152700_DEV167692C101) 2015; 34
Goldman (2021042623410152700_DEV167692C51) 2017; 40
Singh (2021042623410152700_DEV167692C147) 2012; 22
Azevedo (2021042623410152700_DEV167692C7) 2012; 12
Choi (2021042623410152700_DEV167692C31) 2014; 146
Wosczyna (2021042623410152700_DEV167692C174) 2018; 46
Haffter (2021042623410152700_DEV167692C58) 1996; 123
Kirchgeorg (2021042623410152700_DEV167692C85) 2018; 247
Otsuka (2021042623410152700_DEV167692C117) 2017; 34
Caskey (2021042623410152700_DEV167692C24) 1948; 101
Carrillo (2021042623410152700_DEV167692C23) 2016; 117
Wehner (2021042623410152700_DEV167692C169) 2014; 6
Gonzalez-Rosa (2021042623410152700_DEV167692C53) 2012; 370
Kang (2021042623410152700_DEV167692C79) 2016; 532
Kikuchi (2021042623410152700_DEV167692C83) 2010; 464
Blum (2021042623410152700_DEV167692C17) 2012; 139
Reimschuessel (2021042623410152700_DEV167692C135) 1995; 17
Wu (2021042623410152700_DEV167692C175) 2016; 36
Reimschuessel (2021042623410152700_DEV167692C134) 2001; 42
Kizil (2021042623410152700_DEV167692C86) 2011; 6
Matsuda (2021042623410152700_DEV167692C106) 2018; 67
Xiao (2021042623410152700_DEV167692C176) 2016; 7
Ding (2021042623410152700_DEV167692C38) 2018; 20
Lee (2021042623410152700_DEV167692C93) 2005; 132
Vihtelic (2021042623410152700_DEV167692C166) 2000; 44
Gonzalez-Rosa (2021042623410152700_DEV167692C52) 2011; 138
Pfefferli (2021042623410152700_DEV167692C122) 2015; 2
Jao (2021042623410152700_DEV167692C73) 2013; 110
Poss (2021042623410152700_DEV167692C128) 2002; 298
Ando (2021042623410152700_DEV167692C5) 2017; 43
Simões (2021042623410152700_DEV167692C145) 2014; 14
Gonzalez-Rosa (2021042623410152700_DEV167692C55) 2017; 4
Liu (2021042623410152700_DEV167692C97) 2019; 7
Mathew (2021042623410152700_DEV167692C105) 2007; 282
Tsarouchas (2021042623410152700_DEV167692C163) 2018; 9
Hyde (2021042623410152700_DEV167692C71) 2012; 61
Long (2021042623410152700_DEV167692C99) 2015; 25
Ando (2021042623410152700_DEV167692C4) 2002; 99
Burkhardt-Holm (2021042623410152700_DEV167692C19) 1999; 37
Lai (2021042623410152700_DEV167692C90) 2017; 6
Schnabel (2021042623410152700_DEV167692C142) 2011; 6
Pinto-Teixeira (2021042623410152700_DEV167692C124) 2015; 4
Mescher (2021042623410152700_DEV167692C107) 2017; 4
Raya (2021042623410152700_DEV167692C132) 2003; 100
Streisinger (2021042623410152700_DEV167692C157) 1981; 291
Grivas (2021042623410152700_DEV167692C57) 2014; 163
Bussmann (2021042623410152700_DEV167692C20) 2011; 138
Early (2021042623410152700_DEV167692C42) 2018; 7
Itou (2021042623410152700_DEV167692C72) 2012; 139
Slack (2021042623410152700_DEV167692C148) 2017; 18
Sadler (2021042623410152700_DEV167692C139) 2007; 104
Cox (2021042623410152700_DEV167692C34) 2018; 28
Marín-Juez (2021042623410152700_DEV167692C102) 2016; 113
Zhao (2021042623410152700_DEV167692C180) 2014; 111
Kawakami (2021042623410152700_DEV167692C82) 2010; 10
Curado (2021042623410152700_DEV167692C35) 2007; 236
Ernst (2021042623410152700_DEV167692C43) 2014; 156
Kawakami (2021042623410152700_DEV167692C81) 2000; 97
Bergmann (2021042623410152700_DEV167692C14) 2009; 324
Carney (2021042623410152700_DEV167692C22) 2018; 34
Chablais (2021042623410152700_DEV167692C26) 2011; 11
Tsuji (2021042623410152700_DEV167692C164) 2014; 9
Richardson (2021042623410152700_DEV167692C136) 2013; 133
Chatterjee (2021042623410152700_DEV167692C28) 2011; 7
Geisler (2021042623410152700_DEV167692C48) 2016; 13
Sugiyama (2021042623410152700_DEV167692C159) 2009; 106
References_xml – volume: 22
  start-page: 879
  year: 2012
  ident: 2021042623410152700_DEV167692C147
  article-title: Regeneration of amputated zebrafish fin rays from de novo osteoblasts
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.03.006
– volume: 43
  start-page: 643
  year: 2017
  ident: 2021042623410152700_DEV167692C5
  article-title: Osteoblast production by reserved progenitor cells in zebrafish bone regeneration and maintenance
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.10.015
– volume: 7
  start-page: 2345
  year: 2011
  ident: 2021042623410152700_DEV167692C28
  article-title: Fishing for function: zebrafish BAC transgenics for functional genomics
  publication-title: Mol. Biosyst.
  doi: 10.1039/c1mb05116d
– volume: 247
  start-page: 1146
  year: 2018
  ident: 2021042623410152700_DEV167692C85
  article-title: Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24668
– volume: 138
  start-page: 3
  year: 2018
  ident: 2021042623410152700_DEV167692C131
  article-title: A beginner's guide to understanding and implementing the genetic modification of zebrafish
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2018.07.005
– volume: 370
  start-page: 173
  year: 2012
  ident: 2021042623410152700_DEV167692C53
  article-title: Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2012.07.007
– volume: 532
  start-page: 201
  year: 2016
  ident: 2021042623410152700_DEV167692C79
  article-title: Modulation of tissue repair by regeneration enhancer elements
  publication-title: Nature
  doi: 10.1038/nature17644
– volume: 8
  start-page: 126
  year: 2017
  ident: 2021042623410152700_DEV167692C171
  article-title: Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00143-0
– volume: 27
  start-page: 1712
  year: 2007
  ident: 2021042623410152700_DEV167692C46
  article-title: Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5317-06.2007
– volume: 34
  start-page: 179
  year: 2017
  ident: 2021042623410152700_DEV167692C117
  article-title: Targeted ablation of pancreatic beta cells in medaka
  publication-title: Zoolog. Sci.
  doi: 10.2108/zs170004
– volume: 133
  start-page: 1655
  year: 2013
  ident: 2021042623410152700_DEV167692C136
  article-title: Adult zebrafish as a model system for cutaneous wound-healing research
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2013.16
– volume: 12
  start-page: 24
  year: 2012
  ident: 2021042623410152700_DEV167692C7
  article-title: An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-12-24
– volume: 9
  start-page: e104112
  year: 2014
  ident: 2021042623410152700_DEV167692C164
  article-title: Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0104112
– volume: 8
  year: 2007
  ident: 2021042623410152700_DEV167692C80
  article-title: Tol2: a versatile gene transfer vector in vertebrates
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-s1-s7
– volume: 4
  start-page: 105
  year: 2017
  ident: 2021042623410152700_DEV167692C55
  article-title: Zebrafish heart regeneration: 15 years of discoveries
  publication-title: Regeneration
  doi: 10.1002/reg2.83
– volume: 132
  start-page: 5173
  year: 2005
  ident: 2021042623410152700_DEV167692C93
  article-title: Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration
  publication-title: Development
  doi: 10.1242/dev.02101
– volume: 43
  start-page: 659
  year: 2017
  ident: 2021042623410152700_DEV167692C69
  article-title: Zebrafish regulatory T cells mediate organ-specific regenerative programs
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.11.010
– volume: 44
  start-page: 289
  year: 2000
  ident: 2021042623410152700_DEV167692C166
  article-title: Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina
  publication-title: J. Neurobiol.
  doi: 10.1002/1097-4695(20000905)44:3<289::AID-NEU1>3.0.CO;2-H
– volume: 46
  start-page: 135
  year: 2018
  ident: 2021042623410152700_DEV167692C174
  article-title: A muscle stem cell support group: coordinated cellular responses in muscle regeneration
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.06.018
– volume: 424
  start-page: 162
  year: 2017
  ident: 2021042623410152700_DEV167692C12
  article-title: Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2017.03.004
– volume: 118
  start-page: 91
  year: 2002
  ident: 2021042623410152700_DEV167692C161
  article-title: I-SceI meganuclease mediates highly efficient transgenesis in fish
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(02)00218-6
– volume: 352
  start-page: 191
  year: 2011
  ident: 2021042623410152700_DEV167692C2
  article-title: Transgenerational analysis of transcriptional silencing in zebrafish
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2011.01.002
– volume: 139
  start-page: 4133
  year: 2012
  ident: 2021042623410152700_DEV167692C72
  article-title: Migration of cardiomyocytes is essential for heart regeneration in zebrafish
  publication-title: Development
  doi: 10.1242/dev.079756
– volume: 5
  start-page: 819
  year: 2016
  ident: 2021042623410152700_DEV167692C27
  article-title: Zebrafish fin regeneration after cryoinjury-induced tissue damage
  publication-title: Biol. Open
  doi: 10.1242/bio.016865
– volume: 242
  start-page: 949
  year: 2013
  ident: 2021042623410152700_DEV167692C111
  article-title: Site-directed zebrafish transgenesis into single landing sites with the phiC31 integrase system
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.23989
– volume: 138
  start-page: 1459
  year: 2011
  ident: 2021042623410152700_DEV167692C137
  article-title: Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate
  publication-title: Development
  doi: 10.1242/dev.058156
– volume: 106
  start-page: 19889
  year: 2009
  ident: 2021042623410152700_DEV167692C152
  article-title: A histone demethylase is necessary for regeneration in zebrafish
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904132106
– volume: 34
  start-page: 362
  year: 2018
  ident: 2021042623410152700_DEV167692C22
  article-title: Switch and trace: recombinase genetics in zebrafish
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.01.004
– volume: 143
  start-page: 1464
  year: 2016
  ident: 2021042623410152700_DEV167692C116
  article-title: Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish
  publication-title: Development
  doi: 10.1242/dev.129155
– volume: 138
  start-page: 4327
  year: 2011
  ident: 2021042623410152700_DEV167692C20
  article-title: Rapid BAC selection for tol2-mediated transgenesis in zebrafish
  publication-title: Development
  doi: 10.1242/dev.068080
– volume: 348
  start-page: 789
  year: 2015
  ident: 2021042623410152700_DEV167692C8
  article-title: Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain
  publication-title: Science
  doi: 10.1126/science.aaa2729
– volume: 69
  start-page: 1014
  year: 1989
  ident: 2021042623410152700_DEV167692C62
  article-title: The biology of scar formation
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/69.12.1014
– volume: 101
  start-page: 710
  year: 1948
  ident: 2021042623410152700_DEV167692C24
  article-title: The cellular basis of regeneration of the caudal fin of the goldfish
  publication-title: Anat. Rec.
– volume: 102
  start-page: 6068
  year: 2005
  ident: 2021042623410152700_DEV167692C91
  article-title: Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408708102
– volume: 287
  start-page: 25353
  year: 2012
  ident: 2021042623410152700_DEV167692C95
  article-title: Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.349126
– volume: 236
  start-page: 1025
  year: 2007
  ident: 2021042623410152700_DEV167692C35
  article-title: Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21100
– volume: 67
  start-page: 2268
  year: 2018
  ident: 2021042623410152700_DEV167692C106
  article-title: Whole organism chemical screening identifies modulators of pancreatic beta cell function
  publication-title: Diabetes
  doi: 10.2337/db17-1223
– volume: 10
  start-page: 259
  year: 2013
  ident: 2021042623410152700_DEV167692C76
  article-title: The zebrafish CreZoo: an easy-to-handle database for novel CreER(T2)-driver lines
  publication-title: Zebrafish
  doi: 10.1089/zeb.2012.0834
– volume: 493
  start-page: 433
  year: 2013
  ident: 2021042623410152700_DEV167692C144
  article-title: Mammalian heart renewal by pre-existing cardiomyocytes
  publication-title: Nature
  doi: 10.1038/nature11682
– volume: 28
  start-page: 3937
  year: 2018
  ident: 2021042623410152700_DEV167692C34
  article-title: In toto imaging of dynamic osteoblast behaviors in regenerating skeletal bone
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.10.052
– volume: 115
  start-page: 4188
  year: 2018
  ident: 2021042623410152700_DEV167692C140
  article-title: Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716713115
– volume: 140
  start-page: 1402
  year: 2013
  ident: 2021042623410152700_DEV167692C112
  article-title: Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration
  publication-title: Development
  doi: 10.1242/dev.087346
– volume: 331
  start-page: 1078
  year: 2011
  ident: 2021042623410152700_DEV167692C126
  article-title: Transient regenerative potential of the neonatal mouse heart
  publication-title: Science
  doi: 10.1126/science.1200708
– volume: 117
  start-page: 1880
  year: 2016
  ident: 2021042623410152700_DEV167692C23
  article-title: Macrophage Recruitment contributes to regeneration of mechanosensory hair cells in the zebrafish lateral line
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.25487
– volume: 40
  start-page: 392
  year: 2017
  ident: 2021042623410152700_DEV167692C51
  article-title: Resolving heart regeneration by replacement histone profiling
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.01.013
– volume: 6
  start-page: e25605
  year: 2017
  ident: 2021042623410152700_DEV167692C90
  article-title: Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration
  publication-title: eLife
  doi: 10.7554/eLife.25605
– volume: 10
  start-page: 2064
  year: 2015
  ident: 2021042623410152700_DEV167692C177
  article-title: Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.130
– volume: 26
  start-page: 238
  year: 2018
  ident: 2021042623410152700_DEV167692C13
  article-title: Nifurpirinol: a more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations
  publication-title: Wound Repair. Regen.
  doi: 10.1111/wrr.12633
– volume: 11
  start-page: 21
  year: 2011
  ident: 2021042623410152700_DEV167692C26
  article-title: The zebrafish heart regenerates after cryoinjury-induced myocardial infarction
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-11-21
– volume: 338
  start-page: 1353
  year: 2012
  ident: 2021042623410152700_DEV167692C89
  article-title: Acute inflammation initiates the regenerative response in the adult zebrafish brain
  publication-title: Science
  doi: 10.1126/science.1228773
– volume: 104
  start-page: 1570
  year: 2007
  ident: 2021042623410152700_DEV167692C139
  article-title: Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610774104
– volume: 40
  start-page: 48
  year: 2016
  ident: 2021042623410152700_DEV167692C143
  article-title: Zebrafish fin and heart: what's special about regeneration?
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2016.05.011
– volume: 121-122
  start-page: 77
  year: 2017
  ident: 2021042623410152700_DEV167692C3
  article-title: Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish
  publication-title: Methods
  doi: 10.1016/j.ymeth.2017.03.005
– volume: 99
  start-page: 12651
  year: 2002
  ident: 2021042623410152700_DEV167692C4
  article-title: An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.202320599
– volume: 20
  start-page: 71
  year: 2019
  ident: 2021042623410152700_DEV167692C39
  article-title: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated kif15 mutations accelerate axonal outgrowth during neuronal development and regeneration in zebrafish
  publication-title: Traffic
  doi: 10.1111/tra.12621
– volume: 102
  start-page: e51912
  year: 2015
  ident: 2021042623410152700_DEV167692C77
  article-title: Kidney regeneration in adult zebrafish by gentamicin induced injury
  publication-title: J. Vis. Exp.
  doi: 10.3791/51912
– volume: 18
  start-page: 1497
  year: 2017
  ident: 2021042623410152700_DEV167692C148
  article-title: Animal regeneration: ancestral character or evolutionary novelty?
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201643795
– volume: 48
  start-page: 853
  year: 2019
  ident: 2021042623410152700_DEV167692C60
  article-title: Vitamin D stimulates cardiomyocyte proliferation and controls organ size and regeneration in zebrafish
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.01.001
– volume: 9
  start-page: 90
  year: 2012
  ident: 2021042623410152700_DEV167692C156
  article-title: EuFishBioMed (COST Action BM0804): a European network to promote the use of small fishes in biomedical research
  publication-title: Zebrafish
  doi: 10.1089/zeb.2012.0742
– volume: 298
  start-page: 2188
  year: 2002
  ident: 2021042623410152700_DEV167692C128
  article-title: Heart regeneration in zebrafish
  publication-title: Science
  doi: 10.1126/science.1077857
– volume: 256
  start-page: 282
  year: 2000
  ident: 2021042623410152700_DEV167692C1
  article-title: Heat-inducible expression of a reporter gene detected by transient assay in zebrafish
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.2000.4805
– volume: 51
  start-page: 135
  year: 2009
  ident: 2021042623410152700_DEV167692C168
  article-title: Kidney regeneration through nephron neogenesis in medaka
  publication-title: Dev. Growth Differ.
  doi: 10.1111/j.1440-169X.2009.01090.x
– volume: 123
  start-page: 1
  year: 1996
  ident: 2021042623410152700_DEV167692C58
  article-title: The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio
  publication-title: Development
  doi: 10.1016/0736-5748(96)80313-3
– volume: 20
  start-page: 35
  year: 2018
  ident: 2021042623410152700_DEV167692C38
  article-title: Light-sheet imaging to elucidate cardiovascular injury and repair
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-018-0979-6
– volume: 75-76
  start-page: 82
  year: 2019
  ident: 2021042623410152700_DEV167692C113
  article-title: Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2018.07.005
– volume: 111
  start-page: 1403
  year: 2014
  ident: 2021042623410152700_DEV167692C180
  article-title: Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1311705111
– volume: 377
  start-page: 577
  year: 1998
  ident: 2021042623410152700_DEV167692C10
  article-title: Axonal regrowth after spinal cord transection in adult zebrafish
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#
– volume: 34
  start-page: 387
  year: 2015
  ident: 2021042623410152700_DEV167692C101
  article-title: Nerves regulate cardiomyocyte proliferation and heart regeneration
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.06.017
– volume: 6
  start-page: e18503
  year: 2011
  ident: 2021042623410152700_DEV167692C142
  article-title: Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018503
– volume: 6
  start-page: e27395
  year: 2011
  ident: 2021042623410152700_DEV167692C86
  article-title: Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0027395
– volume: 25
  start-page: 1997
  year: 2018
  ident: 2021042623410152700_DEV167692C153
  article-title: Heart regeneration in the mexican cavefish
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.072
– volume: 40
  start-page: 399
  year: 2007
  ident: 2021042623410152700_DEV167692C115
  article-title: Multinucleate osteoclasts in medaka as evidence of active bone remodeling
  publication-title: Bone
  doi: 10.1016/j.bone.2006.08.019
– volume: 365
  start-page: 339
  year: 2012
  ident: 2021042623410152700_DEV167692C151
  article-title: Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2012.02.031
– volume: 7
  start-page: 13
  year: 2019
  ident: 2021042623410152700_DEV167692C97
  article-title: Expanding the CRISPR toolbox in zebrafish for studying development and disease
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00013
– volume: 42
  start-page: 285
  year: 2001
  ident: 2021042623410152700_DEV167692C134
  article-title: A fish model of renal regeneration and development
  publication-title: ILAR J.
  doi: 10.1093/ilar.42.4.285
– volume: 25
  start-page: 638
  year: 2015
  ident: 2021042623410152700_DEV167692C99
  article-title: Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.35
– volume: 134
  start-page: 479
  year: 2007
  ident: 2021042623410152700_DEV167692C154
  article-title: Distinct Wnt signaling pathways have opposing roles in appendage regeneration
  publication-title: Development
  doi: 10.1242/dev.001123
– volume: 464
  start-page: 606
  year: 2010
  ident: 2021042623410152700_DEV167692C75
  article-title: Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
  publication-title: Nature
  doi: 10.1038/nature08899
– volume: 13
  start-page: S19
  issue: Suppl. 1
  year: 2016
  ident: 2021042623410152700_DEV167692C48
  article-title: Maintenance of zebrafish lines at the european zebrafish resource center
  publication-title: Zebrafish
  doi: 10.1089/zeb.2015.1205
– volume: 49
  start-page: 1346
  year: 2017
  ident: 2021042623410152700_DEV167692C120
  article-title: Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3929
– volume: 110
  start-page: 13904
  year: 2013
  ident: 2021042623410152700_DEV167692C73
  article-title: Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1308335110
– volume: 213
  start-page: 286
  year: 2007
  ident: 2021042623410152700_DEV167692C108
  article-title: Liver regeneration
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21172
– volume: 464
  start-page: 601
  year: 2010
  ident: 2021042623410152700_DEV167692C83
  article-title: Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes
  publication-title: Nature
  doi: 10.1038/nature08804
– volume: 36
  start-page: 668
  year: 2016
  ident: 2021042623410152700_DEV167692C30
  article-title: Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.02.017
– volume: 31
  start-page: 227
  year: 2013
  ident: 2021042623410152700_DEV167692C70
  article-title: Efficient genome editing in zebrafish using a CRISPR-Cas system
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2501
– volume: 156
  start-page: 1072
  year: 2014
  ident: 2021042623410152700_DEV167692C43
  article-title: Neurogenesis in the striatum of the adult human brain
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.044
– volume: 10
  start-page: e0122665
  year: 2015
  ident: 2021042623410152700_DEV167692C65
  article-title: Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122665
– volume: 35
  start-page: 2026
  year: 2016
  ident: 2021042623410152700_DEV167692C100
  article-title: IGFBP1 increases beta-cell regeneration by promoting alpha- to beta-cell transdifferentiation
  publication-title: EMBO J.
  doi: 10.15252/embj.201592903
– volume: 14
  start-page: 49
  year: 2014
  ident: 2021042623410152700_DEV167692C145
  article-title: Denervation impairs regeneration of amputated zebrafish fins
  publication-title: BMC Dev. Biol.
  doi: 10.1186/s12861-014-0049-2
– volume: 141
  start-page: 2581
  year: 2014
  ident: 2021042623410152700_DEV167692C121
  article-title: Macrophages modulate adult zebrafish tail fin regeneration
  publication-title: Development
  doi: 10.1242/dev.098459
– volume: 36
  start-page: 469
  year: 2018
  ident: 2021042623410152700_DEV167692C150
  article-title: Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4124
– volume: 7
  start-page: e35136
  year: 2018
  ident: 2021042623410152700_DEV167692C42
  article-title: An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination
  publication-title: eLife
  doi: 10.7554/eLife.35136
– volume: 7
  start-page: 13787
  year: 2016
  ident: 2021042623410152700_DEV167692C176
  article-title: Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13787
– volume: 1860
  start-page: 1079
  year: 2017
  ident: 2021042623410152700_DEV167692C41
  article-title: The histone lysine methyltransferase Ezh2 is required for maintenance of the intestine integrity and for caudal fin regeneration in zebrafish
  publication-title: Biochim. Biophys. Acta. Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2017.08.011
– volume: 138
  start-page: 1663
  year: 2011
  ident: 2021042623410152700_DEV167692C52
  article-title: Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish
  publication-title: Development
  doi: 10.1242/dev.060897
– volume: 37
  start-page: 85
  year: 1999
  ident: 2021042623410152700_DEV167692C19
  article-title: Toxicity of 4-chloroaniline in early life stages of zebrafish (Danio rerio): II. Cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4-chloroaniline
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s002449900493
– volume: 135
  start-page: 183
  year: 2008
  ident: 2021042623410152700_DEV167692C173
  article-title: Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish
  publication-title: Development
  doi: 10.1242/dev.010363
– volume: 10
  start-page: 105
  year: 2010
  ident: 2021042623410152700_DEV167692C82
  article-title: zTrap: zebrafish gene trap and enhancer trap database
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-10-105
– volume: 12
  start-page: 1691
  year: 2015
  ident: 2021042623410152700_DEV167692C11
  article-title: Telomerase is essential for zebrafish heart regeneration
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2015.07.064
– volume: 376
  start-page: 253
  year: 1996
  ident: 2021042623410152700_DEV167692C15
  article-title: Increased expression of specific recognition molecules by retinal ganglion cells and by optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19961209)376:2<253::AID-CNE7>3.0.CO;2-2
– volume: 2
  start-page: 72
  year: 2015
  ident: 2021042623410152700_DEV167692C122
  article-title: The art of fin regeneration in zebrafish
  publication-title: Regeneration
  doi: 10.1002/reg2.33
– volume-title: Wheater's Functional Histology: A Text and Colour Atlas
  year: 2000
  ident: 2021042623410152700_DEV167692C179
– volume: 3
  start-page: 689
  year: 2010
  ident: 2021042623410152700_DEV167692C155
  article-title: The zebrafish embryo as a model for assessing off-target drug effects
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.006312
– volume: 41
  start-page: D854
  year: 2013
  ident: 2021042623410152700_DEV167692C68
  article-title: ZFIN, the zebrafish model organism database: increased support for mutants and transgenics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks938
– volume: 324
  start-page: 98
  year: 2009
  ident: 2021042623410152700_DEV167692C14
  article-title: Evidence for cardiomyocyte renewal in humans
  publication-title: Science
  doi: 10.1126/science.1164680
– volume: 14
  start-page: e1007754
  year: 2018
  ident: 2021042623410152700_DEV167692C18
  article-title: Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1007754
– volume: 129
  start-page: 2607
  year: 2002
  ident: 2021042623410152700_DEV167692C114
  article-title: A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration
  publication-title: Development
  doi: 10.1242/dev.129.11.2607
– volume: 4
  start-page: 551
  year: 2007
  ident: 2021042623410152700_DEV167692C50
  article-title: Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1059
– volume: 106
  start-page: 14896
  year: 2009
  ident: 2021042623410152700_DEV167692C66
  article-title: Distinct populations of quiescent and proliferative pancreatic beta-cells identified by HOTcre mediated labeling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906348106
– volume: 150
  start-page: 63
  year: 2004
  ident: 2021042623410152700_DEV167692C98
  article-title: Cadherin-2 and cadherin-4 in developing, adult and regenerating zebrafish cerebellum
  publication-title: Brain Res. Dev. Brain Res.
  doi: 10.1016/j.devbrainres.2004.03.002
– volume: 44
  start-page: 433
  year: 2018
  ident: 2021042623410152700_DEV167692C56
  article-title: Myocardial polyploidization creates a barrier to heart regeneration in zebrafish
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.01.021
– volume: 235
  start-page: 336
  year: 2006
  ident: 2021042623410152700_DEV167692C162
  article-title: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20630
– volume: 6
  start-page: e22820
  year: 2011
  ident: 2021042623410152700_DEV167692C6
  article-title: The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022820
– volume: 36
  start-page: 36
  year: 2016
  ident: 2021042623410152700_DEV167692C175
  article-title: Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.12.010
– volume: 4
  year: 2009
  ident: 2021042623410152700_DEV167692C61
  article-title: Temporally-controlled site-specific recombination in zebrafish
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0004640
– volume: 6
  start-page: 56
  year: 2014
  ident: 2021042623410152700_DEV167692C33
  article-title: S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.12.007
– volume: 113
  start-page: 11237
  year: 2016
  ident: 2021042623410152700_DEV167692C102
  article-title: Fast revascularization of the injured area is essential to support zebrafish heart regeneration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1605431113
– volume: 240
  start-page: 2221
  year: 2011
  ident: 2021042623410152700_DEV167692C103
  article-title: Regenerative response following stab injury in the adult zebrafish telencephalon
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22710
– volume: 4
  start-page: 903
  year: 2015
  ident: 2021042623410152700_DEV167692C124
  article-title: Inexhaustible hair-cell regeneration in young and aged zebrafish
  publication-title: Biol. Open
  doi: 10.1242/bio.012112
– volume: 33
  start-page: 442
  year: 2015
  ident: 2021042623410152700_DEV167692C64
  article-title: Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.04.001
– volume: 7
  start-page: 2917
  year: 2017
  ident: 2021042623410152700_DEV167692C87
  article-title: High-resolution magnetic resonance imaging of the regenerating adult zebrafish heart
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03050-y
– start-page: 498899
  year: 2018
  ident: 2021042623410152700_DEV167692C67
  article-title: A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart
  publication-title: bioRxiv
  doi: 10.1101/498899
– volume: 142
  start-page: 2752
  year: 2015
  ident: 2021042623410152700_DEV167692C104
  article-title: Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration
  publication-title: Development
  doi: 10.1242/dev.119701
– volume: 4
  start-page: 39
  year: 2017
  ident: 2021042623410152700_DEV167692C107
  article-title: Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration
  publication-title: Regeneration
  doi: 10.1002/reg2.77
– volume: 6
  start-page: 88
  year: 2018
  ident: 2021042623410152700_DEV167692C165
  article-title: Multiplexed CRISPR/Cas9 targeting of genes implicated in retinal regeneration and degeneration
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2018.00088
– volume: 470
  start-page: 95
  year: 2011
  ident: 2021042623410152700_DEV167692C37
  article-title: Identification of adult nephron progenitors capable of kidney regeneration in zebrafish
  publication-title: Nature
  doi: 10.1038/nature09669
– volume: 6
  start-page: 36
  year: 2006
  ident: 2021042623410152700_DEV167692C133
  article-title: Molecular characterization of retinal stem cells and their niches in adult zebrafish
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-6-36
– volume: 140
  start-page: 4988
  year: 2013
  ident: 2021042623410152700_DEV167692C29
  article-title: zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish
  publication-title: Development
  doi: 10.1242/dev.102053
– volume: 20
  start-page: 397
  year: 2011
  ident: 2021042623410152700_DEV167692C84
  article-title: Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.01.010
– volume: 128
  start-page: e56249
  year: 2017
  ident: 2021042623410152700_DEV167692C32
  article-title: Muller glia cell activation in a laser-induced retinal degeneration and regeneration model in zebrafish
  publication-title: J. Vis. Exp
  doi: 10.3791/56249
– volume: 100
  start-page: 11889
  issue: Suppl. 1
  year: 2003
  ident: 2021042623410152700_DEV167692C132
  article-title: Activation of Notch signaling pathway precedes heart regeneration in zebrafish
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1834204100
– volume: 248
  start-page: 34
  year: 2018
  ident: 2021042623410152700_DEV167692C178
  article-title: Tissue regeneration enhancer elements: a way to unlock endogenous healing power
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24676
– volume: 135
  start-page: 219
  year: 2016
  ident: 2021042623410152700_DEV167692C45
  article-title: Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments
  publication-title: Methods Cell Biol.
  doi: 10.1016/bs.mcb.2016.01.009
– volume: 5
  start-page: 97
  year: 2008
  ident: 2021042623410152700_DEV167692C59
  article-title: Gal4/UAS transgenic tools and their application to zebrafish
  publication-title: Zebrafish
  doi: 10.1089/zeb.2008.0530
– volume: 2
  start-page: 291
  year: 2013
  ident: 2021042623410152700_DEV167692C146
  article-title: Limb regeneration
  publication-title: Wiley Interdiscip. Rev. Dev. Biol.
  doi: 10.1002/wdev.73
– volume: 142
  start-page: 3592
  year: 2015
  ident: 2021042623410152700_DEV167692C40
  article-title: Large-scale live imaging of adult neural stem cells in their endogenous niche
  publication-title: Development
  doi: 10.1242/dev.123018
– volume: 5
  start-page: e8737
  year: 2010
  ident: 2021042623410152700_DEV167692C92
  article-title: Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008737
– volume: 127
  start-page: 607
  year: 2006
  ident: 2021042623410152700_DEV167692C94
  article-title: A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.052
– volume: 11
  start-page: M111.014118
  year: 2012
  ident: 2021042623410152700_DEV167692C141
  article-title: Proteomic analysis of zebrafish caudal fin regeneration
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.014118
– volume: 222
  start-page: 347
  year: 2000
  ident: 2021042623410152700_DEV167692C127
  article-title: Roles for Fgf signaling during zebrafish fin regeneration
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.9722
– volume: 8
  start-page: 15151
  year: 2017
  ident: 2021042623410152700_DEV167692C123
  article-title: The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15151
– volume: 7
  start-page: e32348
  year: 2012
  ident: 2021042623410152700_DEV167692C119
  article-title: Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032348
– volume: 115
  start-page: 570
  year: 2018
  ident: 2021042623410152700_DEV167692C47
  article-title: Yap is required for scar formation but not myocyte proliferation during heart regeneration in zebrafish
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvy243
– volume: 146
  start-page: 776
  year: 2014
  ident: 2021042623410152700_DEV167692C31
  article-title: Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.10.019
– volume: 103
  start-page: 403
  year: 1988
  ident: 2021042623410152700_DEV167692C158
  article-title: Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos
  publication-title: Development
  doi: 10.1242/dev.103.2.403
– volume: 139
  start-page: 1921
  year: 2012
  ident: 2021042623410152700_DEV167692C25
  article-title: The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling
  publication-title: Development
  doi: 10.1242/dev.078543
– volume: 14
  start-page: 360
  year: 2017
  ident: 2021042623410152700_DEV167692C129
  article-title: A guide to light-sheet fluorescence microscopy for multiscale imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4224
– volume: 6
  start-page: 1998
  year: 2011
  ident: 2021042623410152700_DEV167692C160
  article-title: Transposon-mediated BAC transgenesis in zebrafish
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.416
– volume: 97
  start-page: 11403
  year: 2000
  ident: 2021042623410152700_DEV167692C81
  article-title: Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.21.11403
– volume: 138
  start-page: 3421
  year: 2011
  ident: 2021042623410152700_DEV167692C167
  article-title: The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
  publication-title: Development
  doi: 10.1242/dev.068601
– volume: 20
  start-page: 33
  year: 1970
  ident: 2021042623410152700_DEV167692C16
  article-title: Regeneration of the long spinal tracts in the goldfish
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(70)90151-4
– volume: 299
  start-page: 438
  year: 2006
  ident: 2021042623410152700_DEV167692C149
  article-title: Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.08.016
– volume: 106
  start-page: 20812
  year: 2009
  ident: 2021042623410152700_DEV167692C159
  article-title: Illuminating cell-cycle progression in the developing zebrafish embryo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906464106
– volume: 6
  start-page: 467
  year: 2014
  ident: 2021042623410152700_DEV167692C169
  article-title: Wnt/beta-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.12.036
– volume: 120
  start-page: 1861
  year: 1994
  ident: 2021042623410152700_DEV167692C172
  article-title: A zebrafish retinoic acid receptor expressed in the regenerating caudal fin
  publication-title: Development
  doi: 10.1242/dev.120.7.1861
– volume: 139
  start-page: 107
  year: 2012
  ident: 2021042623410152700_DEV167692C17
  article-title: Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration
  publication-title: Development
  doi: 10.1242/dev.065391
– volume: 26
  start-page: 71
  year: 2008
  ident: 2021042623410152700_DEV167692C9
  article-title: Adult zebrafish as a model for successful central nervous system regeneration
  publication-title: Restor. Neurol. Neurosci.
– volume: 289
  start-page: 311
  year: 1997
  ident: 2021042623410152700_DEV167692C138
  article-title: Regeneration of skeletal muscle in two teleost fish: Sparus aurata and Brachydanio rerio
  publication-title: Cell Tissue Res.
  doi: 10.1007/s004410050878
– volume: 4
  start-page: 219
  year: 2003
  ident: 2021042623410152700_DEV167692C63
  article-title: Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio)
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-002-3022-x
– volume: 237
  start-page: 752
  year: 1997
  ident: 2021042623410152700_DEV167692C44
  article-title: Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.7124
– volume: 114
  start-page: E717
  year: 2017
  ident: 2021042623410152700_DEV167692C130
  article-title: Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620755114
– volume: 9
  start-page: e115604
  year: 2014
  ident: 2021042623410152700_DEV167692C54
  article-title: Use of echocardiography reveals reestablishment of ventricular pumping efficiency and partial ventricular wall motion recovery upon ventricular cryoinjury in the zebrafish
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0115604
– volume: 17
  start-page: 101
  year: 1995
  ident: 2021042623410152700_DEV167692C135
  article-title: Development of new nephrons in adult kidneys following gentamicin-induced nephrotoxicity
  publication-title: Ren. Fail.
  doi: 10.3109/08860229509026246
– volume: 61
  start-page: 3632
  year: 2012
  ident: 2021042623410152700_DEV167692C71
  article-title: In vivo electroporation of morpholinos into the regenerating adult zebrafish tail fin
  publication-title: J. Vis. Exp.
  doi: 10.3791/3632
– volume: 23
  start-page: 3516
  year: 2009
  ident: 2021042623410152700_DEV167692C78
  article-title: Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy
  publication-title: FASEB J.
  doi: 10.1096/fj.09-131730
– volume: 8
  start-page: a018820
  year: 2016
  ident: 2021042623410152700_DEV167692C96
  article-title: The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a018820
– volume: 20
  start-page: E1290
  year: 2019
  ident: 2021042623410152700_DEV167692C118
  article-title: A smart imaging workflow for organ-specific screening in a cystic kidney zebrafish disease model
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20061290
– volume: 138
  start-page: 4831
  year: 2011
  ident: 2021042623410152700_DEV167692C88
  article-title: Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors
  publication-title: Development
  doi: 10.1242/dev.072587
– volume: 124
  start-page: 218
  year: 2007
  ident: 2021042623410152700_DEV167692C125
  article-title: Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2006.11.005
– volume: 9
  start-page: 4670
  year: 2018
  ident: 2021042623410152700_DEV167692C163
  article-title: Dynamic control of proinflammatory cytokines Il-1beta and Tnf-alpha by macrophages in zebrafish spinal cord regeneration
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07036-w
– volume: 163
  start-page: 14
  year: 2014
  ident: 2021042623410152700_DEV167692C57
  article-title: Cardiac repair and regenerative potential in the goldfish (Carassius auratus) heart
  publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol.
  doi: 10.1016/j.cbpc.2014.02.002
– volume: 291
  start-page: 293
  year: 1981
  ident: 2021042623410152700_DEV167692C157
  article-title: Production of clones of homozygous diploid zebra fish (Brachydanio rerio)
  publication-title: Nature
  doi: 10.1038/291293a0
– volume: 141
  start-page: 1583
  year: 1995
  ident: 2021042623410152700_DEV167692C74
  article-title: Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration
  publication-title: Genetics
  doi: 10.1093/genetics/141.4.1583
– volume: 282
  start-page: 35202
  year: 2007
  ident: 2021042623410152700_DEV167692C105
  article-title: Unraveling tissue regeneration pathways using chemical genetics
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706640200
– volume: 354
  start-page: 630
  year: 2016
  ident: 2021042623410152700_DEV167692C109
  article-title: Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish
  publication-title: Science
  doi: 10.1126/science.aaf2679
– volume: 7
  start-page: e37877
  year: 2012
  ident: 2021042623410152700_DEV167692C110
  article-title: Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs)
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0037877
– volume: 383B
  start-page: 803
  year: 1993
  ident: 2021042623410152700_DEV167692C49
  article-title: Is exogenous retinoic acid necessary to alter positional information during regeneration of the fin in zebrafish?
  publication-title: Prog. Clin. Biol. Res.
– volume: 80
  start-page: 79
  year: 2010
  ident: 2021042623410152700_DEV167692C21
  article-title: Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation
  publication-title: Arch. Cardiol. Mex.
– volume: 100
  start-page: e52756
  year: 2015
  ident: 2021042623410152700_DEV167692C170
  article-title: Use of the TetON system to study molecular mechanisms of zebrafish regeneration
  publication-title: J. Vis. Exp.
  doi: 10.3791/52756
– volume: 330
  start-page: 669
  year: 2010
  ident: 2021042623410152700_DEV167692C36
  article-title: Filtering of visual information in the tectum by an identified neural circuit
  publication-title: Science
  doi: 10.1126/science.1192949
SSID ssj0003677
Score 2.632157
SecondaryResourceType review_article
Snippet Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
Title Model systems for regeneration: zebrafish
URI https://www.proquest.com/docview/2295484171
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60ongRn_gmopci0WyzedSbSIuPVi8tFC9hs9loQRJJW0F_vTObzUPoQb2Edli2Zb5k5svOi5AzFzitF4UUHiTJTWYz1_Spzc02j11wCfB0Max37j-6t0N2P3JG1TxNVV0yDS_E19y6kv-gCjLAFatk_4BsuSkI4DPgC1dAGK6_whgHmb3pZsyqr8J5Jl9UH-kiZeML48LxePJaJ6G1RCEVxC3KtmqnAn2eocPILYicVMGj3ux9nKeDyTRJs9Ko92WGmfZZbrGjMa8fJ1CVL9WyahaQYUyX6h-Uc2SF2dRHh_r-8OfaYyAAoMRIflxQzKVtVV6niLQ_PgXdYa8XDDqjwSJZanlAgZDb3j2UDtV21QDN8l_oLrOw92W1809e8dOtKq4wWCdrmuQb1zliG2RBJptkOR_7-blJVvo6oQGEz6kSbpGmAtPQYBoAplEH88ooodwmw25ncHNr6jkWpsCpwabf9i0vxl4IVmhz5lDheU7k-jFz4GsoKLUjHN8kBdBFYbmcteMYqVcM7DmMfHuHNJI0kbvE8ICyCd-yJQ0j5ghsvthyhCM46EB4sb1HmoUWAqGbvOOskbcAX_ZAYwFoLMg1tkdOy7XveWuTuatOCmUGYHkwnMQTmc4mAQ6CZz6jHt3_xZoDslrdboekMc1m8gj43DQ8Vmh_A4h9Ryw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+systems+for+regeneration%3A+zebrafish&rft.jtitle=Development+%28Cambridge%29&rft.au=Marques%2C+Ines+J&rft.au=Lupi%2C+Eleonora&rft.au=Mercader%2C+Nadia&rft.date=2019-09-20&rft.issn=1477-9129&rft.eissn=1477-9129&rft.volume=146&rft.issue=18&rft_id=info:doi/10.1242%2Fdev.167692&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon