A Deep Learning-Based Assistive System for the Visually Impaired Using YOLO-V7

Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by the cost and accessibility of existing assistive technologies. This study introduces a prototype for a cost-effective and accessible assistiv...

Full description

Saved in:
Bibliographic Details
Published inRevue d intelligence artificielle Vol. 37; no. 4; p. 901
Main Authors Omar Kanaan Taha Alsultan, Mohammad Tarik Mohammad
Format Journal Article
LanguageEnglish
Published Edmonton International Information and Engineering Technology Association (IIETA) 01.08.2023
Subjects
Online AccessGet full text
ISSN0992-499X
1958-5748
1958-5748
DOI10.18280/ria.370409

Cover

Abstract Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by the cost and accessibility of existing assistive technologies. This study introduces a prototype for a cost-effective and accessible assistive device that employs deep learning techniques for object recognition. The proposed system utilizes the YOLO-V7 model, a deep learning algorithm trained on a comprehensive dataset encompassing various everyday objects, including US dollar denominations. In conjunction with two transfer learning-based cascade models, the system offers detection across 86 object categories. Upon object identification, the name of the item is converted into a Braille-readable format using the Python Braille library. Comprehensive experiments and analyses were undertaken to assess the efficacy of the proposed system. The results corroborate the system's effectiveness in achieving its intended purpose, demonstrating its potential to significantly aid visually impaired individuals in recognizing and interacting with objects in their environment. With a processing and Braille code generation time of 188.5 ms per frame, the model achieved recall, precision, and mAP scores of 0.81, 0.92, and 0.96, respectively. The integration of deep learning technology with high-performance platform boards has facilitated the development of a promising solution to the challenges faced by visually impaired individuals in environmental interaction. Overall, the proposed prototype represents an accessible and cost-effective assistive device, potentially revolutionizing the manner in which visually impaired individuals interact with their surroundings.
AbstractList Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by the cost and accessibility of existing assistive technologies. This study introduces a prototype for a cost-effective and accessible assistive device that employs deep learning techniques for object recognition. The proposed system utilizes the YOLO-V7 model, a deep learning algorithm trained on a comprehensive dataset encompassing various everyday objects, including US dollar denominations. In conjunction with two transfer learning-based cascade models, the system offers detection across 86 object categories. Upon object identification, the name of the item is converted into a Braille-readable format using the Python Braille library. Comprehensive experiments and analyses were undertaken to assess the efficacy of the proposed system. The results corroborate the system's effectiveness in achieving its intended purpose, demonstrating its potential to significantly aid visually impaired individuals in recognizing and interacting with objects in their environment. With a processing and Braille code generation time of 188.5 ms per frame, the model achieved recall, precision, and mAP scores of 0.81, 0.92, and 0.96, respectively. The integration of deep learning technology with high-performance platform boards has facilitated the development of a promising solution to the challenges faced by visually impaired individuals in environmental interaction. Overall, the proposed prototype represents an accessible and cost-effective assistive device, potentially revolutionizing the manner in which visually impaired individuals interact with their surroundings.
Author Mohammad Tarik Mohammad
Omar Kanaan Taha Alsultan
Author_xml – sequence: 1
  fullname: Omar Kanaan Taha Alsultan
– sequence: 2
  fullname: Mohammad Tarik Mohammad
BookMark eNotkLtOwzAARS1UJErpxA9YYiXFr_gxllKgUkQHaAWT5bgOGLVJsBNQ_h6LMt3l3Kurcw5GdVM7AC4xmmFJJLoJ3syoQAypEzDGKpdZLpgcgTFSimRMqdczMI3Rl4hxTihnaAye5vDOuRYWzoTa1-_ZrYluB-cJi53_dvB5iJ07wKoJsPtwcOtjb_b7Aa4OrfEhoZuYavBtXayzrbgAp5XZRzf9zwnY3C9fFo9ZsX5YLeZFZgmmKiulYKWtiBU7JJW1VJhcEEYtVagseU64KhmpsMXGOCK5k1JyKiuSWFMJQifg-rjb160ZftIj3QZ_MGHQGOk_HTrp0EcdCb864m1ovnoXO_3Z9KFODzVFSjCGRU7pL2fbX2I
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3539081
crossref_primary_10_1109_ACCESS_2024_3419835
ContentType Journal Article
Copyright 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.18280/ria.370409
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1958-5748
ExternalDocumentID 10.18280/ria.370409
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 8FE
8FG
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
OK1
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
ID FETCH-LOGICAL-c2139-b874bcf2c7d089cc37a57243c390bb65269b42f1c1aae286e888638f29ccaf723
IEDL.DBID UNPAY
ISSN 0992-499X
1958-5748
IngestDate Wed Oct 01 15:30:59 EDT 2025
Mon Jun 30 09:45:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2139-b874bcf2c7d089cc37a57243c390bb65269b42f1c1aae286e888638f29ccaf723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iieta.org/download/file/fid/107066
PQID 3097441753
PQPubID 2069447
ParticipantIDs unpaywall_primary_10_18280_ria_370409
proquest_journals_3097441753
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Edmonton
PublicationPlace_xml – name: Edmonton
PublicationTitle Revue d intelligence artificielle
PublicationYear 2023
Publisher International Information and Engineering Technology Association (IIETA)
Publisher_xml – name: International Information and Engineering Technology Association (IIETA)
SSID ssib046623640
Score 2.3365877
Snippet Individuals with visual impairments frequently confront substantial difficulties in interacting with their environment, a problem that is often exacerbated by...
SourceID unpaywall
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 901
SubjectTerms Accessibility
Accuracy
Algorithms
Artificial intelligence
Blindness
Braille
Cost effectiveness
Datasets
Deep learning
Localization
Machine learning
Neural networks
Object recognition
People with disabilities
Prototypes
Python
Visual impairment
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZKO8CCQIB4FOQBRtPEdmJnQKiFVgVBihCtyhQ5joOQqrTQFtR_zzkPHgtDNsvDd-e775zzdwidcmkkfJTkL2S49BmJpZcQ4ZqAO1qzQvHmPvT7Q3479sY1FFZvYWxbZRUT80CdTLW9I28xB5gvt7qSl7M3YqdG2b-r1QgNVY5WSC5yibE11KBWGauOGp1u-PBYeRj3fSuYnl-82LZLoPvj8tEeVB5OC2x-zgT49V_Cub7MZmr1qSaTX7mnt4U2S9KI24WVt1HNZDsobONrY2a4VEh9IR1ISAkGvO2x_TC4ECPHwEoxsDw8ep0vYe8VvoEIAIEuwXm7AH4e3A3ISOyiYa_7dNUn5XQEoinQNoBU8FinVIvEkQGgKpQnKGeaBU4c-3ZyeMxp6mpXKUOlb6DWhcOWUlirUkHZHqpn08zsI-waCcSDeopBjZooL5DayoVyBkb0tDIHqFmBEZUuPo9-DHKAzr4BimaFSEZkiwuLaQSYRgWmh_9vc4Q27Cz3oruuieqL96U5hoy_iE9KM34BbDyoDA
  priority: 102
  providerName: ProQuest
Title A Deep Learning-Based Assistive System for the Visually Impaired Using YOLO-V7
URI https://www.proquest.com/docview/3097441753
https://iieta.org/download/file/fid/107066
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0EDnrxI2pEkfSgx8LSj233CAqiUSBGCJw23W4xRAJEQIO_3unuatSTh91TD828TudNOvMGoQuurIKPkqRDhiufkUiJmMiaDbhnDEsVbx46frvP74ZimMnkJL0wE7vSyQt-7MTi5zquOoEi-MXg4BICZA4VfAG8O48K_U6vPkrE9AJKgLoPkydkoYiQXGXNeJBReFXAssIknNffRHJ7PVvozbueTn_ElNZeOpxomUgRulKSl8p6FVXMxx-hxv9tdx_tZtQS19OzcIC27OwQder42toFznRUn0kDwlaMARXn3G8Wp5LlGLgrBi6IB5PlGna6wbdwT8B1GOOkqACPuvddMpBHqN9qPl21STZDgRgK5A4ML3lkxtTI2FMB2F5qISlnhgVeFPluvnjE6bhmalpbqnwLGTG45JjCWj2WlB2j_Gw-sycI16wCekKFZpDJxloEyjhRUc4AamG0LaLSl2nDzBGWIfMgYeFODrSILr_NHS5SKY3QpSAOoRAQClOETv-57gztuNHvaTFeCeVXr2t7DgRhFZVRTrVuyqjQaHZ6j-XsnHwCZXi59w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IHPBiNGpEUXuQ48pu230diAGBgMBiDBA8rd1uMSYEUEDCn_O3Od2Hj4s3Dntrmmb6dfpNd-YbhK6ZIx34iBZVyDDHolrgmKFmG9JluhA0VrzpeVZryO7H5jiDPtNaGJVWmfrEyFGHc6HeyMtUB-bLlK7k7eJNU12j1N_VtIUGT1orhJVIYiwp7OjI7QZCuGWlXYf9LhHSbAzuWlrSZUATBOgPLM1mgZgQYYe648LqbG7ahFFBXT0ILNWBO2BkYgiDc0kcS0LMCKCdEBjLJ7YSPoArIMcocyH4y9Ua3sNjimhmWUqgPXroUWmeEF6MkyJBiHT0MmDshtpwjv4S3Px6tuDbDZ9Of911zQO0n5BUXI1RdYgycnaEvCquS7nAiSLri1aDCzDEsL_KTXxIHIufY2DBGFglHr0u1zD3FrfB44BjDXGUnoCf-t2-NrKP0XAndjpB2dl8Jk8RNqQDRIeYnEJMHHLTdYSSJ2UUQGMKLguomBrDT47U0v8BQAGVvg3kL2JRDl8FM8qmPtjUj2169v80VyjfGvS6frftdc7RnuojH2f2FVF29b6WF8A2VsFlsqUYPe8aRV-OIORo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagHWDhIUAUCvIAo9vEj9gZy6MqCFoGWrVT5DgOqqjaiqag8us5JwEBU4dk8mDd5_N9J999h9AFV1bBR0neIcNVwEisREKkb0PuGcMKxZvHbtDp8_uhGJYyOXkvzNhmOn_BT5xY_EwnTSdQBL8EHFxCgNxE1UAA766gar_71BrlYnohJUDdh_kTslBESK7KZjzIKLwmYNlgEs7rXyK5tZzO9epDTya_Ykp7txhOtMilCF0pyWtjmcUN8_lPqHG97e6hnZJa4lZxFvbRhp0eoG4L31g7x6WO6gu5grCVYEDFOfe7xYVkOQbuioEL4sF4sYSdrvAd3BNwHSY4LyrAo95DjwzkIeq3b5-vO6ScoUAMBXIHhpc8Nik1MvFUCLaXWkjKmWGhF8eBmy8ec5r6xtfaUhVYyIjBJVMKa3UqKTtClelsao8R9q0CekKFZpDJJlqEyjhRUc4AamG0raH6t2mj0hEWEfMgYeFODrSGLn_MHc0LKY3IpSAOoQgQigqETtZcd4q23ej3ohivjirZ29KeAUHI4vPyZHwBUU23dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Based+Assistive+System+for+the+Visually+Impaired+Using+YOLO-V7&rft.jtitle=Revue+d%27Intelligence+Artificielle&rft.au=Omar+Kanaan+Taha+Alsultan&rft.au=Mohammad+Tarik+Mohammad&rft.date=2023-08-01&rft.pub=International+Information+and+Engineering+Technology+Association+%28IIETA%29&rft.issn=0992-499X&rft.eissn=1958-5748&rft.volume=37&rft.issue=4&rft.spage=901&rft_id=info:doi/10.18280%2Fria.370409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0992-499X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0992-499X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0992-499X&client=summon