The growth of meromorphic solutions for a class of higher-order linear differential equations

In this article, the growth of meromorphic solutions for a class of higher-order linear differential equation with meromorphic coefficients is investigated by applying the method of value distribution, and some estimates for the hyper-order of their solutions are obtained. †Dedicated to Professor We...

Full description

Saved in:
Bibliographic Details
Published inApplicable analysis Vol. 85; no. 9; pp. 1189 - 1199
Main Authors Liu, Ming-Sheng, Yuan, Chun-Ling
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.09.2006
Subjects
Online AccessGet full text
ISSN0003-6811
1563-504X
DOI10.1080/00036810600835227

Cover

Abstract In this article, the growth of meromorphic solutions for a class of higher-order linear differential equation with meromorphic coefficients is investigated by applying the method of value distribution, and some estimates for the hyper-order of their solutions are obtained. †Dedicated to Professor Wei Lin on the occasion of his 70th birthday.
AbstractList In this article, the growth of meromorphic solutions for a class of higher-order linear differential equation with meromorphic coefficients is investigated by applying the method of value distribution, and some estimates for the hyper-order of their solutions are obtained. †Dedicated to Professor Wei Lin on the occasion of his 70th birthday.
Author Yuan, Chun-Ling
Liu, Ming-Sheng
Author_xml – sequence: 1
  givenname: Ming-Sheng
  surname: Liu
  fullname: Liu, Ming-Sheng
  email: liumsh@scnu.edu.cn
  organization: Department of Mathematics , South China Normal University
– sequence: 2
  givenname: Chun-Ling
  surname: Yuan
  fullname: Yuan, Chun-Ling
  organization: Department of Mathematics , South China Normal University
BookMark eNqF0EtLAzEQB_AgFWyrH8BbvsBqHs2j4EWKLyh4qeBFlmw26UZ2kzrZUvvt3aq3Ip7mMPObYf4TNIopOoQuKbmiRJNrQgiXmhJJiOaCMXWCxlRIXggyex2h8aFfDAP0DE1yfieEMi3kGL2tGofXkHZ9g5PHnYPUJdg0weKc2m0fUszYJ8AG29bkfBhqwrpxUCSoHeA2RGcA18F7By72wbTYfWzNtzxHp9602V381il6ub9bLR6L5fPD0-J2WVhGeV9IbwUTFaVVNXPeUWmFUVZzXWlbMaVqPxeaMe5rJuas1kY6P5dWzbjiRGnHp4j-7LWQcgbnyw2EzsC-pKQ85FMe5TMY9WNCHP7rzC5BW5e92bcJPJhoQz5WZf_ZD_LmX8n_PvwFjViAkw
Cites_doi 10.1017/S0308210500014451
10.1112/jlms/s2-37.121.88
10.1007/BF02566887
10.14492/hokmj/1381758109
10.1515/9783110863147
10.2996/kmj/1138037272
10.2996/kmj/1138036197
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2006
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2006
DBID AAYXX
CITATION
DOI 10.1080/00036810600835227
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1563-504X
EndPage 1199
ExternalDocumentID 10_1080_00036810600835227
183459
GroupedDBID --Z
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
07G
1TA
6TJ
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGCQS
AGLEN
AIYEW
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
TAQ
TDBHL
TFMCV
UB9
UU8
V3K
V4Q
XOL
ZY4
ID FETCH-LOGICAL-c213t-6fc525b11bb4efe16c5a7c838b8cb277df958223fd2592d8a6ef96c74373078e3
ISSN 0003-6811
IngestDate Tue Jul 01 02:43:11 EDT 2025
Mon May 13 12:10:01 EDT 2019
Wed Dec 25 09:01:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c213t-6fc525b11bb4efe16c5a7c838b8cb277df958223fd2592d8a6ef96c74373078e3
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_00036810600835227
crossref_primary_10_1080_00036810600835227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 9/1/2006
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 9/1/2006
  day: 01
PublicationDecade 2000
PublicationTitle Applicable analysis
PublicationYear 2006
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Yi Caifeng (CIT0011) 2001; 14
Ki-Ho Kwon (CIT0009) 1996; 19
Frei M (CIT0004) 1962; 36
Langley JK (CIT0008) 1986; 9
Chen Zongxuan (CIT0013) 1999; 42
Amemiya I (CIT0006) 1981; 10
Chen Zongxuan (CIT0010) 1996; 16
Chen Zongxuan (CIT0012) 2001; 31
Gundersen G (CIT0007) 1986; 102
Hayman W (CIT0001) 1964
CIT0003
CIT0002
CIT0005
References_xml – volume: 102
  start-page: 9
  year: 1986
  ident: CIT0007
  publication-title: Proceedings of the Royal Society of Edinburgh
  doi: 10.1017/S0308210500014451
– ident: CIT0003
  doi: 10.1112/jlms/s2-37.121.88
– volume: 14
  start-page: 101
  year: 2001
  ident: CIT0011
  publication-title: Mathematica Applicata
– volume: 36
  start-page: 1
  year: 1962
  ident: CIT0004
  publication-title: Commentarii Mathametical Helvetici
  doi: 10.1007/BF02566887
– volume: 10
  start-page: 1
  year: 1981
  ident: CIT0006
  publication-title: Hokkaido Mathematical Journal
  doi: 10.14492/hokmj/1381758109
– volume: 19
  start-page: 379
  year: 1996
  ident: CIT0009
  publication-title: Kodai Mathematical Journal
– ident: CIT0002
  doi: 10.1515/9783110863147
– volume: 31
  start-page: 775
  year: 2001
  ident: CIT0012
  publication-title: Science in China (Series A)
– volume: 9
  start-page: 430
  year: 1986
  ident: CIT0008
  publication-title: Kodai Mathematical Journal
  doi: 10.2996/kmj/1138037272
– volume: 42
  start-page: 551
  year: 1999
  ident: CIT0013
  publication-title: Acta Mathematica Sinica
– volume-title: Meromorphic Functions
  year: 1964
  ident: CIT0001
– ident: CIT0005
  doi: 10.2996/kmj/1138036197
– volume: 16
  start-page: 276
  year: 1996
  ident: CIT0010
  publication-title: Acta Mathematica Scientia
SSID ssj0012856
Score 1.663447
Snippet In this article, the growth of meromorphic solutions for a class of higher-order linear differential equation with meromorphic coefficients is investigated by...
SourceID crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 1189
SubjectTerms AMS Subject Classifications 2000: 30D35
Hyper-order
Linear differential equation
Meromorphic function
Title The growth of meromorphic solutions for a class of higher-order linear differential equations
URI https://www.tandfonline.com/doi/abs/10.1080/00036810600835227
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovdBDH9Cq21LkQ09duVrbiR0fq6oIVcCFReJSrRzHAS6Bgleq-PWMHzGGbauWSxRFSRx5vow_zxOhj1byppWyJ6ziglSadaTR1qdx0Y5bwyoRmvYdHIq94-r7SX1SZFz77BLXfjY3v80reYxU4RrI1WfJ_odk80vhApyDfOEIEobjP8v4FPbR7iy6yX1oHczbuZnmcWOU5NR4khyIYYjrIKHi5tRTTH2Vm6Q4bz23P5eFEW-sTxvd3D7LSqcqJjmS53wZw--HU3J0ZtNCGFp96eTQXw5kf1whCwODKg0M85VeH4VZbNSqnIgmKU2bFKngpJ7F6MtR08bmPAlRqlCbsMtRxRJMaWyatKLeczwk92XUROKP8m4tyxGGoKmqWj1BT5kETuVTe2aH2bvEmtDVN3_36O32NdcfvvseX7lXzbbgIfOX6HnaQOAvEQ2v0JodNtGLtJnASVVfb6JnB7kg7_UW-gFQwREq-KLHBVRwhgqGQbHGASr-phIqOEIFl1DBGSqv0fHut_nXPZI6axDDKHdE9KZmdUtp21a2t1SYWkvTwG_bmJZJ2fWqBubI-w52x6xrtLC9Ekb6OljAKS1_g9aHi8G-RdhWzHBLtW6A_CvDlAYN3yqrZ1KD_OkEfRrnb3EZC6gsaK5L-2CyJ2hWzvDCBez1EXarty_cLzdB9V8e4X8c6t0jn3uPNu5-km207q6W9gPwUtfuBJDdAkWPic4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBQgFRnh6YkFJqO4mTESGqAm2nVuqCIsexKQJaaFIJ8eux8xItj6H7ObHjs_3d-ct3AOeSUS9kTFnEpq5lcxJZHpfmNy4cUSmI7aZF-7o9tz2w74bOME-4xTmt0sTQKhOKSPdqs7hNMrqgxF2mKiqeDmZyAMFWYc3RUNxQ-mizV94iEC-t3mrMLW2Pi1vN3x4xdy7NqZZ-O29aVQiKnmY0k-fGLAkb4nNBxHH5oWzDVg5F0VXmOzuwIsc1qOawFOWLPq7BZreUdo134UE7FnrUwXsyQhOFXqXh8-nJehKodGOkh4U4EgaZG6NRSiaxUplPZHrJp6iozKJ3mBck3zPF8XgPBq2b_nXbyms0WIJgmliuEg5xQozD0JZKYlc4nAlPO4AnQsJYpHxHYxCqIh1nkcjjrlS-K5hRVNLoRNJ9qIwnY3kASNpEUIk59zSM9AXxud4rQl_yJuNO08Z1uChmKHjLpDgCXCqcLnzGOjS_z2GQpPkPlRUr-WkeJB9JHZx_mtA_X3W4ZLszWG_3u52gc9u7P4KNLLdjyGvHUEmmM3mi0U4SnqYu_QUyBvOG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkRAcKKsoqw-ckAKxncTJEQEVa8UBJC4ochybIqCUJpUQX4_tLGrLcuA-TuLM2H5jP78B2JOMhgljyiEeDRyPk9QJuTTXuHBKpSBeYIv2XXeCszvv4t6_L7k5WUmrNDm0KoQi7FxtBnc_VRUj7tCKqIQ6lynxA5uGmcClkZHOp26nPkQgoS3easwdbY-rQ82fHjG2LI2Jlo4sN-1mUVM1syqFhmXyfDDMkwPxOaHh-O-eLMJCCUTRURE5SzAle8vQLEEpKod8tgzz17Wwa7YCDzqs0KNO3fMuelPoVRo2n3bVk0B1ECPdK8SRMLjcGHUtlcSxIp_IfCQfoKoui55fXpB8L_TGs1W4a5_eHp85ZYUGRxBMcydQwid-gnGSeFJJHAifMxFq94ciIYylKvI1AqEq1VkWSUMeSBUFghk9JY1NJF2DRu-tJ9cBSY8IKjHnoQaRkSAR1zNFEknuMu67Hm7BfuWguF8IccS41jed-I0tcEddGOd290MVpUq-m8f5R94C_48m9NdXbfyz3S7M3py046vzzuUmzBUbO4a5tgWNfDCU2xrq5MmODegvUiryMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+growth+of+meromorphic+solutions+for+a+class+of+higher-order+linear+differential+equations&rft.jtitle=Applicable+analysis&rft.au=Liu%2C+Ming-Sheng&rft.au=Yuan%2C+Chun-Ling&rft.date=2006-09-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=85&rft.issue=9&rft.spage=1189&rft.epage=1199&rft_id=info:doi/10.1080%2F00036810600835227&rft.externalDocID=183459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon