Redefining dental image processing: De-convolutional component with residual prolonged bypass for enhanced teeth segmentation

Dental diseases have risen in the past few years due to improper hygiene. Early detection and diagnosis can control this rapid growth in dental diseases. Therefore, different traditional techniques are employed for the detection of dental problems. However, these classical techniques such as X-Ray a...

Full description

Saved in:
Bibliographic Details
Published inSerbian journal of electrical engineering Vol. 22; no. 2; pp. 281 - 307
Main Authors Prasun, Kumar, Verma, Anil, Mishra, Rajiv
Format Journal Article
LanguageEnglish
Published Faculty of Technical Sciences in Cacak 01.01.2025
Subjects
Online AccessGet full text
ISSN1451-4869
2217-7183
2217-7183
DOI10.2298/SJEE2502279P

Cover

Abstract Dental diseases have risen in the past few years due to improper hygiene. Early detection and diagnosis can control this rapid growth in dental diseases. Therefore, different traditional techniques are employed for the detection of dental problems. However, these classical techniques such as X-Ray and CT scans are considered to be time-consuming, ineffective, and prone to errors due to human intervention. Hence, AI techniques are used to obtaining precise outcomes for dental-related issues. The conventional ML (Machine Learning) techniques are inefficient for obtaining enhanced outcomes as the efficiency of ML techniques heavily depends on image processing approaches. They are performed and also the quality of the features that have been extracted. Further, ML techniques lack in producing better outcomes while dealing with huge datasets. Therefore, the proposed model employs DL (Deep Learning) techniques due to its capability to learn the features strongly from the data by using a general-purpose learning procedure. So, DL techniques can work efficiently on huge datasets. The proposed DC (De-convolution Component) with RES (Residual Prolonged Bypass) is employed in the present research work as it is responsible to increase the spatial resolution of the feature maps and helps in recovering lost spatial information during the down sampling process. Likewise, the RES model aids in proficiently proliferating both low-level and high-level features to the deep layers, which help in generating better-segmented images. RES model includes prolonged bypass paths that carry feature information across multiple layers. This ensures that features extracted at earlier layers (low-level features) are available at much deeper layers. Implementation of the present research work contributes to enhancing the overall performance and effectiveness in detecting and diagnosing various dental issues and possesses the capability to work on both small and massive datasets effectively. Also, the proposed work contributes to deliver better accuracy, IoU (Intersection Over Union) and Dice coefficient, compared to Multi-Headed CNN and Context Encoder-Net, thereby assisting dental professionals in the detection and diagnosis of various dental issues due to the effectiveness of the proposed model.
AbstractList Dental diseases have risen in the past few years due to improper hygiene. Early detection and diagnosis can control this rapid growth in dental diseases. Therefore, different traditional techniques are employed for the detection of dental problems. However, these classical techniques such as X-Ray and CT scans are considered to be time-consuming, ineffective, and prone to errors due to human intervention. Hence, AI techniques are used to obtaining precise outcomes for dental-related issues. The conventional ML (Machine Learning) techniques are inefficient for obtaining enhanced outcomes as the efficiency of ML techniques heavily depends on image processing approaches. They are performed and also the quality of the features that have been extracted. Further, ML techniques lack in producing better outcomes while dealing with huge datasets. Therefore, the proposed model employs DL (Deep Learning) techniques due to its capability to learn the features strongly from the data by using a general-purpose learning procedure. So, DL techniques can work efficiently on huge datasets. The proposed DC (De-convolution Component) with RES (Residual Prolonged Bypass) is employed in the present research work as it is responsible to increase the spatial resolution of the feature maps and helps in recovering lost spatial information during the down sampling process. Likewise, the RES model aids in proficiently proliferating both low-level and high-level features to the deep layers, which help in generating better-segmented images. RES model includes prolonged bypass paths that carry feature information across multiple layers. This ensures that features extracted at earlier layers (low-level features) are available at much deeper layers. Implementation of the present research work contributes to enhancing the overall performance and effectiveness in detecting and diagnosing various dental issues and possesses the capability to work on both small and massive datasets effectively. Also, the proposed work contributes to deliver better accuracy, IoU (Intersection Over Union) and Dice coefficient, compared to Multi-Headed CNN and Context Encoder-Net, thereby assisting dental professionals in the detection and diagnosis of various dental issues due to the effectiveness of the proposed model.
Author Verma, Anil
Mishra, Rajiv
Prasun, Kumar
Author_xml – sequence: 1
  givenname: Kumar
  orcidid: 0009-0008-1363-4834
  surname: Prasun
  fullname: Prasun, Kumar
  organization: Deparment of Computer Science and Engineering, Indian Institute of Technology, Patna, India
– sequence: 2
  givenname: Anil
  orcidid: 0009-0004-0457-8966
  surname: Verma
  fullname: Verma, Anil
  organization: Deparment of Computer Science and Engineering, Indian Institute of Technology, Patna, India
– sequence: 3
  givenname: Rajiv
  orcidid: 0000-0002-4910-5749
  surname: Mishra
  fullname: Mishra, Rajiv
  organization: Deparment of Computer Science and Engineering, Indian Institute of Technology, Patna, India
BookMark eNplkdFq2zAYhcVoYVnbuz2AHmDepF-2Je9uZNnaUmhpu2sjS78cB0cykrOSi757lWaUwnQjOHz6DuJ8Iic-eCTkM2dfARr17eF6tYKKAcjm7gNZAHBZSK7ECVnwsuJFqermI7lIacPyqSXIql6Q53u06AY_-J5a9LMe6bDVPdIpBoMp5fw7_YmFCf5vGHfzEHxGTNhOud3P9GmY1zRiGuwu5_nRGHyPlnb7SadEXYgU_Vp7k7MZMcMJ--2h6KA6J6dOjwkv_t1n5M-v1ePysri5_X21_HFTGOBiKqRQ1jInuFNKo-xUV7kGVM0BNEhmAFTDVNnVlkPNXFd1YEDUiABYl9iIM3J19NqgN-0U8xfjvg16aF-DEPtWx3kwI7ZOKltqAGDKlFIYZZxRypkGUZSqKbOrOLp2ftL7Jz2Ob0LO2sMUbdrk6uMUU-a_HHkTQ0oR3X_4--XECygcjs4
Cites_doi 10.1016/j.oooo.2019.11.007
10.1109/ACCESS.2019.2924262
10.1016/j.compbiomed.2022.106296
10.1108/IJICC-08-2023-0230
10.1007/978-3-031-52826-2_18
10.1016/j.knosys.2020.106338
10.1007/s11282-019-00409-x
10.1038/s41598-021-92121-2
10.1038/s41598-019-53758-2
10.1109/JBHI.2021.3117575
10.1259/dmfr.20180051
10.1155/2022/3500552
10.1007/s13755-019-0096-y
10.1109/SIBGRAPI.2018.00058
10.1007/s11282-021-00577-9
10.1016/j.jdent.2023.104607
10.1007/s12194-020-00603-1
10.1007/s11282-019-00418-w
10.3390/ijerph192215414
10.1109/ICCES54031.2021.9686185
10.1109/ICCP51029.2020.9266244
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.2298/SJEE2502279P
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2217-7183
EndPage 307
ExternalDocumentID oai_doaj_org_article_f78d4a22208c473c8cfc88fc9ee34894
10.2298/sjee2502279p
10_2298_SJEE2502279P
GroupedDBID 53S
5VS
AAYXX
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
I-F
IPNFZ
KQ8
MK~
OK1
P2P
RIG
TUS
ADTOC
UNPAY
ID FETCH-LOGICAL-c213p-738dd0f31f88ae7b8b5f9286122a270c2289084b6d1260fb5b2c236ee22e64e93
IEDL.DBID UNPAY
ISSN 1451-4869
2217-7183
IngestDate Fri Oct 03 12:28:28 EDT 2025
Mon Sep 15 08:21:11 EDT 2025
Wed Oct 01 05:40:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c213p-738dd0f31f88ae7b8b5f9286122a270c2289084b6d1260fb5b2c236ee22e64e93
ORCID 0009-0008-1363-4834
0000-0002-4910-5749
0009-0004-0457-8966
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.doiserbia.nb.rs/ft.aspx?id=1451-48692502281P
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_f78d4a22208c473c8cfc88fc9ee34894
unpaywall_primary_10_2298_sjee2502279p
crossref_primary_10_2298_SJEE2502279P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Serbian journal of electrical engineering
PublicationYear 2025
Publisher Faculty of Technical Sciences in Cacak
Publisher_xml – name: Faculty of Technical Sciences in Cacak
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1016/j.oooo.2019.11.007
– ident: ref11
  doi: 10.1109/ACCESS.2019.2924262
– ident: ref6
– ident: ref7
  doi: 10.1016/j.compbiomed.2022.106296
– ident: ref1
  doi: 10.1108/IJICC-08-2023-0230
– ident: ref2
  doi: 10.1007/978-3-031-52826-2_18
– ident: ref5
  doi: 10.1016/j.knosys.2020.106338
– ident: ref17
  doi: 10.1007/s11282-019-00409-x
– ident: ref13
  doi: 10.1038/s41598-021-92121-2
– ident: ref16
  doi: 10.1038/s41598-019-53758-2
– ident: ref3
  doi: 10.1109/JBHI.2021.3117575
– ident: ref8
  doi: 10.1259/dmfr.20180051
– ident: ref9
  doi: 10.1155/2022/3500552
– ident: ref18
  doi: 10.1007/s13755-019-0096-y
– ident: ref15
  doi: 10.1109/SIBGRAPI.2018.00058
– ident: ref19
  doi: 10.1007/s11282-021-00577-9
– ident: ref4
  doi: 10.1016/j.jdent.2023.104607
– ident: ref20
  doi: 10.1007/s12194-020-00603-1
– ident: ref22
  doi: 10.1007/s11282-019-00418-w
– ident: ref21
  doi: 10.3390/ijerph192215414
– ident: ref12
  doi: 10.1109/ICCES54031.2021.9686185
– ident: ref10
– ident: ref14
  doi: 10.1109/ICCP51029.2020.9266244
SSID ssj0000672756
Score 2.2813256
Snippet Dental diseases have risen in the past few years due to improper hygiene. Early detection and diagnosis can control this rapid growth in dental diseases....
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 281
SubjectTerms attention mechanism
convolutional neural network
dental
residual prolonged bypass
tufts dataset
unet
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRfcgPnF9kYN6K27TtJ1487GyCIr4AG-lSSc-2O0Wd0U8-N-dpFUqHrx4DVMmzITMN-nMN4zt5o60PNcyoNAkAxmnItCqkEGibSoAQsLQLlG8uEwGd_L8Pr5vjfpyNWE1PXBtuAObQiFzimI9MDKNDBhrAKxRiJEE5ZlAe6BayVRzBztec99aFFOSBImqq96FUHBwc97vU-h35HlXP-KRp-3vsLnXssrf3_LhsBVrzhbZQgMS-VG9uSU2g-Uy67SoA1fYxzUWaP10B174lkb-NKK7gVd15T-tH_JTDFxVeXO6SMQVkI9LEufu_ZVTqu17sdxHw3H5gAXX7xXBaU5QlmP56MsD-BSRhCf4MGoalcpVdnfWvz0ZBM0ohcCIMKqCNIKi6NkotAA5php0bJUAgjciF2nPCPe_EaROipASHKtjLYyIEkQhMJGoojU2W9L-1hk3QuUE-6QbOiQ13ZegDNpImhQccU7YZXtfBs2qmjEjo0zDGT5rG77Ljp21v2Ucz7VfIO9njfezv7zfZfvfvvqlbfJM-6-1VRv_oW2TzQs3_te_wGyx2enLK24TJpnqHX_8PgGrkN4x
  priority: 102
  providerName: Directory of Open Access Journals
Title Redefining dental image processing: De-convolutional component with residual prolonged bypass for enhanced teeth segmentation
URI http://www.doiserbia.nb.rs/ft.aspx?id=1451-48692502281P
https://doaj.org/article/f78d4a22208c473c8cfc88fc9ee34894
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: ABDBF
  dateStart: 20101101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegfYA98I3WMSo_AG_pGsdJzry1rNU0iakCKpWnKHbssq1Lo34IDYn_fXdONor2Aq_WWU50Z9_v7LvfMfYuJ9LyXMsAXZMMZJyKQKtCBol2qQAIEUNToPj5LDmZytNZPPtzdUFZlbiXqRvJed4rdW-1PqJ1iZ2WXkxljBEPJAodtxAQTh6ydhIjCG-x9vRsMvjua4kaGWorh4A7wNM3qlPehVBwtL6w1k9PVfWXM_Kc_Xvs0bas8uuf-WKx42jGT9nstlynzi-57G03umd-3Wdv_N9_eMaeNOCTD2prec4e2PIF29uhJHzJfn-xhXW-awQvfKkkP7_CM4dXdUUBjn_kxzagbPXGalGEEtOXJYpzutflGML7Gi-atFiWc1twfV0hTOcIkbktf_i0A76xFoXXdn7VFECVr9h0PPr26SRoWjQERoRRFaQRFEXfRaEDyG2qQcdOCUDYJHKR9o2gd0yQOilCDJycjrUwIkpQA8Im0qroNWuV-H37jBuhcoSTkpoZSY3nMChjXSRNCkTIE3bY-1tdZVXNxJFhBEM6zb6ejkaNTicdNiRF3skQf7YfWK7mWbMdM5dCIXPERn0wMo0MGGcAnFHWRhKU7LAPd2Zwb7VdCzr4V8E37LGg1sH-9uaQtTarrX2LeGaju6w9GB4Px11_H9BtLPkGbhL1KA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AeyltsecgH4JbtxnbiMbcCW1WVqFbASsspsh17W9hmo30IFYn_zkySlkW9wNUay4lm7PnGnvmGsVeWSMutUwm6JpWoTIvEmVIluYtaAKSIoSlQ_HiaH0_UyTSb_rm6oKxK3MvUjeTcDio3WK4OaF1ip6UXU5VhxAO5QcctBKTj22wnzxCE99jO5HR8-LWpJepkqK0cAu4ET1_ZprwLYeBg9S2EZro29V_OqOHs32V3NlVtL3_Y-XzL0RzdY9Orcp02v-T7YLN2A__zJnvj__7DfbbXgU9-2FrLA3YrVA_Z7hYl4SP261MoQ2y6RvCyKZXk5xd45vC6rSjA8bf8Q0goW72zWhShxPRFheKc7nU5hvBNjRdNmi-qWSi5u6wRpnOEyDxUZ03aAV-HgMKrMLvoCqCqx2xyNPry_jjpWjQkXqSyTrSEshxGmUYAG7QDl0UjAGGTsEIPvaB3TFAuL1MMnKLLnPBC5qgBEXIVjHzCehV-31PGvTAW4aSiZkbK4TkMxocolddAhDxpn72-0lVRt0wcBUYwpNPi88lo1Ol03GfvSJHXMsSf3QwslrOi245F1FAqi9hoCF5p6cFHDxC9CUEqMKrP3lybwY3Vti1o_18Fn7G7gloHN7c3z1lvvdyEF4hn1u5lZ7u_ARsh8sE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redefining+dental+image+processing%3A+De-convolutional+component+with+residual+prolonged+bypass+for+enhanced+teeth+segmentation&rft.jtitle=Serbian+journal+of+electrical+engineering&rft.au=Prasun%2C+Kumar&rft.au=Verma%2C+Anil&rft.au=Mishra%2C+Rajiv&rft.date=2025-01-01&rft.issn=1451-4869&rft.eissn=2217-7183&rft.volume=22&rft.issue=2&rft.spage=281&rft.epage=307&rft_id=info:doi/10.2298%2FSJEE2502279P&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_SJEE2502279P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4869&client=summon