A Deep Learning-Based Assistive System for the Visually Impaired Using YOLO-V7
Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by the cost and accessibility of existing assistive technologies. This study introduces a prototype for a cost-effective and accessible assistiv...
Saved in:
| Published in | Revue d intelligence artificielle Vol. 37; no. 4; p. 901 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Edmonton
International Information and Engineering Technology Association (IIETA)
01.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0992-499X 1958-5748 1958-5748 |
| DOI | 10.18280/ria.370409 |
Cover
| Abstract | Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by the cost and accessibility of existing assistive technologies. This study introduces a prototype for a cost-effective and accessible assistive device that employs deep learning techniques for object recognition. The proposed system utilizes the YOLO-V7 model, a deep learning algorithm trained on a comprehensive dataset encompassing various everyday objects, including US dollar denominations. In conjunction with two transfer learning-based cascade models, the system offers detection across 86 object categories. Upon object identification, the name of the item is converted into a Braille-readable format using the Python Braille library. Comprehensive experiments and analyses were undertaken to assess the efficacy of the proposed system. The results corroborate the system's effectiveness in achieving its intended purpose, demonstrating its potential to significantly aid visually impaired individuals in recognizing and interacting with objects in their environment. With a processing and Braille code generation time of 188.5 ms per frame, the model achieved recall, precision, and mAP scores of 0.81, 0.92, and 0.96, respectively. The integration of deep learning technology with high-performance platform boards has facilitated the development of a promising solution to the challenges faced by visually impaired individuals in environmental interaction. Overall, the proposed prototype represents an accessible and cost-effective assistive device, potentially revolutionizing the manner in which visually impaired individuals interact with their surroundings. |
|---|---|
| AbstractList | Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by the cost and accessibility of existing assistive technologies. This study introduces a prototype for a cost-effective and accessible assistive device that employs deep learning techniques for object recognition. The proposed system utilizes the YOLO-V7 model, a deep learning algorithm trained on a comprehensive dataset encompassing various everyday objects, including US dollar denominations. In conjunction with two transfer learning-based cascade models, the system offers detection across 86 object categories. Upon object identification, the name of the item is converted into a Braille-readable format using the Python Braille library. Comprehensive experiments and analyses were undertaken to assess the efficacy of the proposed system. The results corroborate the system's effectiveness in achieving its intended purpose, demonstrating its potential to significantly aid visually impaired individuals in recognizing and interacting with objects in their environment. With a processing and Braille code generation time of 188.5 ms per frame, the model achieved recall, precision, and mAP scores of 0.81, 0.92, and 0.96, respectively. The integration of deep learning technology with high-performance platform boards has facilitated the development of a promising solution to the challenges faced by visually impaired individuals in environmental interaction. Overall, the proposed prototype represents an accessible and cost-effective assistive device, potentially revolutionizing the manner in which visually impaired individuals interact with their surroundings. |
| Author | Mohammad Tarik Mohammad Omar Kanaan Taha Alsultan |
| Author_xml | – sequence: 1 fullname: Omar Kanaan Taha Alsultan – sequence: 2 fullname: Mohammad Tarik Mohammad |
| BookMark | eNotkLtOwzAARS1UJErpxA9YYiXFr_gxllKgUkQHaAWT5bgOGLVJsBNQ_h6LMt3l3Kurcw5GdVM7AC4xmmFJJLoJ3syoQAypEzDGKpdZLpgcgTFSimRMqdczMI3Rl4hxTihnaAye5vDOuRYWzoTa1-_ZrYluB-cJi53_dvB5iJ07wKoJsPtwcOtjb_b7Aa4OrfEhoZuYavBtXayzrbgAp5XZRzf9zwnY3C9fFo9ZsX5YLeZFZgmmKiulYKWtiBU7JJW1VJhcEEYtVagseU64KhmpsMXGOCK5k1JyKiuSWFMJQifg-rjb160ZftIj3QZ_MGHQGOk_HTrp0EcdCb864m1ovnoXO_3Z9KFODzVFSjCGRU7pL2fbX2I |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3539081 crossref_primary_10_1109_ACCESS_2024_3419835 |
| ContentType | Journal Article |
| Copyright | 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.18280/ria.370409 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1958-5748 |
| ExternalDocumentID | 10.18280/ria.370409 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 8FE 8FG ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S OK1 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2139-b874bcf2c7d089cc37a57243c390bb65269b42f1c1aae286e888638f29ccaf723 |
| IEDL.DBID | UNPAY |
| ISSN | 0992-499X 1958-5748 |
| IngestDate | Wed Oct 01 15:30:59 EDT 2025 Mon Jun 30 09:45:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2139-b874bcf2c7d089cc37a57243c390bb65269b42f1c1aae286e888638f29ccaf723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iieta.org/download/file/fid/107066 |
| PQID | 3097441753 |
| PQPubID | 2069447 |
| ParticipantIDs | unpaywall_primary_10_18280_ria_370409 proquest_journals_3097441753 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Edmonton |
| PublicationPlace_xml | – name: Edmonton |
| PublicationTitle | Revue d intelligence artificielle |
| PublicationYear | 2023 |
| Publisher | International Information and Engineering Technology Association (IIETA) |
| Publisher_xml | – name: International Information and Engineering Technology Association (IIETA) |
| SSID | ssib046623640 |
| Score | 2.3365877 |
| Snippet | Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by... |
| SourceID | unpaywall proquest |
| SourceType | Open Access Repository Aggregation Database |
| StartPage | 901 |
| SubjectTerms | Accessibility Accuracy Algorithms Artificial intelligence Blindness Braille Cost effectiveness Datasets Deep learning Localization Machine learning Neural networks Object recognition People with disabilities Prototypes Python Visual impairment |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZKO8CCQIB4FOQBRtPEdmJnQKiFVgVBihCtyhQ5joOQqrTQFtR_zzkPHgtDNsvDd-e775zzdwidcmkkfJTkL2S49BmJpZcQ4ZqAO1qzQvHmPvT7Q3479sY1FFZvYWxbZRUT80CdTLW9I28xB5gvt7qSl7M3YqdG2b-r1QgNVY5WSC5yibE11KBWGauOGp1u-PBYeRj3fSuYnl-82LZLoPvj8tEeVB5OC2x-zgT49V_Cub7MZmr1qSaTX7mnt4U2S9KI24WVt1HNZDsobONrY2a4VEh9IR1ISAkGvO2x_TC4ECPHwEoxsDw8ep0vYe8VvoEIAIEuwXm7AH4e3A3ISOyiYa_7dNUn5XQEoinQNoBU8FinVIvEkQGgKpQnKGeaBU4c-3ZyeMxp6mpXKUOlb6DWhcOWUlirUkHZHqpn08zsI-waCcSDeopBjZooL5DayoVyBkb0tDIHqFmBEZUuPo9-DHKAzr4BimaFSEZkiwuLaQSYRgWmh_9vc4Q27Cz3oruuieqL96U5hoy_iE9KM34BbDyoDA priority: 102 providerName: ProQuest |
| Title | A Deep Learning-Based Assistive System for the Visually Impaired Using YOLO-V7 |
| URI | https://www.proquest.com/docview/3097441753 https://iieta.org/download/file/fid/107066 |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0EDnrxI2pEkfSgx8LSj233CAqiUSBGCJw23W4xRAJEQIO_3unuatSTh91TD828TudNOvMGoQuurIKPkqRDhiufkUiJmMiaDbhnDEsVbx46frvP74ZimMnkJL0wE7vSyQt-7MTi5zquOoEi-MXg4BICZA4VfAG8O48K_U6vPkrE9AJKgLoPkydkoYiQXGXNeJBReFXAssIknNffRHJ7PVvozbueTn_ElNZeOpxomUgRulKSl8p6FVXMxx-hxv9tdx_tZtQS19OzcIC27OwQder42toFznRUn0kDwlaMARXn3G8Wp5LlGLgrBi6IB5PlGna6wbdwT8B1GOOkqACPuvddMpBHqN9qPl21STZDgRgK5A4ML3lkxtTI2FMB2F5qISlnhgVeFPluvnjE6bhmalpbqnwLGTG45JjCWj2WlB2j_Gw-sycI16wCekKFZpDJxloEyjhRUc4AamG0LaLSl2nDzBGWIfMgYeFODrSILr_NHS5SKY3QpSAOoRAQClOETv-57gztuNHvaTFeCeVXr2t7DgRhFZVRTrVuyqjQaHZ6j-XsnHwCZXi59w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IHPBiNGpEUXuQ48pu230diAGBgMBiDBA8rd1uMSYEUEDCn_O3Od2Hj4s3Dntrmmb6dfpNd-YbhK6ZIx34iBZVyDDHolrgmKFmG9JluhA0VrzpeVZryO7H5jiDPtNaGJVWmfrEyFGHc6HeyMtUB-bLlK7k7eJNU12j1N_VtIUGT1orhJVIYiwp7OjI7QZCuGWlXYf9LhHSbAzuWlrSZUATBOgPLM1mgZgQYYe648LqbG7ahFFBXT0ILNWBO2BkYgiDc0kcS0LMCKCdEBjLJ7YSPoArIMcocyH4y9Ua3sNjimhmWUqgPXroUWmeEF6MkyJBiHT0MmDshtpwjv4S3Px6tuDbDZ9Of911zQO0n5BUXI1RdYgycnaEvCquS7nAiSLri1aDCzDEsL_KTXxIHIufY2DBGFglHr0u1zD3FrfB44BjDXGUnoCf-t2-NrKP0XAndjpB2dl8Jk8RNqQDRIeYnEJMHHLTdYSSJ2UUQGMKLguomBrDT47U0v8BQAGVvg3kL2JRDl8FM8qmPtjUj2169v80VyjfGvS6frftdc7RnuojH2f2FVF29b6WF8A2VsFlsqUYPe8aRV-OIORo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagHWDhIUAUCvIAo9vEj9gZy6MqCFoGWrVT5DgOqqjaiqag8us5JwEBU4dk8mDd5_N9J999h9AFV1bBR0neIcNVwEisREKkb0PuGcMKxZvHbtDp8_uhGJYyOXkvzNhmOn_BT5xY_EwnTSdQBL8EHFxCgNxE1UAA766gar_71BrlYnohJUDdh_kTslBESK7KZjzIKLwmYNlgEs7rXyK5tZzO9epDTya_Ykp7txhOtMilCF0pyWtjmcUN8_lPqHG97e6hnZJa4lZxFvbRhp0eoG4L31g7x6WO6gu5grCVYEDFOfe7xYVkOQbuioEL4sF4sYSdrvAd3BNwHSY4LyrAo95DjwzkIeq3b5-vO6ScoUAMBXIHhpc8Nik1MvFUCLaXWkjKmWGhF8eBmy8ec5r6xtfaUhVYyIjBJVMKa3UqKTtClelsao8R9q0CekKFZpDJJlqEyjhRUc4AamG0raH6t2mj0hEWEfMgYeFODrSGLn_MHc0LKY3IpSAOoQgQigqETtZcd4q23ej3ohivjirZ29KeAUHI4vPyZHwBUU23dw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Assistive+System+for+the+Visually+Impaired+Using+YOLO-V7&rft.jtitle=Revue+d%27Intelligence+Artificielle&rft.au=Omar+Kanaan+Taha+Alsultan&rft.au=Mohammad+Tarik+Mohammad&rft.date=2023-08-01&rft.pub=International+Information+and+Engineering+Technology+Association+%28IIETA%29&rft.issn=0992-499X&rft.eissn=1958-5748&rft.volume=37&rft.issue=4&rft.spage=901&rft_id=info:doi/10.18280%2Fria.370409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0992-499X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0992-499X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0992-499X&client=summon |