Developing tunable machine learning workflow for traffic analysis in SDN

Traffic monitoring is a critical issue in networking in general, especially in SDN due to its layered architecture in which the control plane represents a single point of failure. Therefore, this paper is tailored to mitigate the control and mitigate the effect od the DDoS attacks in SDN networks. I...

Full description

Saved in:
Bibliographic Details
Published inSerbian journal of electrical engineering Vol. 22; no. 2; pp. 183 - 199
Main Authors Samaan, Sama, Jeiad, Hassan
Format Journal Article
LanguageEnglish
Published Faculty of Technical Sciences in Cacak 01.01.2025
Subjects
Online AccessGet full text
ISSN1451-4869
2217-7183
2217-7183
DOI10.2298/SJEE2502183S

Cover

Abstract Traffic monitoring is a critical issue in networking in general, especially in SDN due to its layered architecture in which the control plane represents a single point of failure. Therefore, this paper is tailored to mitigate the control and mitigate the effect od the DDoS attacks in SDN networks. It presents a complete machine learning (ML) workflow that begins with data ingestion and end with a trained model that is capable of analyzing packets in a production network. Three ML pipelines are part of this workflow, where the training process is carried out on a distributed framework, i.e., Spark, to accomplish a near real time analysis for each flow of packets. To evaluate the performance of the suggested workflow, the LRHR DDoS 2024 dataset is employed. The decision tree model outperforms the remaining models with 99% of accuracy and 4 min 33 s of training time.
AbstractList Traffic monitoring is a critical issue in networking in general, especially in SDN due to its layered architecture in which the control plane represents a single point of failure. Therefore, this paper is tailored to mitigate the control and mitigate the effect od the DDoS attacks in SDN networks. It presents a complete machine learning (ML) workflow that begins with data ingestion and end with a trained model that is capable of analyzing packets in a production network. Three ML pipelines are part of this workflow, where the training process is carried out on a distributed framework, i.e., Spark, to accomplish a near real time analysis for each flow of packets. To evaluate the performance of the suggested workflow, the LRHR DDoS 2024 dataset is employed. The decision tree model outperforms the remaining models with 99% of accuracy and 4 min 33 s of training time.
Author Jeiad, Hassan
Samaan, Sama
Author_xml – sequence: 1
  givenname: Sama
  orcidid: 0000-0002-6805-1483
  surname: Samaan
  fullname: Samaan, Sama
  organization: Computer Engineering Department, University of Technology, Iraq
– sequence: 2
  givenname: Hassan
  orcidid: 0000-0001-5560-3157
  surname: Jeiad
  fullname: Jeiad, Hassan
  organization: Computer Engineering Department, University of Technology, Iraq
BookMark eNplkc1OAjEUhRujiYjsfIA-gKNtp3-zNICCIbpA15M7My0Olpa0IOHtHYQYE-_m5p578i3OuULnPniD0A0ld4wV-n7-PB4zQRjV-fwM9RijKlPdcY56lAuacS2LSzRIaUm6kYopIXtoMjJfxoV16xd4s_VQOYNXUH-03mBnIPrDYxfip3Vhh22IeBPB2rbG4MHtU5tw6_F89HKNLiy4ZAan3Ufvj-O34SSbvT5Nhw-zrGY0T5mxitVMVpwrWjDLaimh0ZUECQe1AEKaAjRXgldQ0JyqWjHQQjeaS6lU3kfTI7cJsCzXsV1B3JcB2vJHCHFRQty0tTOltcxKm9NcKcNFJQojJGOakiLXmkjesbIja-vXsN-Bc79ASspDqmVaGnNKNXX-26O_jiGlaOw_-98S8m9gCnif
Cites_doi 10.3390/s21196585
10.1109/BigComp.2018.00044
10.1007/s13042-024-02465-0
10.11591/ijai.v12.i2.pp861-873
10.11591/eei.v12i4.4711
10.1038/s41596-019-0251-6
10.1016/j.procs.2020.04.167
10.1109/COMST.2018.2866942
10.1109/ICC.2018.8422327
10.3390/info13020058
10.33640/2405-609X.3197
10.1049/gtd2.12997
10.2298/SJEE2402235N
10.33103/uot.ijccce.21.1.1
10.1504/IJDMB.2020.105438
10.1109/ITCE48509.2020.9047795
10.11591/eei.v11i4.3835
10.3390/s22218287
10.1109/iCMLDE49015.2019.00012
10.26599/BDMA.2018.9020005
10.3390/bdcc6020038
10.11591/ijai.v11.i2.pp448-461
10.1002/dac.3497
10.2298/SJEE2203273M
10.1016/j.cosrev.2020.100279
10.3390/s22155551
10.1155/2019/8012568
10.1007/s11277-021-08127-6
10.1109/MPOT.2020.3016280
10.32604/cmes.2022.020724
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.2298/SJEE2502183S
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2217-7183
EndPage 199
ExternalDocumentID oai_doaj_org_article_ff2f6f31377e45b59e56228109388064
10.2298/sjee2502183s
10_2298_SJEE2502183S
GroupedDBID 53S
5VS
AAYXX
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
I-F
IPNFZ
KQ8
MK~
OK1
P2P
RIG
TUS
ADTOC
UNPAY
ID FETCH-LOGICAL-c213s-ef72c26b447192f2c66ad8b6a6a26b49a00d9a84754ba91317c72a858d8466773
IEDL.DBID DOA
ISSN 1451-4869
2217-7183
IngestDate Fri Oct 03 12:53:30 EDT 2025
Mon Sep 15 10:19:29 EDT 2025
Wed Oct 01 05:40:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c213s-ef72c26b447192f2c66ad8b6a6a26b49a00d9a84754ba91317c72a858d8466773
ORCID 0000-0002-6805-1483
0000-0001-5560-3157
OpenAccessLink https://doaj.org/article/ff2f6f31377e45b59e56228109388064
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ff2f6f31377e45b59e56228109388064
unpaywall_primary_10_2298_sjee2502183s
crossref_primary_10_2298_SJEE2502183S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Serbian journal of electrical engineering
PublicationYear 2025
Publisher Faculty of Technical Sciences in Cacak
Publisher_xml – name: Faculty of Technical Sciences in Cacak
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.3390/s21196585
– ident: ref6
  doi: 10.1109/BigComp.2018.00044
– ident: ref27
  doi: 10.1007/s13042-024-02465-0
– ident: ref14
  doi: 10.11591/ijai.v12.i2.pp861-873
– ident: ref31
  doi: 10.11591/eei.v12i4.4711
– ident: ref25
  doi: 10.1038/s41596-019-0251-6
– ident: ref18
  doi: 10.1016/j.procs.2020.04.167
– ident: ref21
  doi: 10.1109/COMST.2018.2866942
– ident: ref29
  doi: 10.1109/ICC.2018.8422327
– ident: ref13
  doi: 10.3390/info13020058
– ident: ref23
  doi: 10.33640/2405-609X.3197
– ident: ref15
  doi: 10.1049/gtd2.12997
– ident: ref2
  doi: 10.2298/SJEE2402235N
– ident: ref24
  doi: 10.33103/uot.ijccce.21.1.1
– ident: ref16
  doi: 10.1504/IJDMB.2020.105438
– ident: ref30
– ident: ref19
  doi: 10.1109/ITCE48509.2020.9047795
– ident: ref26
  doi: 10.11591/eei.v11i4.3835
– ident: ref4
  doi: 10.3390/s22218287
– ident: ref11
  doi: 10.1109/iCMLDE49015.2019.00012
– ident: ref28
  doi: 10.26599/BDMA.2018.9020005
– ident: ref17
  doi: 10.3390/bdcc6020038
– ident: ref22
  doi: 10.11591/ijai.v11.i2.pp448-461
– ident: ref5
  doi: 10.1002/dac.3497
– ident: ref12
  doi: 10.2298/SJEE2203273M
– ident: ref9
  doi: 10.1016/j.cosrev.2020.100279
– ident: ref1
  doi: 10.3390/s22155551
– ident: ref7
  doi: 10.1155/2019/8012568
– ident: ref8
  doi: 10.1007/s11277-021-08127-6
– ident: ref10
  doi: 10.1109/MPOT.2020.3016280
– ident: ref20
  doi: 10.32604/cmes.2022.020724
SSID ssj0000672756
Score 2.281359
Snippet Traffic monitoring is a critical issue in networking in general, especially in SDN due to its layered architecture in which the control plane represents a...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 183
SubjectTerms machine learning pipeline
machine learning workflow
sdn
spark
traffic analysis
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB214dByoJ-I0A_5UHrbkHhtr32kJShCalQpREpPK9trIyBsULIRgl_fmc0mTcWlvVqzsuyx_Z69M28AvoRoEeW8TrrOiURo4xOX6TTpOdHLYlFIXyfS_hiqwVicT-Tkz9MFRVXiXqZqJFe2U7rOfHFM_ZI6Lf0xFRJvPFoZBG7C9tFz2FESSXgLdsbDnye_6lyixobKyiHhTvD0TVch75wbfby4DqH5fPEXGNWa_bvwYlne2Yd7O51uAc3ZK5is03VW8SU3nWXlOv7xqXrj_47hNew15JOdrFbLG3gWyrewuyVJ-A4Gp5ssKlYt68QqdlsHXAbWVJi4ZBTMFaeze4aMl1VzSzIUzDbyJuyqZKPT4XsYn_Uvvg-SptpC4nkvXSQhZtxz5QTCleGRe6VsoZ2yylKrsd1uYSyCmRTOmh7yDp9xq6UukMKoLEv3oVXOynBAeeDCae6yqKIWXDgXkQdJ7Y3uCsdT24aj9bTndytRjRwvI-SefHTe769npg3fyCcbG5LCrhtm88u82Vl5jBz7SUk5MQjppAlI6bgmmSw8m5Row9eNR5_0tr0YDv_V8AO85FQFuH6I-Qitar4Mn5CaVO5zswx_A-iA3gw
  priority: 102
  providerName: Unpaywall
Title Developing tunable machine learning workflow for traffic analysis in SDN
URI http://www.doiserbia.nb.rs/ft.aspx?id=1451-48692502183S
https://doaj.org/article/ff2f6f31377e45b59e56228109388064
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: ABDBF
  dateStart: 20101101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yD7qD-BPnL3JQb2VdmqTJcXMbY-AQ5mCeSpImosxubB3D_94kraPiwYvHhsIrX0K-75X3vgfArTbCspxiQSglDjDjKpAxi4KWxK3YpClRvpH2cUQHEzyckmll1JerCSvsgQvgmsYgQ03kjPE0JpJwbRkbMeeCZI8e9U6gIeOVZKq8g52vuW8tIjZJYpQXVe8IcdYcD3s9S_1OHYx_8JG37a-DvXW2EJ8bMZtVuKZ_CA5KkQjbxccdgR2dHYN6xTrwBAy6224nmK99AxT88IWRGpaTIF6hK7oys_kGWmUK86VwdhFQlDYk8C2D4-7oFEz6veeHQVBORQgUakWrQJsYKUQltrTCkUGKUpEySQUVbpWLMEy5sKRDsBS8ZfWBipFghKVWatA4js5ALZtn-tz1a2PJkIwtwAwjLKWxeoUwxVmIJYpEA9x9Y5MsCvOLxCYNDsOkimEDdBxw23ecZbVfsBuZlBuZ_LWRDXC_hf1XtNW71mW01cV_RLsE-8hN8vU_U65ALV-u9bWVF7m8AbvtTrfTv_Enyj5NRk_tly82v8qt
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB214dByoJ-I0A_5UHrbkHhtr32kJShCalQpREpPK9trIyBsULIRgl_fmc0mTcWlvVqzsuyx_Z69M28AvoRoEeW8TrrOiURo4xOX6TTpOdHLYlFIXyfS_hiqwVicT-Tkz9MFRVXiXqZqJFe2U7rOfHFM_ZI6Lf0xFRJvPFoZBG7C9tFz2FESSXgLdsbDnye_6lyixobKyiHhTvD0TVch75wbfby4DqH5fPEXGNWa_bvwYlne2Yd7O51uAc3ZK5is03VW8SU3nWXlOv7xqXrj_47hNew15JOdrFbLG3gWyrewuyVJ-A4Gp5ssKlYt68QqdlsHXAbWVJi4ZBTMFaeze4aMl1VzSzIUzDbyJuyqZKPT4XsYn_Uvvg-SptpC4nkvXSQhZtxz5QTCleGRe6VsoZ2yylKrsd1uYSyCmRTOmh7yDp9xq6UukMKoLEv3oVXOynBAeeDCae6yqKIWXDgXkQdJ7Y3uCsdT24aj9bTndytRjRwvI-SefHTe769npg3fyCcbG5LCrhtm88u82Vl5jBz7SUk5MQjppAlI6bgmmSw8m5Row9eNR5_0tr0YDv_V8AO85FQFuH6I-Qitar4Mn5CaVO5zswx_A-iA3gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+tunable+machine+learning+workflow+for+traffic+analysis+in+SDN&rft.jtitle=Serbian+journal+of+electrical+engineering&rft.au=Samaan%2C+Sama&rft.au=Jeiad%2C+Hassan&rft.date=2025-01-01&rft.issn=1451-4869&rft.eissn=2217-7183&rft.volume=22&rft.issue=2&rft.spage=183&rft.epage=199&rft_id=info:doi/10.2298%2FSJEE2502183S&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_SJEE2502183S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4869&client=summon