Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei

The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. B Vol. 833; p. 137333
Main Authors Xu, Jun-Yao, Li, Zheng-Zheng, Sun, Bao-Hua, Niu, Yi-Fei, Roca-Maza, Xavier, Sagawa, Hiroyuki, Tanihata, Isao
Format Journal Article
LanguageEnglish
Published Elsevier 01.10.2022
Subjects
Online AccessGet full text
ISSN0370-2693
DOI10.1016/j.physletb.2022.137333

Cover

Abstract The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference.
AbstractList The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference.
ArticleNumber 137333
Author Li, Zheng-Zheng
Xu, Jun-Yao
Roca-Maza, Xavier
Niu, Yi-Fei
Sagawa, Hiroyuki
Tanihata, Isao
Sun, Bao-Hua
Author_xml – sequence: 1
  givenname: Jun-Yao
  orcidid: 0000-0002-0933-7617
  surname: Xu
  fullname: Xu, Jun-Yao
– sequence: 2
  givenname: Zheng-Zheng
  orcidid: 0000-0002-4996-966X
  surname: Li
  fullname: Li, Zheng-Zheng
– sequence: 3
  givenname: Bao-Hua
  orcidid: 0000-0001-9868-5711
  surname: Sun
  fullname: Sun, Bao-Hua
– sequence: 4
  givenname: Yi-Fei
  orcidid: 0000-0003-1029-1887
  surname: Niu
  fullname: Niu, Yi-Fei
– sequence: 5
  givenname: Xavier
  orcidid: 0000-0002-2100-6407
  surname: Roca-Maza
  fullname: Roca-Maza, Xavier
– sequence: 6
  givenname: Hiroyuki
  surname: Sagawa
  fullname: Sagawa, Hiroyuki
– sequence: 7
  givenname: Isao
  surname: Tanihata
  fullname: Tanihata, Isao
BookMark eNqFkMtOwzAQRb0oEqXwCyg_kDJ-xEklNqjiUQmJDaytie20rhq72O6if0_SVizYsBrbo3PHc27IxAdvCbmnMKdA5cN2vt8c087mds6AsTnlNed8QqbAayiZXPBrcpPSFgBoBXJKwjL4lCM67_y6sN8HzC74InRFypjtePAHvbMYix5ztrFoj4XeYFzbcih-PWI6hpSKZPWJ7S2mQ7S99TmNfO9iDPEc427JVYe7ZO8udUa-Xp4_l2_l-8fravn0XmpGBS9NaxqKzQJEM9zbWla1lEJ0TNSVQaaFaSS1Q1NjUzWwqCRlYA1d8FpADZTPyOqcawJu1T66HuNRBXTq9BDiWmHMbviSalo0HOqWIjBRdQ0aJnkFwCoUqI0ZsuQ567RntN1vHgU1alfDhIt2NWpXZ-0D-PgH1C6fBI_Gd__hPzNMkhI
CitedBy_id crossref_primary_10_1016_j_scib_2024_03_051
crossref_primary_10_1007_s41365_025_01660_0
crossref_primary_10_1007_s41365_024_01584_1
crossref_primary_10_1103_PhysRevC_109_064302
crossref_primary_10_3389_fphy_2024_1488428
crossref_primary_10_1088_1674_1137_ad47a8
crossref_primary_10_12677_APP_2023_134010
crossref_primary_10_1007_s41365_024_01551_w
crossref_primary_10_1088_1674_1137_acd366
crossref_primary_10_1103_PhysRevC_107_034319
Cites_doi 10.1209/0295-5075/82/12001
10.1103/PhysRevC.82.014609
10.1103/PhysRevC.89.044602
10.1016/S0375-9474(98)00570-3
10.1103/PhysRevC.97.014314
10.1103/PhysRevC.55.540
10.1016/S0375-9474(00)00168-8
10.1103/PhysRevC.88.031305
10.1016/j.physletb.2003.10.019
10.1006/adnd.1995.1007
10.1093/ptep/ptaa177
10.1103/PhysRevLett.85.5296
10.1016/j.ppnp.2015.09.003
10.1103/PhysRevLett.126.172503
10.1103/PhysRevC.69.034319
10.1103/PhysRevLett.117.102501
10.1103/PhysRevC.94.044313
10.1103/PhysRevLett.120.202501
10.1103/PhysRevC.71.024312
10.1103/PhysRevLett.109.192501
10.1016/j.ppnp.2018.04.001
10.1016/j.ppnp.2019.103714
10.1103/PhysRevLett.127.192701
10.1016/j.physletb.2013.02.043
10.1103/PhysRevC.88.011301
10.1103/PhysRevResearch.4.L022054
10.1016/j.physrep.2015.12.005
10.1016/0375-9474(75)90338-3
10.1103/PhysRevC.105.L021301
10.1016/S0092-640X(74)80002-1
10.1103/PhysRevLett.108.081102
10.1103/PhysRevLett.106.252501
10.1016/j.physrep.2008.04.005
10.1103/PhysRevLett.86.5647
10.1016/0375-9474(80)90618-1
10.1016/S0375-9474(02)00867-9
10.1016/j.scib.2017.12.005
10.3847/1538-4357/ab4adf
10.1103/PhysRevC.92.034308
10.1103/PhysRevC.102.054601
10.1103/PhysRevLett.126.172502
10.1103/PhysRevC.86.015803
10.1103/PhysRevC.76.034314
10.1016/j.physletb.2013.10.006
10.1103/PhysRevC.79.034310
10.1016/j.physrep.2007.02.003
10.1088/0004-637X/771/1/51
10.1103/PhysRevLett.119.262501
10.1016/j.ppnp.2017.04.002
10.1016/0375-9474(94)90923-7
10.1016/j.nuclphysa.2020.121804
10.1103/PhysRevLett.127.232501
10.1103/PhysRevLett.119.122502
10.1016/j.nuclphysa.2020.122061
10.1103/PhysRevLett.107.032502
10.1016/0375-9474(82)90403-1
10.3847/1538-4357/ab72fd
10.1103/PhysRevC.93.044611
10.1103/PhysRevLett.107.062502
10.1103/PhysRevC.67.044316
10.1103/RevModPhys.85.1383
10.1016/S0375-9474(99)00310-3
10.1103/PhysRevC.69.014315
10.1088/0954-3899/41/9/093001
10.1016/j.physrep.2005.02.004
10.1016/S0092-640X(74)80003-3
10.1103/PhysRevC.94.044322
10.1016/j.physletb.2019.01.024
10.1103/PhysRevLett.82.3216
10.1016/j.ppnp.2021.103879
10.1016/0375-9474(94)00770-N
10.1103/PhysRevLett.102.122502
10.1016/0029-5582(66)90639-0
10.1103/RevModPhys.89.015007
10.1016/S0370-2693(02)01574-5
10.1016/j.ppnp.2016.06.006
10.1016/j.physletb.2021.136453
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.physletb.2022.137333
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd
10_1016_j_physletb_2022_137333
GroupedDBID --K
--M
-~X
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
AAYXX
ABDPE
ABFNM
ABLJU
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFFNX
AFPKN
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSH
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
ZCG
~G-
EFKBS
ID FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013
IEDL.DBID DOA
ISSN 0370-2693
IngestDate Wed Aug 27 01:30:29 EDT 2025
Tue Jul 01 01:26:11 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013
ORCID 0000-0002-2100-6407
0000-0001-9868-5711
0000-0002-0933-7617
0000-0002-4996-966X
0000-0003-1029-1887
OpenAccessLink https://doaj.org/article/8bad307b1a0245f8ad26350025a4acdd
ParticipantIDs doaj_primary_oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd
crossref_primary_10_1016_j_physletb_2022_137333
crossref_citationtrail_10_1016_j_physletb_2022_137333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-00
2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-00
PublicationDecade 2020
PublicationTitle Physics letters. B
PublicationYear 2022
Publisher Elsevier
Publisher_xml – name: Elsevier
References Abdul-Magead (10.1016/j.physletb.2022.137333_br0640) 2020; 1000
Alex Brown (10.1016/j.physletb.2022.137333_br0350) 2000; 85
Klüpfel (10.1016/j.physletb.2022.137333_br0710) 2009; 79
Beiner (10.1016/j.physletb.2022.137333_br0730) 1975; 238
Engfer (10.1016/j.physletb.2022.137333_br0510) 1974; 14
Li (10.1016/j.physletb.2022.137333_br0100) 2020; 125
Chen (10.1016/j.physletb.2022.137333_br0360) 2005; 72
Steiner (10.1016/j.physletb.2022.137333_br0010) 2005; 411
Roca-Maza (10.1016/j.physletb.2022.137333_br0050) 2018; 101
Chabanat (10.1016/j.physletb.2022.137333_br0690) 1998; 643
Yang (10.1016/j.physletb.2022.137333_br0750) 2019; 100
Roca-Maza (10.1016/j.physletb.2022.137333_br0790) 2018; 120
Brown (10.1016/j.physletb.2022.137333_br0470) 2020; 2
Zhou (10.1016/j.physletb.2022.137333_br0130) 2019; 886
Tsang (10.1016/j.physletb.2022.137333_br0180) 2012; 86
Burgio (10.1016/j.physletb.2022.137333_br0060) 2021; 120
Reinhard (10.1016/j.physletb.2022.137333_br0420) 2021; 127
Brown (10.1016/j.physletb.2022.137333_br0440) 2017; 119
Suda (10.1016/j.physletb.2022.137333_br0500) 2017; 96
Krivine (10.1016/j.physletb.2022.137333_br0740) 1980; 336
Long (10.1016/j.physletb.2022.137333_br0840) 2004; 69
Reinhard (10.1016/j.physletb.2022.137333_br0210) 2016; 93
Kurasawa (10.1016/j.physletb.2022.137333_br0880) 2020; 2021
Centelles (10.1016/j.physletb.2022.137333_br0370) 2009; 102
Li (10.1016/j.physletb.2022.137333_br0020) 2008; 464
Wang (10.1016/j.physletb.2022.137333_br0430) 2013; 88
Typel (10.1016/j.physletb.2022.137333_br0850) 1999; 656
Yang (10.1016/j.physletb.2022.137333_br0450) 2018; 97
Myers (10.1016/j.physletb.2022.137333_br0150) 1966; 81
Chulkov (10.1016/j.physletb.2022.137333_br0670) 2000; 674
Roca-Maza (10.1016/j.physletb.2022.137333_br0380) 2011; 106
Bhagwat (10.1016/j.physletb.2022.137333_br0620) 2004; 69
Ozawa (10.1016/j.physletb.2022.137333_br0600) 2014; 89
Abrahamyan (10.1016/j.physletb.2022.137333_br0480) 2012; 109
Long (10.1016/j.physletb.2022.137333_br0860) 2007; 76
Xu (10.1016/j.physletb.2022.137333_br0110) 2021; 819
Yamaguchi (10.1016/j.physletb.2022.137333_br0550) 2010; 82
Terashima (10.1016/j.physletb.2022.137333_br0580) 2014; 2014
Lu (10.1016/j.physletb.2022.137333_br0530) 2013; 85
Lalazissis (10.1016/j.physletb.2022.137333_br0830) 2005; 71
Reinhard (10.1016/j.physletb.2022.137333_br0890) 2022; 105
Kanungo (10.1016/j.physletb.2022.137333_br0570) 2016; 117
Nikšić (10.1016/j.physletb.2022.137333_br0820) 2002; 66
Aumann (10.1016/j.physletb.2022.137333_br0630) 2017; 119
Tamii (10.1016/j.physletb.2022.137333_br0220) 2011; 107
Lattimer (10.1016/j.physletb.2022.137333_br0080) 2016; 621
Wan (10.1016/j.physletb.2022.137333_br0120) 2016; 94
Meng (10.1016/j.physletb.2022.137333_br0610) 2002; 532
Baldo (10.1016/j.physletb.2022.137333_br0070) 2016; 91
Fricke (10.1016/j.physletb.2022.137333_br0520) 1995; 60
Furnstahl (10.1016/j.physletb.2022.137333_br0900) 2002; 706
Cao (10.1016/j.physletb.2022.137333_br0280) 2015; 92
Oertel (10.1016/j.physletb.2022.137333_br0340) 2017; 89
Tanaka (10.1016/j.physletb.2022.137333_br0660) 2021
Bartel (10.1016/j.physletb.2022.137333_br0720) 1982; 386
Kortelainen (10.1016/j.physletb.2022.137333_br0910) 2013; 88
Wang (10.1016/j.physletb.2022.137333_br0310) 2020; 802
Zhang (10.1016/j.physletb.2022.137333_br0090) 2020; 15
Horiuchi (10.1016/j.physletb.2022.137333_br0770) 2016; 93
Typel (10.1016/j.physletb.2022.137333_br0200) 2001; 64
Reinhard (10.1016/j.physletb.2022.137333_br0700) 1995; 584
Horowitz (10.1016/j.physletb.2022.137333_br0170) 2001; 86
Shen (10.1016/j.physletb.2022.137333_br0040) 2020; 891
Yue (10.1016/j.physletb.2022.137333_br0410) 2022; 4
Xu (10.1016/j.physletb.2022.137333_br0300) 2010; 82
Pomorski (10.1016/j.physletb.2022.137333_br0160) 2003; 67
Horiuchi (10.1016/j.physletb.2022.137333_br0760) 2014; 89
Essick (10.1016/j.physletb.2022.137333_br0320) 2021; 127
Suzuki (10.1016/j.physletb.2022.137333_br0650) 2016; 94
Baiotti (10.1016/j.physletb.2022.137333_br0140) 2019; 109
Iida (10.1016/j.physletb.2022.137333_br0250) 2003; 576
Krasznahorkay (10.1016/j.physletb.2022.137333_br0260) 1999; 82
Bagchi (10.1016/j.physletb.2022.137333_br0590) 2019; 790
Reed (10.1016/j.physletb.2022.137333_br0400) 2021; 126
Long (10.1016/j.physletb.2022.137333_br0870) 2008; 82
Lattimer (10.1016/j.physletb.2022.137333_br0230) 2013; 771
Li (10.1016/j.physletb.2022.137333_br0330) 2013; 727
Yamaguchi (10.1016/j.physletb.2022.137333_br0560) 2011; 107
Sugahara (10.1016/j.physletb.2022.137333_br0810) 1994; 579
Sun (10.1016/j.physletb.2022.137333_br0920) 2018; 63
De Jager (10.1016/j.physletb.2022.137333_br0490) 1974; 14
Horiuchi (10.1016/j.physletb.2022.137333_br0780) 2020; 102
Steiner (10.1016/j.physletb.2022.137333_br0240) 2012; 108
Krasznahorkay (10.1016/j.physletb.2022.137333_br0270) 2013; 720
Chabanat (10.1016/j.physletb.2022.137333_br0680) 1997; 635
Gaidarov (10.1016/j.physletb.2022.137333_br0460) 2020; 1004
Campbell (10.1016/j.physletb.2022.137333_br0540) 2016; 86
Lalazissis (10.1016/j.physletb.2022.137333_br0800) 1997; 55
Adhikari (10.1016/j.physletb.2022.137333_br0390) 2021; 126
Lattimer (10.1016/j.physletb.2022.137333_br0030) 2007; 442
Roca-Maza (10.1016/j.physletb.2022.137333_br0290) 2016; 94
Horowitz (10.1016/j.physletb.2022.137333_br0190) 2014; 41
References_xml – volume: 82
  issue: 1
  year: 2008
  ident: 10.1016/j.physletb.2022.137333_br0870
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/82/12001
– volume: 82
  year: 2010
  ident: 10.1016/j.physletb.2022.137333_br0550
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.014609
– volume: 89
  year: 2014
  ident: 10.1016/j.physletb.2022.137333_br0600
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.044602
– volume: 643
  start-page: 441
  issue: 4
  year: 1998
  ident: 10.1016/j.physletb.2022.137333_br0690
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(98)00570-3
– volume: 93
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0210
  publication-title: Phys. Rev. C
– volume: 97
  issue: 1
  year: 2018
  ident: 10.1016/j.physletb.2022.137333_br0450
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.97.014314
– volume: 55
  start-page: 540
  year: 1997
  ident: 10.1016/j.physletb.2022.137333_br0800
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.55.540
– volume: 674
  start-page: 330
  issue: 3
  year: 2000
  ident: 10.1016/j.physletb.2022.137333_br0670
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(00)00168-8
– volume: 88
  year: 2013
  ident: 10.1016/j.physletb.2022.137333_br0910
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.88.031305
– volume: 576
  start-page: 273
  issue: 3
  year: 2003
  ident: 10.1016/j.physletb.2022.137333_br0250
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2003.10.019
– volume: 60
  start-page: 177
  issue: 2
  year: 1995
  ident: 10.1016/j.physletb.2022.137333_br0520
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1006/adnd.1995.1007
– volume: 2021
  issue: 1
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0880
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptaa177
– volume: 85
  start-page: 5296
  year: 2000
  ident: 10.1016/j.physletb.2022.137333_br0350
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.5296
– volume: 86
  start-page: 127
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0540
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2015.09.003
– volume: 82
  year: 2010
  ident: 10.1016/j.physletb.2022.137333_br0300
  publication-title: Phys. Rev. C
– volume: 126
  issue: 17
  year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0400
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.172503
– volume: 69
  year: 2004
  ident: 10.1016/j.physletb.2022.137333_br0840
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.69.034319
– volume: 117
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0570
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.102501
– volume: 94
  issue: 4
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0290
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.94.044313
– volume: 120
  year: 2018
  ident: 10.1016/j.physletb.2022.137333_br0790
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.202501
– volume: 71
  year: 2005
  ident: 10.1016/j.physletb.2022.137333_br0830
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.71.024312
– volume: 15
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0090
  publication-title: Front. Phys.
– volume: 109
  year: 2012
  ident: 10.1016/j.physletb.2022.137333_br0480
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.192501
– volume: 101
  start-page: 96
  year: 2018
  ident: 10.1016/j.physletb.2022.137333_br0050
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2018.04.001
– volume: 109
  year: 2019
  ident: 10.1016/j.physletb.2022.137333_br0140
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2019.103714
– volume: 127
  year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0320
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.192701
– volume: 720
  start-page: 428
  year: 2013
  ident: 10.1016/j.physletb.2022.137333_br0270
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2013.02.043
– volume: 88
  issue: 1
  year: 2013
  ident: 10.1016/j.physletb.2022.137333_br0430
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.88.011301
– volume: 4
  year: 2022
  ident: 10.1016/j.physletb.2022.137333_br0410
  article-title: Constraints on the symmetry energy from PREX-II in the multimessenger era
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.L022054
– volume: 94
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0650
  publication-title: Phys. Rev. C
– volume: 621
  start-page: 127
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0080
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.12.005
– volume: 238
  start-page: 29
  issue: 1
  year: 1975
  ident: 10.1016/j.physletb.2022.137333_br0730
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(75)90338-3
– volume: 105
  year: 2022
  ident: 10.1016/j.physletb.2022.137333_br0890
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.105.L021301
– volume: 14
  start-page: 479
  issue: 5
  year: 1974
  ident: 10.1016/j.physletb.2022.137333_br0490
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/S0092-640X(74)80002-1
– volume: 66
  year: 2002
  ident: 10.1016/j.physletb.2022.137333_br0820
  publication-title: Phys. Rev. C
– volume: 108
  year: 2012
  ident: 10.1016/j.physletb.2022.137333_br0240
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.081102
– volume: 106
  year: 2011
  ident: 10.1016/j.physletb.2022.137333_br0380
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.252501
– volume: 464
  start-page: 113
  issue: 4–6
  year: 2008
  ident: 10.1016/j.physletb.2022.137333_br0020
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2008.04.005
– volume: 2014
  year: 2014
  ident: 10.1016/j.physletb.2022.137333_br0580
  publication-title: Prog. Theor. Exp. Phys.
– volume: 86
  start-page: 5647
  year: 2001
  ident: 10.1016/j.physletb.2022.137333_br0170
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5647
– volume: 336
  start-page: 155
  issue: 2
  year: 1980
  ident: 10.1016/j.physletb.2022.137333_br0740
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(80)90618-1
– volume: 706
  start-page: 85
  issue: 1
  year: 2002
  ident: 10.1016/j.physletb.2022.137333_br0900
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(02)00867-9
– volume: 63
  start-page: 78
  issue: 2
  year: 2018
  ident: 10.1016/j.physletb.2022.137333_br0920
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.12.005
– volume: 886
  start-page: 52
  issue: 1
  year: 2019
  ident: 10.1016/j.physletb.2022.137333_br0130
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab4adf
– volume: 64
  year: 2001
  ident: 10.1016/j.physletb.2022.137333_br0200
  publication-title: Phys. Rev. C
– volume: 92
  issue: 3
  year: 2015
  ident: 10.1016/j.physletb.2022.137333_br0280
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.92.034308
– volume: 102
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0780
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.102.054601
– volume: 802
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0310
  publication-title: Phys. Lett. B
– volume: 126
  year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0390
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.172502
– volume: 86
  year: 2012
  ident: 10.1016/j.physletb.2022.137333_br0180
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.86.015803
– volume: 76
  year: 2007
  ident: 10.1016/j.physletb.2022.137333_br0860
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.76.034314
– volume: 727
  start-page: 276
  year: 2013
  ident: 10.1016/j.physletb.2022.137333_br0330
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2013.10.006
– volume: 79
  year: 2009
  ident: 10.1016/j.physletb.2022.137333_br0710
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.79.034310
– volume: 442
  start-page: 109
  issue: 1–6
  year: 2007
  ident: 10.1016/j.physletb.2022.137333_br0030
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2007.02.003
– volume: 771
  start-page: 51
  issue: 1
  year: 2013
  ident: 10.1016/j.physletb.2022.137333_br0230
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/771/1/51
– volume: 119
  year: 2017
  ident: 10.1016/j.physletb.2022.137333_br0630
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.262501
– volume: 96
  start-page: 1
  year: 2017
  ident: 10.1016/j.physletb.2022.137333_br0500
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2017.04.002
– volume: 579
  start-page: 557
  issue: 3
  year: 1994
  ident: 10.1016/j.physletb.2022.137333_br0810
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(94)90923-7
– volume: 1000
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0640
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2020.121804
– volume: 127
  year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0420
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.232501
– volume: 119
  issue: 12
  year: 2017
  ident: 10.1016/j.physletb.2022.137333_br0440
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.122502
– volume: 1004
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0460
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2020.122061
– volume: 107
  year: 2011
  ident: 10.1016/j.physletb.2022.137333_br0560
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.032502
– volume: 386
  start-page: 79
  issue: 1
  year: 1982
  ident: 10.1016/j.physletb.2022.137333_br0720
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(82)90403-1
– volume: 891
  start-page: 148
  issue: 2
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0040
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab72fd
– volume: 93
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0770
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.93.044611
– volume: 2
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0470
  publication-title: Phys. Rev. Res.
– volume: 107
  year: 2011
  ident: 10.1016/j.physletb.2022.137333_br0220
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.062502
– volume: 67
  year: 2003
  ident: 10.1016/j.physletb.2022.137333_br0160
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.67.044316
– volume: 89
  year: 2014
  ident: 10.1016/j.physletb.2022.137333_br0760
  publication-title: Phys. Rev. C
– year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0660
  article-title: Charge-changing cross sections for 42–51Ca and effect of charged-particle evaporation induced by neutron removal reaction
  publication-title: Phys. Rev. C
– volume: 85
  start-page: 1383
  year: 2013
  ident: 10.1016/j.physletb.2022.137333_br0530
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1383
– volume: 656
  start-page: 331
  issue: 3
  year: 1999
  ident: 10.1016/j.physletb.2022.137333_br0850
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(99)00310-3
– volume: 69
  issue: 1
  year: 2004
  ident: 10.1016/j.physletb.2022.137333_br0620
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.69.014315
– volume: 41
  issue: 9
  year: 2014
  ident: 10.1016/j.physletb.2022.137333_br0190
  publication-title: J. Phys. G, Nucl. Part. Phys.
  doi: 10.1088/0954-3899/41/9/093001
– volume: 411
  start-page: 325
  issue: 25
  year: 2005
  ident: 10.1016/j.physletb.2022.137333_br0010
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.02.004
– volume: 14
  start-page: 509
  issue: 5
  year: 1974
  ident: 10.1016/j.physletb.2022.137333_br0510
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/S0092-640X(74)80003-3
– volume: 94
  issue: 4
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0120
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.94.044322
– volume: 790
  start-page: 251
  year: 2019
  ident: 10.1016/j.physletb.2022.137333_br0590
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.01.024
– volume: 82
  start-page: 3216
  year: 1999
  ident: 10.1016/j.physletb.2022.137333_br0260
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3216
– volume: 120
  year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0060
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2021.103879
– volume: 635
  start-page: 231
  issue: 1–2
  year: 1997
  ident: 10.1016/j.physletb.2022.137333_br0680
  publication-title: Nucl. Phys. A
– volume: 584
  start-page: 467
  issue: 3
  year: 1995
  ident: 10.1016/j.physletb.2022.137333_br0700
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(94)00770-N
– volume: 100
  year: 2019
  ident: 10.1016/j.physletb.2022.137333_br0750
  publication-title: Phys. Rev. C
– volume: 102
  issue: 12
  year: 2009
  ident: 10.1016/j.physletb.2022.137333_br0370
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.122502
– volume: 81
  start-page: 1
  issue: 1
  year: 1966
  ident: 10.1016/j.physletb.2022.137333_br0150
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(66)90639-0
– volume: 89
  year: 2017
  ident: 10.1016/j.physletb.2022.137333_br0340
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.015007
– volume: 532
  start-page: 209
  issue: 3–4
  year: 2002
  ident: 10.1016/j.physletb.2022.137333_br0610
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)01574-5
– volume: 125
  year: 2020
  ident: 10.1016/j.physletb.2022.137333_br0100
  publication-title: Phys. Rev. Lett.
– volume: 72
  year: 2005
  ident: 10.1016/j.physletb.2022.137333_br0360
  publication-title: Phys. Rev. C
– volume: 91
  start-page: 203
  year: 2016
  ident: 10.1016/j.physletb.2022.137333_br0070
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2016.06.006
– volume: 819
  year: 2021
  ident: 10.1016/j.physletb.2022.137333_br0110
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136453
SSID ssj0001506
Score 2.4037874
Snippet The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 137333
SubjectTerms Charge-changing cross section
Equation of state of nuclear matter
Mirror nuclei
Symmetry energy
Title Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei
URI https://doaj.org/article/8bad307b1a0245f8ad26350025a4acdd
Volume 833
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 0370-2693
  databaseCode: KQ8
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0370-2693
  databaseCode: DOA
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0370-2693
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  issn: 0370-2693
  databaseCode: IXB
  dateStart: 0
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  issn: 0370-2693
  databaseCode: ACRLP
  dateStart: 20140120
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0370-2693
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0370-2693
  databaseCode: AIKHN
  dateStart: 20140120
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0370-2693
  databaseCode: AKRWK
  dateStart: 19930107
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001506
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEhIL4inKo_LA6raxkzgZAYEqJJio1C2yY1tqRVNIy8DCb-fOTkqZurDldZF1ufi-s---I-TGmlQ4IxMW5dqxOLeOqURJhmWSzg2tNBbrnZ9f0tE4fpokk41WX5gTFuiBg-IGmVYG7FBHCjcJXaYM0qegq1axKo3B2RfcWBtMNXMw8ub5_QM5ZDzNxUZt8KyPawagFA3RIef9SEghxB-3tMHe793M4yE5aPAhvQ3jOiI7tjomez5Ps1yekAU22GzbOlD7EYi66cJRXxmEBxUyFKuazj1zJtVf1LMhWeZrfFHMD4EufRJWRee_q4RLlJ9P63pRh9dMT8n48eH1fsSangms5AB9mNEmi1SWw48J51qmEE8A5HE8lolRvIxNlkYWbpYqSzJkIYz40BqAcRJCO8CDZ6RTLSp7TiiPldJlZDTEOLETIgdsabnILYCkRHLVJUmrsqJsCMVRAW9Fmzk2K1pVF6jqIqi6SwZrufdAqbFV4g6_yPpppMT2F8BQisZQim2GcvEfL7kk-ziukM13RTqr-tNeAypZ6R7Z7X9HPW-GPwel4Ho
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+equation+of+state+of+nuclear+matter+by+charge-changing+cross+section+measurements+of+mirror+nuclei&rft.jtitle=Physics+letters.+B&rft.au=Jun-Yao+Xu&rft.au=Zheng-Zheng+Li&rft.au=Bao-Hua+Sun&rft.au=Yi-Fei+Niu&rft.date=2022-10-01&rft.pub=Elsevier&rft.issn=0370-2693&rft.volume=833&rft.spage=137333&rft_id=info:doi/10.1016%2Fj.physletb.2022.137333&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon