A Bayesian Approach for Model-Based Clustering of Several Binary Dissimilarity Matrices: The dmbc Package in R

We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expres...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical software Vol. 100; no. 16; pp. 1 - 35
Main Authors Venturini, Sergio, Piccarreta, Raffaella
Format Journal Article
LanguageEnglish
Published Foundation for Open Access Statistics 2021
Subjects
Online AccessGet full text
ISSN1548-7660
1548-7660
DOI10.18637/jss.v100.i16

Cover

Abstract We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package.
AbstractList We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework. Specifically, we consider the case when S matrices are available, each describing the dissimilarities among the same n objects, possibly expressed by S subjects (judges), or measured under different experimental conditions, or with reference to different characteristics of the objects themselves. In particular, we focus on binary dissimilarities, taking values 0 or 1 depending on whether or not two objects are deemed as dissimilar. We are interested in analyzing such data using multidimensional scaling (MDS). Differently from standard MDS algorithms, our goal is to cluster the dissimilarity matrices and, simultaneously, to extract an MDS configuration specific for each cluster. To this end, we develop a fully Bayesian three-way MDS approach, where the elements of each dissimilarity matrix are modeled as a mixture of Bernoulli random vectors. The parameter estimates and the MDS configurations are derived using a hybrid Metropolis-Gibbs Markov Chain Monte Carlo algorithm. We also propose a BIC-like criterion for jointly selecting the optimal number of clusters and latent space dimensions. We illustrate our approach referring both to synthetic data and to a publicly available data set taken from the literature. For the sake of efficiency, the core computations in the package are implemented in C/C++. The package also allows the simulation of multiple chains through the support of the parallel package.
Author Piccarreta, Raffaella
Venturini, Sergio
Author_xml – sequence: 1
  givenname: Sergio
  surname: Venturini
  fullname: Venturini, Sergio
– sequence: 2
  givenname: Raffaella
  surname: Piccarreta
  fullname: Piccarreta, Raffaella
BookMark eNqFkMtOwzAQRS1UJCiwZO8fSLETx47ZteVVCQTisbYm9qS4pHFlF1D_ntAixI7VjEb3Ho3OkAy60CEhp5yNeCULdbZIafTBGRt5LvfIIS9FlSkp2eDPfkCGKS0Yy5nQ5SHpxnQCG0weOjperWIA-0qbEOldcNhmE0jo6LR9T2uMvpvT0NAn_MAILZ34DuKGXviU_NK3EP16Q-9gHb3FdE6fX5G6ZW3pA9g3mCP1HX08JvsNtAlPfuYRebm6fJ7eZLf317Pp-DazOS9kVkmwzOkauVB1IyDX2tVOIRairHKRC6FzJQoQVlusrbW5QinyUkqL2rmmOCKzHdcFWJhV9Mv-VRPAm-0hxLmBuPa2ReMcFDUoLXmlhSoBqkJohqWtUTWstj1rtGO9dyvYfELb_gI5M1vzpjdvvs2b3nxfyHYFG0NKEZt_8l9NHImC
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.18637/jss.v100.i16
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1548-7660
EndPage 35
ExternalDocumentID oai_doaj_org_article_dda3ba796189475aa83490e5cbe7f0bc
10.18637/jss.v100.i16
10_18637_jss_v100_i16
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
M~E
OK1
OVT
P2P
RIG
RNS
TR2
XSB
ADTOC
UNPAY
ID FETCH-LOGICAL-c2136-86ac0d9be147bf4a299dbd7ee34582424492743a4c9cebccc27e642566ce9ddf3
IEDL.DBID UNPAY
ISSN 1548-7660
IngestDate Fri Oct 03 12:44:59 EDT 2025
Sun Oct 26 04:15:59 EDT 2025
Tue Jul 01 03:06:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2136-86ac0d9be147bf4a299dbd7ee34582424492743a4c9cebccc27e642566ce9ddf3
ORCID 0000-0002-6574-3337
0000-0002-8876-3656
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstatsoft.org/index.php/jss/article/download/v100i16/4162
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_dda3ba796189475aa83490e5cbe7f0bc
unpaywall_primary_10_18637_jss_v100_i16
crossref_primary_10_18637_jss_v100_i16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationTitle Journal of statistical software
PublicationYear 2021
Publisher Foundation for Open Access Statistics
Publisher_xml – name: Foundation for Open Access Statistics
SSID ssj0020495
Score 2.3157718
Snippet We introduce the new package dmbc that implements a Bayesian algorithm for clustering a set of binary dissimilarity matrices within a model-based framework....
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 1
SubjectTerms bayesian data analysis
dissimilarity matrices
information criteria
mcmc
mds
mixture models
model-based clustering
multidimen- sional scaling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3Si_YgfmL9Yg6ip7XpZrfbeGvVIkJF_IDelmSShWq7FWsV_70z223pSS9el2UT3oTMe7PJGyFOQtTsMm4CozRXq5pZYBPpAumJzEuDlNVYKPbumjfP0W0_7i-1-uIzYTN74BlwdeeMsibhxiQ6SmJjWirS0sdofZJJi7z7ypaei6lSahHvjUtHzVZTJfWXyeT8syHl-YAbmy9loMKovypWp_mb-f4yw-FSduluiPWSFkJ7Np1NseLzLVHtLTxVJ9sib0PHfHu-9Ajt0gkciHICtzMbBh1KRw4uh1N2PqB8BOMMHv0nl5ygU1y6hSsCeTAakJYl6g29wpzfTy6Algq4kUW4N_hK-wsMcnjYEc_d66fLm6DslhBg2GBX4SYh67T1jSixWWQozzjrEu8V_xrj-2yaFKgyEWr0FhHDxJP4IDqHXjuXqV1Ryce53xMQY6QwzGyMmEWEs0HFH1YeY2mMlTVxOkcwfZuZYqQsJhjqlKBOGeqUoK6JDuO7eIm9rIsHFOG0jHD6V4Rr4mwRnd-H2_-P4Q7EWsjnVooyy6GofLxP_RERjw97XKyxH1sq2ZE
  priority: 102
  providerName: Directory of Open Access Journals
Title A Bayesian Approach for Model-Based Clustering of Several Binary Dissimilarity Matrices: The dmbc Package in R
URI https://www.jstatsoft.org/index.php/jss/article/download/v100i16/4162
https://doaj.org/article/dda3ba796189475aa83490e5cbe7f0bc
UnpaywallVersion publishedVersion
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: DOA
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBaK9LD1sHUvLO1W6DBsJ8eyJVvxbkkfKwakKLYFyE6GRMmA29Qp6qRF9-tHKm5Q7DAM2MUHQ5ZgUhA_UuRHxj6kUBDLuImMLChalVeR1cJFwiOYFwbQqpGjODnLT6fq6yybbbHjh1oYSqu8oFqaFk-hcJMfWAOJKiK-aNu4k2fsiEp-YVx8mwhRJ3mMwAJP4u08Q0jeY9vTs_PRz8CVqoaRznPR8WsOc6lpogF9N6ipzfkjexRo-3fYk1Vzbe7vzHz-yNacPF_nhLSBopBSTC4Hq6UdwK8_CBz_-zd22bMOjfLRetwLtuWbl2xnsqFybV-xZsTH5t5TrSUfdQTkHJEupy5q82iMVtDxw_mKCBfQDPJFxb_7W4p08XGo9eVHqNv6qkYXGhE_n4SeAL79zHGHcndlgZ8buMRjjdcN__aaTU-OfxyeRl2ThgjShMiMc1SoK6xPlLaVMmjenHXae0k3clRGV6DjK42CArwFgFR79HkQRYIvnKvkG9ZrFo1_y3gGSkJa2QygUtZrA5Imlh4yYYwVffbxQVXl9ZqLoyQfhnRaolRLEmKJUuyzMSlyM4gotMMLVETZib50zkhrNHW8KZTOjBlKVQifAa5cCQt99mmzDf6-3N4_j9xnT1PKiQkhnHest7xZ-fcIapb2IAQD8Plllhx02_c39Jj-ZQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dT9swEMAtVB4YD2PsQytsyA_T9pTGjZ244a1lIDSpCG2rxJ4i--xIgZIi0oLgr-fODRXaA0LiNXJs5c7y3Tl3v2PsWwI5UcZNZGROt1VZGVktXCQ8OvPCAFo1ChTHJ9nxRP06S8_W2OFjLQylVZ5TLU2Dp1D4kx-ogYSKiM-bJm7lGTtCyc-Mi2_6QlT9LEbHAk_i9SxFl7zD1icnp8N_gZWqBpHOMtHyNQeZ1DRRj97rVdTm_Ik9Ctj-TbaxqK_M3a2ZTp_YmqOtZU5IExCFlGJy0VvMbQ_u_wM4vvoz3rG3rTfKh8tx22zN1-_Z5niFcm0-sHrIR-bOU60lH7YAco6eLqcuatNohFbQ8YPpgoALaAb5rOR__A3ddPFRqPXlP1G31WWFITR6_HwcegL4Zp_jDuXu0gI_NXCBxxqvav77I5scHf49OI7aJg0RJH2CGWeoUJdb31falsqgeXPWae8l_ZGjMrocA19pFOTgLQAk2mPMg14k-Ny5Un5inXpW-8-Mp6AkJKVNAUplvTYgaWLpIRXGWNFl3x9VVVwtWRwFxTCk0wKlWpAQC5Ril41IkatBhNAOD1ARRSv6wjkjrdHU8SZXOjVmIFUufAq4ciksdNmP1TZ4frmdF4_cZW8SyokJVzhfWGd-vfBf0amZ2712yz4AGHD8fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Approach+for+Model-Based+Clustering+of+Several+Binary+Dissimilarity+Matrices%3A+The+dmbc+Package+in+R&rft.jtitle=Journal+of+statistical+software&rft.au=Venturini%2C+Sergio&rft.au=Piccarreta%2C+Raffaella&rft.date=2021&rft.issn=1548-7660&rft.eissn=1548-7660&rft.volume=100&rft.issue=16&rft_id=info:doi/10.18637%2Fjss.v100.i16&rft.externalDBID=n%2Fa&rft.externalDocID=10_18637_jss_v100_i16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon