Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei
The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and...
Saved in:
Published in | Physics letters. B Vol. 833; p. 137333 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0370-2693 |
DOI | 10.1016/j.physletb.2022.137333 |
Cover
Abstract | The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference. |
---|---|
AbstractList | The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference. |
ArticleNumber | 137333 |
Author | Li, Zheng-Zheng Xu, Jun-Yao Roca-Maza, Xavier Niu, Yi-Fei Sagawa, Hiroyuki Tanihata, Isao Sun, Bao-Hua |
Author_xml | – sequence: 1 givenname: Jun-Yao orcidid: 0000-0002-0933-7617 surname: Xu fullname: Xu, Jun-Yao – sequence: 2 givenname: Zheng-Zheng orcidid: 0000-0002-4996-966X surname: Li fullname: Li, Zheng-Zheng – sequence: 3 givenname: Bao-Hua orcidid: 0000-0001-9868-5711 surname: Sun fullname: Sun, Bao-Hua – sequence: 4 givenname: Yi-Fei orcidid: 0000-0003-1029-1887 surname: Niu fullname: Niu, Yi-Fei – sequence: 5 givenname: Xavier orcidid: 0000-0002-2100-6407 surname: Roca-Maza fullname: Roca-Maza, Xavier – sequence: 6 givenname: Hiroyuki surname: Sagawa fullname: Sagawa, Hiroyuki – sequence: 7 givenname: Isao surname: Tanihata fullname: Tanihata, Isao |
BookMark | eNqFkMtOwzAQRb0oEqXwCyg_kDJ-xEklNqjiUQmJDaytie20rhq72O6if0_SVizYsBrbo3PHc27IxAdvCbmnMKdA5cN2vt8c087mds6AsTnlNed8QqbAayiZXPBrcpPSFgBoBXJKwjL4lCM67_y6sN8HzC74InRFypjtePAHvbMYix5ztrFoj4XeYFzbcih-PWI6hpSKZPWJ7S2mQ7S99TmNfO9iDPEc427JVYe7ZO8udUa-Xp4_l2_l-8fravn0XmpGBS9NaxqKzQJEM9zbWla1lEJ0TNSVQaaFaSS1Q1NjUzWwqCRlYA1d8FpADZTPyOqcawJu1T66HuNRBXTq9BDiWmHMbviSalo0HOqWIjBRdQ0aJnkFwCoUqI0ZsuQ567RntN1vHgU1alfDhIt2NWpXZ-0D-PgH1C6fBI_Gd__hPzNMkhI |
CitedBy_id | crossref_primary_10_1016_j_scib_2024_03_051 crossref_primary_10_1007_s41365_025_01660_0 crossref_primary_10_1007_s41365_024_01584_1 crossref_primary_10_1103_PhysRevC_109_064302 crossref_primary_10_3389_fphy_2024_1488428 crossref_primary_10_1088_1674_1137_ad47a8 crossref_primary_10_12677_APP_2023_134010 crossref_primary_10_1007_s41365_024_01551_w crossref_primary_10_1088_1674_1137_acd366 crossref_primary_10_1103_PhysRevC_107_034319 |
Cites_doi | 10.1209/0295-5075/82/12001 10.1103/PhysRevC.82.014609 10.1103/PhysRevC.89.044602 10.1016/S0375-9474(98)00570-3 10.1103/PhysRevC.97.014314 10.1103/PhysRevC.55.540 10.1016/S0375-9474(00)00168-8 10.1103/PhysRevC.88.031305 10.1016/j.physletb.2003.10.019 10.1006/adnd.1995.1007 10.1093/ptep/ptaa177 10.1103/PhysRevLett.85.5296 10.1016/j.ppnp.2015.09.003 10.1103/PhysRevLett.126.172503 10.1103/PhysRevC.69.034319 10.1103/PhysRevLett.117.102501 10.1103/PhysRevC.94.044313 10.1103/PhysRevLett.120.202501 10.1103/PhysRevC.71.024312 10.1103/PhysRevLett.109.192501 10.1016/j.ppnp.2018.04.001 10.1016/j.ppnp.2019.103714 10.1103/PhysRevLett.127.192701 10.1016/j.physletb.2013.02.043 10.1103/PhysRevC.88.011301 10.1103/PhysRevResearch.4.L022054 10.1016/j.physrep.2015.12.005 10.1016/0375-9474(75)90338-3 10.1103/PhysRevC.105.L021301 10.1016/S0092-640X(74)80002-1 10.1103/PhysRevLett.108.081102 10.1103/PhysRevLett.106.252501 10.1016/j.physrep.2008.04.005 10.1103/PhysRevLett.86.5647 10.1016/0375-9474(80)90618-1 10.1016/S0375-9474(02)00867-9 10.1016/j.scib.2017.12.005 10.3847/1538-4357/ab4adf 10.1103/PhysRevC.92.034308 10.1103/PhysRevC.102.054601 10.1103/PhysRevLett.126.172502 10.1103/PhysRevC.86.015803 10.1103/PhysRevC.76.034314 10.1016/j.physletb.2013.10.006 10.1103/PhysRevC.79.034310 10.1016/j.physrep.2007.02.003 10.1088/0004-637X/771/1/51 10.1103/PhysRevLett.119.262501 10.1016/j.ppnp.2017.04.002 10.1016/0375-9474(94)90923-7 10.1016/j.nuclphysa.2020.121804 10.1103/PhysRevLett.127.232501 10.1103/PhysRevLett.119.122502 10.1016/j.nuclphysa.2020.122061 10.1103/PhysRevLett.107.032502 10.1016/0375-9474(82)90403-1 10.3847/1538-4357/ab72fd 10.1103/PhysRevC.93.044611 10.1103/PhysRevLett.107.062502 10.1103/PhysRevC.67.044316 10.1103/RevModPhys.85.1383 10.1016/S0375-9474(99)00310-3 10.1103/PhysRevC.69.014315 10.1088/0954-3899/41/9/093001 10.1016/j.physrep.2005.02.004 10.1016/S0092-640X(74)80003-3 10.1103/PhysRevC.94.044322 10.1016/j.physletb.2019.01.024 10.1103/PhysRevLett.82.3216 10.1016/j.ppnp.2021.103879 10.1016/0375-9474(94)00770-N 10.1103/PhysRevLett.102.122502 10.1016/0029-5582(66)90639-0 10.1103/RevModPhys.89.015007 10.1016/S0370-2693(02)01574-5 10.1016/j.ppnp.2016.06.006 10.1016/j.physletb.2021.136453 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.physletb.2022.137333 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd 10_1016_j_physletb_2022_137333 |
GroupedDBID | --K --M -~X .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO AAYXX ABDPE ABFNM ABLJU ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AEXQZ AFFNX AFPKN AFPUW AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIBLX AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 ER. FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HME HVGLF HZ~ IHE IPNFZ IXB J1W KOM KQ8 LZ4 M41 MO0 MVM N9A O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSH SSQ SSZ T5K TN5 WH7 WUQ XJT ZCG ~G- EFKBS |
ID | FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013 |
IEDL.DBID | DOA |
ISSN | 0370-2693 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Tue Jul 01 01:26:11 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013 |
ORCID | 0000-0002-2100-6407 0000-0001-9868-5711 0000-0002-0933-7617 0000-0002-4996-966X 0000-0003-1029-1887 |
OpenAccessLink | https://doaj.org/article/8bad307b1a0245f8ad26350025a4acdd |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd crossref_primary_10_1016_j_physletb_2022_137333 crossref_citationtrail_10_1016_j_physletb_2022_137333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-00 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Physics letters. B |
PublicationYear | 2022 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Abdul-Magead (10.1016/j.physletb.2022.137333_br0640) 2020; 1000 Alex Brown (10.1016/j.physletb.2022.137333_br0350) 2000; 85 Klüpfel (10.1016/j.physletb.2022.137333_br0710) 2009; 79 Beiner (10.1016/j.physletb.2022.137333_br0730) 1975; 238 Engfer (10.1016/j.physletb.2022.137333_br0510) 1974; 14 Li (10.1016/j.physletb.2022.137333_br0100) 2020; 125 Chen (10.1016/j.physletb.2022.137333_br0360) 2005; 72 Steiner (10.1016/j.physletb.2022.137333_br0010) 2005; 411 Roca-Maza (10.1016/j.physletb.2022.137333_br0050) 2018; 101 Chabanat (10.1016/j.physletb.2022.137333_br0690) 1998; 643 Yang (10.1016/j.physletb.2022.137333_br0750) 2019; 100 Roca-Maza (10.1016/j.physletb.2022.137333_br0790) 2018; 120 Brown (10.1016/j.physletb.2022.137333_br0470) 2020; 2 Zhou (10.1016/j.physletb.2022.137333_br0130) 2019; 886 Tsang (10.1016/j.physletb.2022.137333_br0180) 2012; 86 Burgio (10.1016/j.physletb.2022.137333_br0060) 2021; 120 Reinhard (10.1016/j.physletb.2022.137333_br0420) 2021; 127 Brown (10.1016/j.physletb.2022.137333_br0440) 2017; 119 Suda (10.1016/j.physletb.2022.137333_br0500) 2017; 96 Krivine (10.1016/j.physletb.2022.137333_br0740) 1980; 336 Long (10.1016/j.physletb.2022.137333_br0840) 2004; 69 Reinhard (10.1016/j.physletb.2022.137333_br0210) 2016; 93 Kurasawa (10.1016/j.physletb.2022.137333_br0880) 2020; 2021 Centelles (10.1016/j.physletb.2022.137333_br0370) 2009; 102 Li (10.1016/j.physletb.2022.137333_br0020) 2008; 464 Wang (10.1016/j.physletb.2022.137333_br0430) 2013; 88 Typel (10.1016/j.physletb.2022.137333_br0850) 1999; 656 Yang (10.1016/j.physletb.2022.137333_br0450) 2018; 97 Myers (10.1016/j.physletb.2022.137333_br0150) 1966; 81 Chulkov (10.1016/j.physletb.2022.137333_br0670) 2000; 674 Roca-Maza (10.1016/j.physletb.2022.137333_br0380) 2011; 106 Bhagwat (10.1016/j.physletb.2022.137333_br0620) 2004; 69 Ozawa (10.1016/j.physletb.2022.137333_br0600) 2014; 89 Abrahamyan (10.1016/j.physletb.2022.137333_br0480) 2012; 109 Long (10.1016/j.physletb.2022.137333_br0860) 2007; 76 Xu (10.1016/j.physletb.2022.137333_br0110) 2021; 819 Yamaguchi (10.1016/j.physletb.2022.137333_br0550) 2010; 82 Terashima (10.1016/j.physletb.2022.137333_br0580) 2014; 2014 Lu (10.1016/j.physletb.2022.137333_br0530) 2013; 85 Lalazissis (10.1016/j.physletb.2022.137333_br0830) 2005; 71 Reinhard (10.1016/j.physletb.2022.137333_br0890) 2022; 105 Kanungo (10.1016/j.physletb.2022.137333_br0570) 2016; 117 Nikšić (10.1016/j.physletb.2022.137333_br0820) 2002; 66 Aumann (10.1016/j.physletb.2022.137333_br0630) 2017; 119 Tamii (10.1016/j.physletb.2022.137333_br0220) 2011; 107 Lattimer (10.1016/j.physletb.2022.137333_br0080) 2016; 621 Wan (10.1016/j.physletb.2022.137333_br0120) 2016; 94 Meng (10.1016/j.physletb.2022.137333_br0610) 2002; 532 Baldo (10.1016/j.physletb.2022.137333_br0070) 2016; 91 Fricke (10.1016/j.physletb.2022.137333_br0520) 1995; 60 Furnstahl (10.1016/j.physletb.2022.137333_br0900) 2002; 706 Cao (10.1016/j.physletb.2022.137333_br0280) 2015; 92 Oertel (10.1016/j.physletb.2022.137333_br0340) 2017; 89 Tanaka (10.1016/j.physletb.2022.137333_br0660) 2021 Bartel (10.1016/j.physletb.2022.137333_br0720) 1982; 386 Kortelainen (10.1016/j.physletb.2022.137333_br0910) 2013; 88 Wang (10.1016/j.physletb.2022.137333_br0310) 2020; 802 Zhang (10.1016/j.physletb.2022.137333_br0090) 2020; 15 Horiuchi (10.1016/j.physletb.2022.137333_br0770) 2016; 93 Typel (10.1016/j.physletb.2022.137333_br0200) 2001; 64 Reinhard (10.1016/j.physletb.2022.137333_br0700) 1995; 584 Horowitz (10.1016/j.physletb.2022.137333_br0170) 2001; 86 Shen (10.1016/j.physletb.2022.137333_br0040) 2020; 891 Yue (10.1016/j.physletb.2022.137333_br0410) 2022; 4 Xu (10.1016/j.physletb.2022.137333_br0300) 2010; 82 Pomorski (10.1016/j.physletb.2022.137333_br0160) 2003; 67 Horiuchi (10.1016/j.physletb.2022.137333_br0760) 2014; 89 Essick (10.1016/j.physletb.2022.137333_br0320) 2021; 127 Suzuki (10.1016/j.physletb.2022.137333_br0650) 2016; 94 Baiotti (10.1016/j.physletb.2022.137333_br0140) 2019; 109 Iida (10.1016/j.physletb.2022.137333_br0250) 2003; 576 Krasznahorkay (10.1016/j.physletb.2022.137333_br0260) 1999; 82 Bagchi (10.1016/j.physletb.2022.137333_br0590) 2019; 790 Reed (10.1016/j.physletb.2022.137333_br0400) 2021; 126 Long (10.1016/j.physletb.2022.137333_br0870) 2008; 82 Lattimer (10.1016/j.physletb.2022.137333_br0230) 2013; 771 Li (10.1016/j.physletb.2022.137333_br0330) 2013; 727 Yamaguchi (10.1016/j.physletb.2022.137333_br0560) 2011; 107 Sugahara (10.1016/j.physletb.2022.137333_br0810) 1994; 579 Sun (10.1016/j.physletb.2022.137333_br0920) 2018; 63 De Jager (10.1016/j.physletb.2022.137333_br0490) 1974; 14 Horiuchi (10.1016/j.physletb.2022.137333_br0780) 2020; 102 Steiner (10.1016/j.physletb.2022.137333_br0240) 2012; 108 Krasznahorkay (10.1016/j.physletb.2022.137333_br0270) 2013; 720 Chabanat (10.1016/j.physletb.2022.137333_br0680) 1997; 635 Gaidarov (10.1016/j.physletb.2022.137333_br0460) 2020; 1004 Campbell (10.1016/j.physletb.2022.137333_br0540) 2016; 86 Lalazissis (10.1016/j.physletb.2022.137333_br0800) 1997; 55 Adhikari (10.1016/j.physletb.2022.137333_br0390) 2021; 126 Lattimer (10.1016/j.physletb.2022.137333_br0030) 2007; 442 Roca-Maza (10.1016/j.physletb.2022.137333_br0290) 2016; 94 Horowitz (10.1016/j.physletb.2022.137333_br0190) 2014; 41 |
References_xml | – volume: 82 issue: 1 year: 2008 ident: 10.1016/j.physletb.2022.137333_br0870 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/82/12001 – volume: 82 year: 2010 ident: 10.1016/j.physletb.2022.137333_br0550 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.014609 – volume: 89 year: 2014 ident: 10.1016/j.physletb.2022.137333_br0600 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.044602 – volume: 643 start-page: 441 issue: 4 year: 1998 ident: 10.1016/j.physletb.2022.137333_br0690 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(98)00570-3 – volume: 93 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0210 publication-title: Phys. Rev. C – volume: 97 issue: 1 year: 2018 ident: 10.1016/j.physletb.2022.137333_br0450 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.97.014314 – volume: 55 start-page: 540 year: 1997 ident: 10.1016/j.physletb.2022.137333_br0800 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.55.540 – volume: 674 start-page: 330 issue: 3 year: 2000 ident: 10.1016/j.physletb.2022.137333_br0670 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(00)00168-8 – volume: 88 year: 2013 ident: 10.1016/j.physletb.2022.137333_br0910 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.88.031305 – volume: 576 start-page: 273 issue: 3 year: 2003 ident: 10.1016/j.physletb.2022.137333_br0250 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2003.10.019 – volume: 60 start-page: 177 issue: 2 year: 1995 ident: 10.1016/j.physletb.2022.137333_br0520 publication-title: At. Data Nucl. Data Tables doi: 10.1006/adnd.1995.1007 – volume: 2021 issue: 1 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0880 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptaa177 – volume: 85 start-page: 5296 year: 2000 ident: 10.1016/j.physletb.2022.137333_br0350 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.5296 – volume: 86 start-page: 127 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0540 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2015.09.003 – volume: 82 year: 2010 ident: 10.1016/j.physletb.2022.137333_br0300 publication-title: Phys. Rev. C – volume: 126 issue: 17 year: 2021 ident: 10.1016/j.physletb.2022.137333_br0400 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.172503 – volume: 69 year: 2004 ident: 10.1016/j.physletb.2022.137333_br0840 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.69.034319 – volume: 117 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0570 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.102501 – volume: 94 issue: 4 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0290 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.94.044313 – volume: 120 year: 2018 ident: 10.1016/j.physletb.2022.137333_br0790 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.202501 – volume: 71 year: 2005 ident: 10.1016/j.physletb.2022.137333_br0830 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.71.024312 – volume: 15 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0090 publication-title: Front. Phys. – volume: 109 year: 2012 ident: 10.1016/j.physletb.2022.137333_br0480 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.192501 – volume: 101 start-page: 96 year: 2018 ident: 10.1016/j.physletb.2022.137333_br0050 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2018.04.001 – volume: 109 year: 2019 ident: 10.1016/j.physletb.2022.137333_br0140 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2019.103714 – volume: 127 year: 2021 ident: 10.1016/j.physletb.2022.137333_br0320 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.192701 – volume: 720 start-page: 428 year: 2013 ident: 10.1016/j.physletb.2022.137333_br0270 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2013.02.043 – volume: 88 issue: 1 year: 2013 ident: 10.1016/j.physletb.2022.137333_br0430 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.88.011301 – volume: 4 year: 2022 ident: 10.1016/j.physletb.2022.137333_br0410 article-title: Constraints on the symmetry energy from PREX-II in the multimessenger era publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.L022054 – volume: 94 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0650 publication-title: Phys. Rev. C – volume: 621 start-page: 127 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0080 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.12.005 – volume: 238 start-page: 29 issue: 1 year: 1975 ident: 10.1016/j.physletb.2022.137333_br0730 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(75)90338-3 – volume: 105 year: 2022 ident: 10.1016/j.physletb.2022.137333_br0890 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.105.L021301 – volume: 14 start-page: 479 issue: 5 year: 1974 ident: 10.1016/j.physletb.2022.137333_br0490 publication-title: At. Data Nucl. Data Tables doi: 10.1016/S0092-640X(74)80002-1 – volume: 66 year: 2002 ident: 10.1016/j.physletb.2022.137333_br0820 publication-title: Phys. Rev. C – volume: 108 year: 2012 ident: 10.1016/j.physletb.2022.137333_br0240 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.081102 – volume: 106 year: 2011 ident: 10.1016/j.physletb.2022.137333_br0380 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.252501 – volume: 464 start-page: 113 issue: 4–6 year: 2008 ident: 10.1016/j.physletb.2022.137333_br0020 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2008.04.005 – volume: 2014 year: 2014 ident: 10.1016/j.physletb.2022.137333_br0580 publication-title: Prog. Theor. Exp. Phys. – volume: 86 start-page: 5647 year: 2001 ident: 10.1016/j.physletb.2022.137333_br0170 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5647 – volume: 336 start-page: 155 issue: 2 year: 1980 ident: 10.1016/j.physletb.2022.137333_br0740 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(80)90618-1 – volume: 706 start-page: 85 issue: 1 year: 2002 ident: 10.1016/j.physletb.2022.137333_br0900 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(02)00867-9 – volume: 63 start-page: 78 issue: 2 year: 2018 ident: 10.1016/j.physletb.2022.137333_br0920 publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.12.005 – volume: 886 start-page: 52 issue: 1 year: 2019 ident: 10.1016/j.physletb.2022.137333_br0130 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab4adf – volume: 64 year: 2001 ident: 10.1016/j.physletb.2022.137333_br0200 publication-title: Phys. Rev. C – volume: 92 issue: 3 year: 2015 ident: 10.1016/j.physletb.2022.137333_br0280 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.92.034308 – volume: 102 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0780 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.102.054601 – volume: 802 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0310 publication-title: Phys. Lett. B – volume: 126 year: 2021 ident: 10.1016/j.physletb.2022.137333_br0390 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.172502 – volume: 86 year: 2012 ident: 10.1016/j.physletb.2022.137333_br0180 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.86.015803 – volume: 76 year: 2007 ident: 10.1016/j.physletb.2022.137333_br0860 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.76.034314 – volume: 727 start-page: 276 year: 2013 ident: 10.1016/j.physletb.2022.137333_br0330 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2013.10.006 – volume: 79 year: 2009 ident: 10.1016/j.physletb.2022.137333_br0710 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.79.034310 – volume: 442 start-page: 109 issue: 1–6 year: 2007 ident: 10.1016/j.physletb.2022.137333_br0030 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2007.02.003 – volume: 771 start-page: 51 issue: 1 year: 2013 ident: 10.1016/j.physletb.2022.137333_br0230 publication-title: Astrophys. J. doi: 10.1088/0004-637X/771/1/51 – volume: 119 year: 2017 ident: 10.1016/j.physletb.2022.137333_br0630 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.262501 – volume: 96 start-page: 1 year: 2017 ident: 10.1016/j.physletb.2022.137333_br0500 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2017.04.002 – volume: 579 start-page: 557 issue: 3 year: 1994 ident: 10.1016/j.physletb.2022.137333_br0810 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(94)90923-7 – volume: 1000 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0640 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2020.121804 – volume: 127 year: 2021 ident: 10.1016/j.physletb.2022.137333_br0420 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.232501 – volume: 119 issue: 12 year: 2017 ident: 10.1016/j.physletb.2022.137333_br0440 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.122502 – volume: 1004 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0460 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2020.122061 – volume: 107 year: 2011 ident: 10.1016/j.physletb.2022.137333_br0560 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.032502 – volume: 386 start-page: 79 issue: 1 year: 1982 ident: 10.1016/j.physletb.2022.137333_br0720 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(82)90403-1 – volume: 891 start-page: 148 issue: 2 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0040 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab72fd – volume: 93 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0770 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.93.044611 – volume: 2 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0470 publication-title: Phys. Rev. Res. – volume: 107 year: 2011 ident: 10.1016/j.physletb.2022.137333_br0220 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.062502 – volume: 67 year: 2003 ident: 10.1016/j.physletb.2022.137333_br0160 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.67.044316 – volume: 89 year: 2014 ident: 10.1016/j.physletb.2022.137333_br0760 publication-title: Phys. Rev. C – year: 2021 ident: 10.1016/j.physletb.2022.137333_br0660 article-title: Charge-changing cross sections for 42–51Ca and effect of charged-particle evaporation induced by neutron removal reaction publication-title: Phys. Rev. C – volume: 85 start-page: 1383 year: 2013 ident: 10.1016/j.physletb.2022.137333_br0530 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1383 – volume: 656 start-page: 331 issue: 3 year: 1999 ident: 10.1016/j.physletb.2022.137333_br0850 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(99)00310-3 – volume: 69 issue: 1 year: 2004 ident: 10.1016/j.physletb.2022.137333_br0620 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.69.014315 – volume: 41 issue: 9 year: 2014 ident: 10.1016/j.physletb.2022.137333_br0190 publication-title: J. Phys. G, Nucl. Part. Phys. doi: 10.1088/0954-3899/41/9/093001 – volume: 411 start-page: 325 issue: 25 year: 2005 ident: 10.1016/j.physletb.2022.137333_br0010 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.02.004 – volume: 14 start-page: 509 issue: 5 year: 1974 ident: 10.1016/j.physletb.2022.137333_br0510 publication-title: At. Data Nucl. Data Tables doi: 10.1016/S0092-640X(74)80003-3 – volume: 94 issue: 4 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0120 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.94.044322 – volume: 790 start-page: 251 year: 2019 ident: 10.1016/j.physletb.2022.137333_br0590 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.01.024 – volume: 82 start-page: 3216 year: 1999 ident: 10.1016/j.physletb.2022.137333_br0260 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3216 – volume: 120 year: 2021 ident: 10.1016/j.physletb.2022.137333_br0060 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2021.103879 – volume: 635 start-page: 231 issue: 1–2 year: 1997 ident: 10.1016/j.physletb.2022.137333_br0680 publication-title: Nucl. Phys. A – volume: 584 start-page: 467 issue: 3 year: 1995 ident: 10.1016/j.physletb.2022.137333_br0700 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(94)00770-N – volume: 100 year: 2019 ident: 10.1016/j.physletb.2022.137333_br0750 publication-title: Phys. Rev. C – volume: 102 issue: 12 year: 2009 ident: 10.1016/j.physletb.2022.137333_br0370 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.122502 – volume: 81 start-page: 1 issue: 1 year: 1966 ident: 10.1016/j.physletb.2022.137333_br0150 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(66)90639-0 – volume: 89 year: 2017 ident: 10.1016/j.physletb.2022.137333_br0340 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.015007 – volume: 532 start-page: 209 issue: 3–4 year: 2002 ident: 10.1016/j.physletb.2022.137333_br0610 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)01574-5 – volume: 125 year: 2020 ident: 10.1016/j.physletb.2022.137333_br0100 publication-title: Phys. Rev. Lett. – volume: 72 year: 2005 ident: 10.1016/j.physletb.2022.137333_br0360 publication-title: Phys. Rev. C – volume: 91 start-page: 203 year: 2016 ident: 10.1016/j.physletb.2022.137333_br0070 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2016.06.006 – volume: 819 year: 2021 ident: 10.1016/j.physletb.2022.137333_br0110 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136453 |
SSID | ssj0001506 |
Score | 2.4037874 |
Snippet | The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 137333 |
SubjectTerms | Charge-changing cross section Equation of state of nuclear matter Mirror nuclei Symmetry energy |
Title | Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei |
URI | https://doaj.org/article/8bad307b1a0245f8ad26350025a4acdd |
Volume | 833 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 0370-2693 databaseCode: KQ8 dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0001506 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0370-2693 databaseCode: DOA dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0001506 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0370-2693 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content issn: 0370-2693 databaseCode: IXB dateStart: 0 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection issn: 0370-2693 databaseCode: ACRLP dateStart: 20140120 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0370-2693 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001506 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0370-2693 databaseCode: AIKHN dateStart: 20140120 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001506 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0370-2693 databaseCode: AKRWK dateStart: 19930107 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001506 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEhIL4inKo_LA6raxkzgZAYEqJJio1C2yY1tqRVNIy8DCb-fOTkqZurDldZF1ufi-s---I-TGmlQ4IxMW5dqxOLeOqURJhmWSzg2tNBbrnZ9f0tE4fpokk41WX5gTFuiBg-IGmVYG7FBHCjcJXaYM0qegq1axKo3B2RfcWBtMNXMw8ub5_QM5ZDzNxUZt8KyPawagFA3RIef9SEghxB-3tMHe793M4yE5aPAhvQ3jOiI7tjomez5Ps1yekAU22GzbOlD7EYi66cJRXxmEBxUyFKuazj1zJtVf1LMhWeZrfFHMD4EufRJWRee_q4RLlJ9P63pRh9dMT8n48eH1fsSangms5AB9mNEmi1SWw48J51qmEE8A5HE8lolRvIxNlkYWbpYqSzJkIYz40BqAcRJCO8CDZ6RTLSp7TiiPldJlZDTEOLETIgdsabnILYCkRHLVJUmrsqJsCMVRAW9Fmzk2K1pVF6jqIqi6SwZrufdAqbFV4g6_yPpppMT2F8BQisZQim2GcvEfL7kk-ziukM13RTqr-tNeAypZ6R7Z7X9HPW-GPwel4Ho |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraining+equation+of+state+of+nuclear+matter+by+charge-changing+cross+section+measurements+of+mirror+nuclei&rft.jtitle=Physics+letters.+B&rft.au=Jun-Yao+Xu&rft.au=Zheng-Zheng+Li&rft.au=Bao-Hua+Sun&rft.au=Yi-Fei+Niu&rft.date=2022-10-01&rft.pub=Elsevier&rft.issn=0370-2693&rft.volume=833&rft.spage=137333&rft_id=info:doi/10.1016%2Fj.physletb.2022.137333&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |