A Fast Iris Liveness Detection for Embedded Systems using Textural Feature Level Fusion Algorithm

Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible to attacks using fake or synthetic iris images, causing a serious security threat. To address this issue, this paper presents a fast iris li...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 237; pp. 858 - 865
Main Authors Tran, Chung Nguyen, Nguyen, Minh Son, Castells-Rufas, David, Carrabina, Jordi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2024
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2024.05.185

Cover

Abstract Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible to attacks using fake or synthetic iris images, causing a serious security threat. To address this issue, this paper presents a fast iris liveness detection method specifically designed for embedded systems. The proposed method utilizes a textural feature level fusion algorithm using Local Binary Pattern (LBP) and Gray-Level Co-Occurrence Matrix (GLCM) to distinguish between live and printed iris images. LBP captures texture information, while GLCM characterizes the statistical properties of the iris images. By combining these complementary features, the proposed method enhances the discrimination capability and robustness against presentation attacks. Furthermore, to enable real-time and efficient implementation, the proposed liveness detection is optimized and implemented for embedded systems. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in accurately detecting iris liveness. The proposed fast iris liveness detection is implemented and optimized on C++ which can be complied and deployed in various embedded devices for iris recognition systems on real-world applications, such as access control, biometric authentication, and surveillance systems.
AbstractList Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible to attacks using fake or synthetic iris images, causing a serious security threat. To address this issue, this paper presents a fast iris liveness detection method specifically designed for embedded systems. The proposed method utilizes a textural feature level fusion algorithm using Local Binary Pattern (LBP) and Gray-Level Co-Occurrence Matrix (GLCM) to distinguish between live and printed iris images. LBP captures texture information, while GLCM characterizes the statistical properties of the iris images. By combining these complementary features, the proposed method enhances the discrimination capability and robustness against presentation attacks. Furthermore, to enable real-time and efficient implementation, the proposed liveness detection is optimized and implemented for embedded systems. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in accurately detecting iris liveness. The proposed fast iris liveness detection is implemented and optimized on C++ which can be complied and deployed in various embedded devices for iris recognition systems on real-world applications, such as access control, biometric authentication, and surveillance systems.
Author Nguyen, Minh Son
Castells-Rufas, David
Tran, Chung Nguyen
Carrabina, Jordi
Author_xml – sequence: 1
  givenname: Chung Nguyen
  surname: Tran
  fullname: Tran, Chung Nguyen
  email: chungnguyen.tran@autonoma.cat
  organization: Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
– sequence: 2
  givenname: Minh Son
  surname: Nguyen
  fullname: Nguyen, Minh Son
  organization: University of Information Technology-VNUHCM, Ho Chi Minh City, Vietnam
– sequence: 3
  givenname: David
  surname: Castells-Rufas
  fullname: Castells-Rufas, David
  organization: Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
– sequence: 4
  givenname: Jordi
  surname: Carrabina
  fullname: Carrabina, Jordi
  organization: Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
BookMark eNqNkM9OwzAMhyM0JMbYE3DJC7QkbdN0Bw7T2ACpEgfGOUodd2TqnynpBnt7MsaBE8IX_yzrs-Tvmoy6vkNCbjmLOeP53TbeuR58nLAki5mIeSEuyJgXUkZMsNnoV74iU--3LFRaFDMux0TP6Ur7gT4762lpD9ih9_QBB4TB9h2te0eXbYXGoKGvRz9g6-ne225D1_g57J1u6Ap1CEhLPGCYwjaA82bTOzu8tzfkstaNx-lPn5C31XK9eIrKl8fnxbyMIOGpiKBODDNpIjVPEo5FBhnPhMgAZJVLMBI0z_NqVtcMtdFQCGGwykADVBJYnk5Idr6773b6-KGbRu2cbbU7Ks7UyZTaqm9T6mRKMaGCqYClZwxc773D-p_U_ZnC8NHBolMeLHaAxrpgTpne_sl_AeT6h3E
Cites_doi 10.1109/TIFS.2021.3132582
10.3390/bdcc6020067
10.3390/inventions6040065
10.1016/j.patrec.2014.10.018
10.1109/TCSVT.2003.818350
10.1109/ACCESS.2021.3138455
10.18178/joig.9.3.95-102
10.3390/s21217408
10.1109/TSMC.1973.4309314
10.1007/978-3-642-01793-3_109
10.1109/TCSVT.2003.818349
10.1109/TSMCC.2011.2118750
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2024.05.185
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 865
ExternalDocumentID 10.1016/j.procs.2024.05.185
10_1016_j_procs_2024_05_185
S1877050924012018
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c2135-cf2d0d327a1221e84c414554cc7b67cd7ca166b9ff0eadac855deb4caccb7c063
IEDL.DBID UNPAY
ISSN 1877-0509
IngestDate Tue Aug 19 21:31:12 EDT 2025
Wed Oct 01 02:36:26 EDT 2025
Wed Jun 26 17:49:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords liveness detection
textural feature
iris recognition
local binary pattern
gray-level co-occurrence matrix
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2135-cf2d0d327a1221e84c414554cc7b67cd7ca166b9ff0eadac855deb4caccb7c063
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.procs.2024.05.185
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_procs_2024_05_185
crossref_primary_10_1016_j_procs_2024_05_185
elsevier_sciencedirect_doi_10_1016_j_procs_2024_05_185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Daugman (bib0002) 2004; 14
Li, Wu, Wang (bib0012) 2021; 9
Joachims (bib0015) 2002; 668
Z. He, Z. Sun, T. Tan, Z. Wei, Efficient iris spoof detection via boosted local binary patterns, in: M. Tistarelli, M. S. Nixon (Eds.), Advances in Biometrics, Springer Berlin Heidelberg, 2009, pp. 1080–1090. doi
Huang, Shan, Ardabilian, Wang, Chen (bib0013) 2011; 41
Khade, Gite, Thepade, Pradhan, Alamri (bib0010) 2021; 21
.
Jain, Ross, Prabhakar (bib0001) 2004; 14
Khade, Ahirrao, Phansalkar, Kotecha, Gite, Thepade (bib0004) 2021; 6
Tapia, Gonzalez, Busch (bib0006) 2022; 17
Khade, Gite, Thepade, Pradhan, Alamri (bib0003) 2021; 9
Haralick, Shanmugam, Dinstein (bib0005) 1973; 3
Yambay, Becker, Kohli, Yadav, Czajka, Bowyer, Schuckers, Singh, Vatsa, Noore, Gragnaniello, Sansone, Verdoliva, He, Ru, Li, Liu, Sun, Tan (bib0017) 2017
Yambay, Walczak, Schuckers, Czajka (bib0016) 2015
Khade, Gite, Pradhan (bib0007) 2022; 6
Gragnaniello, Sansone, Verdoliva (bib0009) 2015; 57
Yadav, Kohli, Agarwal, Vatsa, Singh, Noore (bib0008) 2018
Ngo, Casadevall, Codina, Castells-Rufas, Carrabina (bib0014) 2018
McGrath, Bowyer, Czajka (bib0018) 2018
Khade (10.1016/j.procs.2024.05.185_bib0003) 2021; 9
Joachims (10.1016/j.procs.2024.05.185_bib0015) 2002; 668
Jain (10.1016/j.procs.2024.05.185_bib0001) 2004; 14
Haralick (10.1016/j.procs.2024.05.185_bib0005) 1973; 3
Li (10.1016/j.procs.2024.05.185_bib0012) 2021; 9
McGrath (10.1016/j.procs.2024.05.185_bib0018) 2018
Yadav (10.1016/j.procs.2024.05.185_bib0008) 2018
10.1016/j.procs.2024.05.185_bib0011
Huang (10.1016/j.procs.2024.05.185_bib0013) 2011; 41
Ngo (10.1016/j.procs.2024.05.185_bib0014) 2018
Yambay (10.1016/j.procs.2024.05.185_bib0017) 2017
Khade (10.1016/j.procs.2024.05.185_bib0010) 2021; 21
Yambay (10.1016/j.procs.2024.05.185_bib0016) 2015
Khade (10.1016/j.procs.2024.05.185_bib0007) 2022; 6
Gragnaniello (10.1016/j.procs.2024.05.185_bib0009) 2015; 57
Tapia (10.1016/j.procs.2024.05.185_bib0006) 2022; 17
Daugman (10.1016/j.procs.2024.05.185_bib0002) 2004; 14
Khade (10.1016/j.procs.2024.05.185_bib0004) 2021; 6
References_xml – volume: 6
  year: 2021
  ident: bib0004
  article-title: Iris liveness detection for biometric authentication: A systematic literature review and future directions
  publication-title: Inventions
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0016
  article-title: Livdet-iris 2015 - iris liveness detection competition
  publication-title: 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: bib0005
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics SMC
– volume: 17
  start-page: 42
  year: 2022
  end-page: 52
  ident: bib0006
  article-title: Iris liveness detection using a cascade of dedicated deep learning networks
  publication-title: IEEE Transactions on Information Forensics and Security
– year: 2018
  ident: bib0018
  article-title: Open source presentation attack detection baseline for iris recognition
  publication-title: arXiv preprint
– volume: 9
  start-page: 169231
  year: 2021
  end-page: 169249
  ident: bib0003
  article-title: Detection of iris presentation attacks using hybridization of discrete cosine transform and haar transform with machine learning classifiers and ensembles
  publication-title: IEEE Access
– reference: .
– volume: 9
  start-page: 95
  year: 2021
  end-page: 102
  ident: bib0012
  article-title: A novel iris texture extraction scheme for iris presentation attack detection
  publication-title: Journal of Image and Graphics
– start-page: 733
  year: 2017
  end-page: 741
  ident: bib0017
  article-title: Livdet iris 2017 — iris liveness detection competition
  publication-title: 2017 IEEE International Joint Conference on Biometrics (IJCB)
– start-page: 685
  year: 2018
  end-page: 6857
  ident: bib0008
  article-title: Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– volume: 21
  year: 2021
  ident: bib0010
  article-title: Detection of iris presentation attacks using feature fusion of thepade's sorted block truncation coding with gray-level co-occurrence matrix features
  publication-title: Sensors
– volume: 14
  start-page: 21
  year: 2004
  end-page: 30
  ident: bib0002
  article-title: How iris recognition works
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 6
  year: 2022
  ident: bib0007
  article-title: Iris liveness detection using multiple deep convolution networks
  publication-title: Big Data and Cognitive Computing
– start-page: 10
  year: 2018
  end-page: 14
  ident: bib0014
  article-title: A low-cost svm classifier on fpga for pedestrian detection
  publication-title: Proceedings of the Jornadas de Computación Empotrada y Reconfigurable (JCER2018)
– volume: 668
  year: 2002
  ident: bib0015
  publication-title: Learning to classify text using support vector machines
– volume: 57
  start-page: 81
  year: 2015
  end-page: 87
  ident: bib0009
  article-title: Iris liveness detection for mobile devices based on local descriptors
  publication-title: Pattern Recognition Letters
– volume: 41
  start-page: 765
  year: 2011
  end-page: 781
  ident: bib0013
  article-title: Local binary patterns and its application to facial image analysis: A survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 14
  start-page: 4
  year: 2004
  end-page: 20
  ident: bib0001
  article-title: An introduction to biometric recognition
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: Z. He, Z. Sun, T. Tan, Z. Wei, Efficient iris spoof detection via boosted local binary patterns, in: M. Tistarelli, M. S. Nixon (Eds.), Advances in Biometrics, Springer Berlin Heidelberg, 2009, pp. 1080–1090. doi:
– volume: 17
  start-page: 42
  year: 2022
  ident: 10.1016/j.procs.2024.05.185_bib0006
  article-title: Iris liveness detection using a cascade of dedicated deep learning networks
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2021.3132582
– volume: 668
  year: 2002
  ident: 10.1016/j.procs.2024.05.185_bib0015
– volume: 6
  issue: 2
  year: 2022
  ident: 10.1016/j.procs.2024.05.185_bib0007
  article-title: Iris liveness detection using multiple deep convolution networks
  publication-title: Big Data and Cognitive Computing
  doi: 10.3390/bdcc6020067
– volume: 6
  issue: 4
  year: 2021
  ident: 10.1016/j.procs.2024.05.185_bib0004
  article-title: Iris liveness detection for biometric authentication: A systematic literature review and future directions
  publication-title: Inventions
  doi: 10.3390/inventions6040065
– start-page: 1
  year: 2015
  ident: 10.1016/j.procs.2024.05.185_bib0016
  article-title: Livdet-iris 2015 - iris liveness detection competition
– volume: 57
  start-page: 81
  year: 2015
  ident: 10.1016/j.procs.2024.05.185_bib0009
  article-title: Iris liveness detection for mobile devices based on local descriptors
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2014.10.018
– start-page: 685
  year: 2018
  ident: 10.1016/j.procs.2024.05.185_bib0008
  article-title: Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection
– volume: 14
  start-page: 21
  issue: 1
  year: 2004
  ident: 10.1016/j.procs.2024.05.185_bib0002
  article-title: How iris recognition works
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.818350
– volume: 9
  start-page: 169231
  year: 2021
  ident: 10.1016/j.procs.2024.05.185_bib0003
  article-title: Detection of iris presentation attacks using hybridization of discrete cosine transform and haar transform with machine learning classifiers and ensembles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3138455
– volume: 9
  start-page: 95
  issue: 3
  year: 2021
  ident: 10.1016/j.procs.2024.05.185_bib0012
  article-title: A novel iris texture extraction scheme for iris presentation attack detection
  publication-title: Journal of Image and Graphics
  doi: 10.18178/joig.9.3.95-102
– volume: 21
  issue: 21
  year: 2021
  ident: 10.1016/j.procs.2024.05.185_bib0010
  article-title: Detection of iris presentation attacks using feature fusion of thepade's sorted block truncation coding with gray-level co-occurrence matrix features
  publication-title: Sensors
  doi: 10.3390/s21217408
– start-page: 10
  year: 2018
  ident: 10.1016/j.procs.2024.05.185_bib0014
  article-title: A low-cost svm classifier on fpga for pedestrian detection
– start-page: 733
  year: 2017
  ident: 10.1016/j.procs.2024.05.185_bib0017
  article-title: Livdet iris 2017 — iris liveness detection competition
– year: 2018
  ident: 10.1016/j.procs.2024.05.185_bib0018
  article-title: Open source presentation attack detection baseline for iris recognition
  publication-title: arXiv preprint
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.procs.2024.05.185_bib0005
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics SMC
  doi: 10.1109/TSMC.1973.4309314
– ident: 10.1016/j.procs.2024.05.185_bib0011
  doi: 10.1007/978-3-642-01793-3_109
– volume: 14
  start-page: 4
  issue: 1
  year: 2004
  ident: 10.1016/j.procs.2024.05.185_bib0001
  article-title: An introduction to biometric recognition
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.818349
– volume: 41
  start-page: 765
  issue: 6
  year: 2011
  ident: 10.1016/j.procs.2024.05.185_bib0013
  article-title: Local binary patterns and its application to facial image analysis: A survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2011.2118750
SSID ssj0000388917
Score 2.3107326
Snippet Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 858
SubjectTerms gray-level co-occurrence matrix
iris recognition
liveness detection
local binary pattern
textural feature
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jL_rit_hNHny0bGmTpn2cc2PK9MUN9lby1TnZujFbxH9vbpsOBRHxsaEh5SY555LenIPQdch0SmOpPK009ai2O11Y2vWIbwxnsSKi9AZ8fAoHY_owYZMG6tZ3YaCs0mF_heklWruWlotmazWbtZ5JxDmol1hOIpbG4MJvQCOwb7if3G7OWUDtJC6Nd-F9DzrU4kNlmRfwBMh2-xQUPAl4Kv9MUFtFthIf72I-_0JA_T204zJH3Kk-bh81THaAdmtXBuw26SESHdwXbzkG73g8dGCG70xeFl1l2GapuLeQxiKOxk6wHEP5-xSPLFKDDAeGxLBYGzyEkiLcL-BIDXfm0-V6lr8sjtC43xt1B54zUvCUTwLmqdTXbR34XBDfJyaiioI-OVWKy5ArzZUgYSjjNG3bhSVUxJg2kiqhlOTKJjHHqJktM3OCcORLaiALCgIGv4IjFlMZcKGppblUBKfopo5esqr0MpK6kOw1KYOdQLCTNktssE9RWEc4-TbtiUX03zt6m_n4y0Bn_x3oHG3DU3XqcoGa-bowlzYPyeVVudA-ATmA240
  priority: 102
  providerName: Elsevier
Title A Fast Iris Liveness Detection for Embedded Systems using Textural Feature Level Fusion Algorithm
URI https://dx.doi.org/10.1016/j.procs.2024.05.185
https://doi.org/10.1016/j.procs.2024.05.185
UnpaywallVersion publishedVersion
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgPXBiRxRB5QNHUjWJHafHsFSFlgqhVpRT5C1laVNUEiH4ejxZECBA5R4r1ow97yV-foPQoUdVRFpCWkoqYhFldjo3sGvZjtaMtqTNs96Al32vMyQXIzoqfLbhLsyX8_tMhwWFHHy1HQIWmwZellHVo4Z4V1B12L8KbuGTymfMAieT0lfo55G_Yc9KGj_x1xc-mXzClvZafmn7ObMkBEnJYyNNREO-fTNsXHDa62i14Jg4yBfFBlrS8SZaK_s34GI7byEe4DZ_TjB0mce9ouzhU51k8qwYGz6Lz6ZCm9qkcGFtjkEoP8YDU9PBsAMDhUznGvdAfITbKfx8w8FkPJvfJ3fTbTRsnw1OOlbRcsGSju1SS0aOairXYdx2HFv7RBJwMidSMuExqZjktueJVhQ1zRLk0qdUaUEkl1IwaejODqrEs1jvIuw7gmjgS65L4dDYpy0iXMYVMYAYcbeGjspkhE-5s0ZYSs4ewix8IYQvbNLQhK-GvDJhYUEOctAPTez_Hmh9pHeRF-398_l9VEnmqT4w3CQRdVQNutc33TpaPh8d14sV-g6nceWN
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsMwELRKOcCFN-KNDxyJWid2nBxLISoQuFCk3iy_AkVtqEoqxN_jTZMKJIQQ10SWo7U9M9qsZxE6C5nJaKy0Z7ShHjXupEtHux7xreUs1kSWvQHv7sPeI70ZsEEDdeu7MFBWWWH_HNNLtK6etKpotibDYeuBRJyDe4njJOJoLFpCy5Q5dQK3-AYXi0QL2J3EZeddGODBiNp9qKzzAqIA326fgoUngabKPzPUyiyfyI93ORp9YaBkA61V0hF35l-3iRo230LrdVsGXJ3SbSQ7OJFvBYbm8Tit0Axf2qKsusqxk6n4aqysgxyDK8dyDPXvT7jvoBp8ODAow9nU4hRqinAyg5wa7oyeXqfD4nm8gx6Tq36351WdFDztk4B5OvNN2wQ-l8T3iY2opmBQTrXmKuTacC1JGKo4y9puZ0kdMWasolpqrbh2KmYXNfPX3O4hHPmKWpBBQcDgX3DEYqoCLg11PJfJYB-d19ETk7lhhqgryV5EGWwBwRZtJlyw91FYR1h8W3fhIP33gd5iPf4y0cF_JzpFK73-XSrS6_vbQ7QKb-YpmCPULKYze-xESaFOyk33CV7C3rM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgPXCirKIIkA8cSdUkdpwcI2hUIag4tFI5Rd5Sljat2kQIvh5PFgQIULnHijVjz3uJn98gdO5RlZBASEtJRSyizE7nBnYt29Ga0UDavOgNeDvw-iNyPabjymcb7sJ8Ob8vdFhQyMFX2yFgsWngZRM1PWqIdwM1R4O78B4-qXzGLHAyqX2Ffh75G_Zs5emCv77w6fQTtkSt8tL2qrAkBEnJcyfPREe-fTNsXHPaO2i74pg4LBfFLtrQ6R5q1f0bcLWd9xEPccRXGYYu8_imKnv4SmeFPCvFhs_i3kxoU5sUrqzNMQjlJ3hoajoYdmCgkPlS4xsQH-Eoh59vOJxO5svH7GF2gEZRb3jZt6qWC5Z0bJdaMnFUV7kO47bj2NonkoCTOZGSCY9JxSS3PU8ESdI1S5BLn1KlBZFcSsGkoTuHqJHOU32EsO8IooEvuS6FQ2OfBkS4jCtiADHhbhtd1MmIF6WzRlxLzp7iInwxhC_u0tiEr428OmFxRQ5K0I9N7P8eaH2kd50XHf_z-RPUyJa5PjXcJBNn1Zp8By7E4uY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Iris+Liveness+Detection+for+Embedded+Systems+using+Textural+Feature+Level+Fusion+Algorithm&rft.jtitle=Procedia+computer+science&rft.au=Tran%2C+Chung+Nguyen&rft.au=Nguyen%2C+Minh+Son&rft.au=Castells-Rufas%2C+David&rft.au=Carrabina%2C+Jordi&rft.date=2024&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=237&rft.spage=858&rft.epage=865&rft_id=info:doi/10.1016%2Fj.procs.2024.05.185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2024_05_185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon