A Bayesian Approach for Model-Based Clustering of Several Binary Dissimilarity Matrices: The dmbc Package in R
We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expres...
Saved in:
| Published in | Journal of statistical software Vol. 100; no. 16; pp. 1 - 35 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Foundation for Open Access Statistics
2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1548-7660 1548-7660 |
| DOI | 10.18637/jss.v100.i16 |
Cover
| Abstract | We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package. |
|---|---|
| AbstractList | We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package. |
| Author | Piccarreta, Raffaella Venturini, Sergio |
| Author_xml | – sequence: 1 givenname: Sergio surname: Venturini fullname: Venturini, Sergio – sequence: 2 givenname: Raffaella surname: Piccarreta fullname: Piccarreta, Raffaella |
| BookMark | eNqFkMtOwzAQRS1UJCiwZO8fSLETx47ZteVVCQTisbYm9qS4pHFlF1D_ntAixI7VjEb3Ho3OkAy60CEhp5yNeCULdbZIafTBGRt5LvfIIS9FlSkp2eDPfkCGKS0Yy5nQ5SHpxnQCG0weOjperWIA-0qbEOldcNhmE0jo6LR9T2uMvpvT0NAn_MAILZ34DuKGXviU_NK3EP16Q-9gHb3FdE6fX5G6ZW3pA9g3mCP1HX08JvsNtAlPfuYRebm6fJ7eZLf317Pp-DazOS9kVkmwzOkauVB1IyDX2tVOIRairHKRC6FzJQoQVlusrbW5QinyUkqL2rmmOCKzHdcFWJhV9Mv-VRPAm-0hxLmBuPa2ReMcFDUoLXmlhSoBqkJohqWtUTWstj1rtGO9dyvYfELb_gI5M1vzpjdvvs2b3nxfyHYFG0NKEZt_8l9NHImC |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.18637/jss.v100.i16 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1548-7660 |
| EndPage | 35 |
| ExternalDocumentID | oai_doaj_org_article_dda3ba796189475aa83490e5cbe7f0bc 10.18637/jss.v100.i16 10_18637_jss_v100_i16 |
| GroupedDBID | 29L 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD F5P GROUPED_DOAJ GX1 IPNFZ KQ8 M~E OK1 OVT P2P RIG RNS TR2 XSB ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2136-86ac0d9be147bf4a299dbd7ee34582424492743a4c9cebccc27e642566ce9ddf3 |
| IEDL.DBID | UNPAY |
| ISSN | 1548-7660 |
| IngestDate | Fri Oct 03 12:44:59 EDT 2025 Sun Oct 26 04:15:59 EDT 2025 Tue Jul 01 03:06:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2136-86ac0d9be147bf4a299dbd7ee34582424492743a4c9cebccc27e642566ce9ddf3 |
| ORCID | 0000-0002-6574-3337 0000-0002-8876-3656 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstatsoft.org/index.php/jss/article/download/v100i16/4162 |
| PageCount | 35 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dda3ba796189475aa83490e5cbe7f0bc unpaywall_primary_10_18637_jss_v100_i16 crossref_primary_10_18637_jss_v100_i16 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of statistical software |
| PublicationYear | 2021 |
| Publisher | Foundation for Open Access Statistics |
| Publisher_xml | – name: Foundation for Open Access Statistics |
| SSID | ssj0020495 |
| Score | 2.3157718 |
| Snippet | We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework.... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 1 |
| SubjectTerms | bayesian data analysis dissimilarity matrices information criteria mcmc mds mixture models model-based clustering multidimen- sional scaling |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Si_YgfmL9Yg6ip7XpZrfbeGvVIkJF_IDelmSShWq7FWsV_70z223pSS9el2UT3oTMe7PJGyFOQtTsMm4CozRXq5pZYBPpAumJzEuDlNVYKPbumjfP0W0_7i-1-uIzYTN74BlwdeeMsibhxiQ6SmJjWirS0sdofZJJi7z7ypaei6lSahHvjUtHzVZTJfWXyeT8syHl-YAbmy9loMKovypWp_mb-f4yw-FSduluiPWSFkJ7Np1NseLzLVHtLTxVJ9sib0PHfHu-9Ajt0gkciHICtzMbBh1KRw4uh1N2PqB8BOMMHv0nl5ygU1y6hSsCeTAakJYl6g29wpzfTy6Algq4kUW4N_hK-wsMcnjYEc_d66fLm6DslhBg2GBX4SYh67T1jSixWWQozzjrEu8V_xrj-2yaFKgyEWr0FhHDxJP4IDqHXjuXqV1Ryce53xMQY6QwzGyMmEWEs0HFH1YeY2mMlTVxOkcwfZuZYqQsJhjqlKBOGeqUoK6JDuO7eIm9rIsHFOG0jHD6V4Rr4mwRnd-H2_-P4Q7EWsjnVooyy6GofLxP_RERjw97XKyxH1sq2ZE priority: 102 providerName: Directory of Open Access Journals |
| Title | A Bayesian Approach for Model-Based Clustering of Several Binary Dissimilarity Matrices: The dmbc Package in R |
| URI | https://www.jstatsoft.org/index.php/jss/article/download/v100i16/4162 https://doaj.org/article/dda3ba796189475aa83490e5cbe7f0bc |
| UnpaywallVersion | publishedVersion |
| Volume | 100 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: DOA dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: M~E dateStart: 19960101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK9LD1sHUvLO1W6DBsJ8eyJVvxbkkfKwakKLYFyE6GRMmA29Qp6qRF9-tHKm5Q7DAM2MUHQ5ZgUhA_UuRHxj6kUBDLuImMLChalVeR1cJFwiOYFwbQqpGjODnLT6fq6yybbbHjh1oYSqu8oFqaFk-hcJMfWAOJKiK-aNu4k2fsiEp-YVx8mwhRJ3mMwAJP4u08Q0jeY9vTs_PRz8CVqoaRznPR8WsOc6lpogF9N6ipzfkjexRo-3fYk1Vzbe7vzHz-yNacPF_nhLSBopBSTC4Hq6UdwK8_CBz_-zd22bMOjfLRetwLtuWbl2xnsqFybV-xZsTH5t5TrSUfdQTkHJEupy5q82iMVtDxw_mKCBfQDPJFxb_7W4p08XGo9eVHqNv6qkYXGhE_n4SeAL79zHGHcndlgZ8buMRjjdcN__aaTU-OfxyeRl2ThgjShMiMc1SoK6xPlLaVMmjenHXae0k3clRGV6DjK42CArwFgFR79HkQRYIvnKvkG9ZrFo1_y3gGSkJa2QygUtZrA5Imlh4yYYwVffbxQVXl9ZqLoyQfhnRaolRLEmKJUuyzMSlyM4gotMMLVETZib50zkhrNHW8KZTOjBlKVQifAa5cCQt99mmzDf6-3N4_j9xnT1PKiQkhnHest7xZ-fcIapb2IAQD8Plllhx02_c39Jj-ZQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dT9swEMAtVB4YD2PsQytsyA_T9pTGjZ244a1lIDSpCG2rxJ4i--xIgZIi0oLgr-fODRXaA0LiNXJs5c7y3Tl3v2PsWwI5UcZNZGROt1VZGVktXCQ8OvPCAFo1ChTHJ9nxRP06S8_W2OFjLQylVZ5TLU2Dp1D4kx-ogYSKiM-bJm7lGTtCyc-Mi2_6QlT9LEbHAk_i9SxFl7zD1icnp8N_gZWqBpHOMtHyNQeZ1DRRj97rVdTm_Ik9Ctj-TbaxqK_M3a2ZTp_YmqOtZU5IExCFlGJy0VvMbQ_u_wM4vvoz3rG3rTfKh8tx22zN1-_Z5niFcm0-sHrIR-bOU60lH7YAco6eLqcuatNohFbQ8YPpgoALaAb5rOR__A3ddPFRqPXlP1G31WWFITR6_HwcegL4Zp_jDuXu0gI_NXCBxxqvav77I5scHf49OI7aJg0RJH2CGWeoUJdb31falsqgeXPWae8l_ZGjMrocA19pFOTgLQAk2mPMg14k-Ny5Un5inXpW-8-Mp6AkJKVNAUplvTYgaWLpIRXGWNFl3x9VVVwtWRwFxTCk0wKlWpAQC5Ril41IkatBhNAOD1ARRSv6wjkjrdHU8SZXOjVmIFUufAq4ciksdNmP1TZ4frmdF4_cZW8SyokJVzhfWGd-vfBf0amZ2712yz4AGHD8fw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Approach+for+Model-Based+Clustering+of+Several+Binary+Dissimilarity+Matrices%3A+The+dmbc+Package+in+R&rft.jtitle=Journal+of+statistical+software&rft.au=Venturini%2C+Sergio&rft.au=Piccarreta%2C+Raffaella&rft.date=2021&rft.issn=1548-7660&rft.eissn=1548-7660&rft.volume=100&rft.issue=16&rft_id=info:doi/10.18637%2Fjss.v100.i16&rft.externalDBID=n%2Fa&rft.externalDocID=10_18637_jss_v100_i16 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon |