A Fast Iris Liveness Detection for Embedded Systems using Textural Feature Level Fusion Algorithm
Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible to attacks using fake or synthetic iris images, causing a serious security threat. To address this issue, this paper presents a fast iris li...
Saved in:
| Published in | Procedia computer science Vol. 237; pp. 858 - 865 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-0509 1877-0509 |
| DOI | 10.1016/j.procs.2024.05.185 |
Cover
| Abstract | Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible to attacks using fake or synthetic iris images, causing a serious security threat. To address this issue, this paper presents a fast iris liveness detection method specifically designed for embedded systems. The proposed method utilizes a textural feature level fusion algorithm using Local Binary Pattern (LBP) and Gray-Level Co-Occurrence Matrix (GLCM) to distinguish between live and printed iris images. LBP captures texture information, while GLCM characterizes the statistical properties of the iris images. By combining these complementary features, the proposed method enhances the discrimination capability and robustness against presentation attacks. Furthermore, to enable real-time and efficient implementation, the proposed liveness detection is optimized and implemented for embedded systems. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in accurately detecting iris liveness. The proposed fast iris liveness detection is implemented and optimized on C++ which can be complied and deployed in various embedded devices for iris recognition systems on real-world applications, such as access control, biometric authentication, and surveillance systems. |
|---|---|
| AbstractList | Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible to attacks using fake or synthetic iris images, causing a serious security threat. To address this issue, this paper presents a fast iris liveness detection method specifically designed for embedded systems. The proposed method utilizes a textural feature level fusion algorithm using Local Binary Pattern (LBP) and Gray-Level Co-Occurrence Matrix (GLCM) to distinguish between live and printed iris images. LBP captures texture information, while GLCM characterizes the statistical properties of the iris images. By combining these complementary features, the proposed method enhances the discrimination capability and robustness against presentation attacks. Furthermore, to enable real-time and efficient implementation, the proposed liveness detection is optimized and implemented for embedded systems. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in accurately detecting iris liveness. The proposed fast iris liveness detection is implemented and optimized on C++ which can be complied and deployed in various embedded devices for iris recognition systems on real-world applications, such as access control, biometric authentication, and surveillance systems. |
| Author | Nguyen, Minh Son Castells-Rufas, David Tran, Chung Nguyen Carrabina, Jordi |
| Author_xml | – sequence: 1 givenname: Chung Nguyen surname: Tran fullname: Tran, Chung Nguyen email: chungnguyen.tran@autonoma.cat organization: Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain – sequence: 2 givenname: Minh Son surname: Nguyen fullname: Nguyen, Minh Son organization: University of Information Technology-VNUHCM, Ho Chi Minh City, Vietnam – sequence: 3 givenname: David surname: Castells-Rufas fullname: Castells-Rufas, David organization: Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain – sequence: 4 givenname: Jordi surname: Carrabina fullname: Carrabina, Jordi organization: Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain |
| BookMark | eNqNkM9OwzAMhyM0JMbYE3DJC7QkbdN0Bw7T2ACpEgfGOUodd2TqnynpBnt7MsaBE8IX_yzrs-Tvmoy6vkNCbjmLOeP53TbeuR58nLAki5mIeSEuyJgXUkZMsNnoV74iU--3LFRaFDMux0TP6Ur7gT4762lpD9ih9_QBB4TB9h2te0eXbYXGoKGvRz9g6-ne225D1_g57J1u6Ap1CEhLPGCYwjaA82bTOzu8tzfkstaNx-lPn5C31XK9eIrKl8fnxbyMIOGpiKBODDNpIjVPEo5FBhnPhMgAZJVLMBI0z_NqVtcMtdFQCGGwykADVBJYnk5Idr6773b6-KGbRu2cbbU7Ks7UyZTaqm9T6mRKMaGCqYClZwxc773D-p_U_ZnC8NHBolMeLHaAxrpgTpne_sl_AeT6h3E |
| Cites_doi | 10.1109/TIFS.2021.3132582 10.3390/bdcc6020067 10.3390/inventions6040065 10.1016/j.patrec.2014.10.018 10.1109/TCSVT.2003.818350 10.1109/ACCESS.2021.3138455 10.18178/joig.9.3.95-102 10.3390/s21217408 10.1109/TSMC.1973.4309314 10.1007/978-3-642-01793-3_109 10.1109/TCSVT.2003.818349 10.1109/TSMCC.2011.2118750 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.procs.2024.05.185 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 865 |
| ExternalDocumentID | 10.1016/j.procs.2024.05.185 10_1016_j_procs_2024_05_185 S1877050924012018 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKYEP CITATION ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2135-cf2d0d327a1221e84c414554cc7b67cd7ca166b9ff0eadac855deb4caccb7c063 |
| IEDL.DBID | UNPAY |
| ISSN | 1877-0509 |
| IngestDate | Tue Aug 19 21:31:12 EDT 2025 Wed Oct 01 02:36:26 EDT 2025 Wed Jun 26 17:49:04 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | liveness detection textural feature iris recognition local binary pattern gray-level co-occurrence matrix |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2135-cf2d0d327a1221e84c414554cc7b67cd7ca166b9ff0eadac855deb4caccb7c063 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.procs.2024.05.185 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2024_05_185 crossref_primary_10_1016_j_procs_2024_05_185 elsevier_sciencedirect_doi_10_1016_j_procs_2024_05_185 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Daugman (bib0002) 2004; 14 Li, Wu, Wang (bib0012) 2021; 9 Joachims (bib0015) 2002; 668 Z. He, Z. Sun, T. Tan, Z. Wei, Efficient iris spoof detection via boosted local binary patterns, in: M. Tistarelli, M. S. Nixon (Eds.), Advances in Biometrics, Springer Berlin Heidelberg, 2009, pp. 1080–1090. doi Huang, Shan, Ardabilian, Wang, Chen (bib0013) 2011; 41 Khade, Gite, Thepade, Pradhan, Alamri (bib0010) 2021; 21 . Jain, Ross, Prabhakar (bib0001) 2004; 14 Khade, Ahirrao, Phansalkar, Kotecha, Gite, Thepade (bib0004) 2021; 6 Tapia, Gonzalez, Busch (bib0006) 2022; 17 Khade, Gite, Thepade, Pradhan, Alamri (bib0003) 2021; 9 Haralick, Shanmugam, Dinstein (bib0005) 1973; 3 Yambay, Becker, Kohli, Yadav, Czajka, Bowyer, Schuckers, Singh, Vatsa, Noore, Gragnaniello, Sansone, Verdoliva, He, Ru, Li, Liu, Sun, Tan (bib0017) 2017 Yambay, Walczak, Schuckers, Czajka (bib0016) 2015 Khade, Gite, Pradhan (bib0007) 2022; 6 Gragnaniello, Sansone, Verdoliva (bib0009) 2015; 57 Yadav, Kohli, Agarwal, Vatsa, Singh, Noore (bib0008) 2018 Ngo, Casadevall, Codina, Castells-Rufas, Carrabina (bib0014) 2018 McGrath, Bowyer, Czajka (bib0018) 2018 Khade (10.1016/j.procs.2024.05.185_bib0003) 2021; 9 Joachims (10.1016/j.procs.2024.05.185_bib0015) 2002; 668 Jain (10.1016/j.procs.2024.05.185_bib0001) 2004; 14 Haralick (10.1016/j.procs.2024.05.185_bib0005) 1973; 3 Li (10.1016/j.procs.2024.05.185_bib0012) 2021; 9 McGrath (10.1016/j.procs.2024.05.185_bib0018) 2018 Yadav (10.1016/j.procs.2024.05.185_bib0008) 2018 10.1016/j.procs.2024.05.185_bib0011 Huang (10.1016/j.procs.2024.05.185_bib0013) 2011; 41 Ngo (10.1016/j.procs.2024.05.185_bib0014) 2018 Yambay (10.1016/j.procs.2024.05.185_bib0017) 2017 Khade (10.1016/j.procs.2024.05.185_bib0010) 2021; 21 Yambay (10.1016/j.procs.2024.05.185_bib0016) 2015 Khade (10.1016/j.procs.2024.05.185_bib0007) 2022; 6 Gragnaniello (10.1016/j.procs.2024.05.185_bib0009) 2015; 57 Tapia (10.1016/j.procs.2024.05.185_bib0006) 2022; 17 Daugman (10.1016/j.procs.2024.05.185_bib0002) 2004; 14 Khade (10.1016/j.procs.2024.05.185_bib0004) 2021; 6 |
| References_xml | – volume: 6 year: 2021 ident: bib0004 article-title: Iris liveness detection for biometric authentication: A systematic literature review and future directions publication-title: Inventions – start-page: 1 year: 2015 end-page: 6 ident: bib0016 article-title: Livdet-iris 2015 - iris liveness detection competition publication-title: 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA – volume: 3 start-page: 610 year: 1973 end-page: 621 ident: bib0005 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics SMC – volume: 17 start-page: 42 year: 2022 end-page: 52 ident: bib0006 article-title: Iris liveness detection using a cascade of dedicated deep learning networks publication-title: IEEE Transactions on Information Forensics and Security – year: 2018 ident: bib0018 article-title: Open source presentation attack detection baseline for iris recognition publication-title: arXiv preprint – volume: 9 start-page: 169231 year: 2021 end-page: 169249 ident: bib0003 article-title: Detection of iris presentation attacks using hybridization of discrete cosine transform and haar transform with machine learning classifiers and ensembles publication-title: IEEE Access – reference: . – volume: 9 start-page: 95 year: 2021 end-page: 102 ident: bib0012 article-title: A novel iris texture extraction scheme for iris presentation attack detection publication-title: Journal of Image and Graphics – start-page: 733 year: 2017 end-page: 741 ident: bib0017 article-title: Livdet iris 2017 — iris liveness detection competition publication-title: 2017 IEEE International Joint Conference on Biometrics (IJCB) – start-page: 685 year: 2018 end-page: 6857 ident: bib0008 article-title: Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) – volume: 21 year: 2021 ident: bib0010 article-title: Detection of iris presentation attacks using feature fusion of thepade's sorted block truncation coding with gray-level co-occurrence matrix features publication-title: Sensors – volume: 14 start-page: 21 year: 2004 end-page: 30 ident: bib0002 article-title: How iris recognition works publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 6 year: 2022 ident: bib0007 article-title: Iris liveness detection using multiple deep convolution networks publication-title: Big Data and Cognitive Computing – start-page: 10 year: 2018 end-page: 14 ident: bib0014 article-title: A low-cost svm classifier on fpga for pedestrian detection publication-title: Proceedings of the Jornadas de Computación Empotrada y Reconfigurable (JCER2018) – volume: 668 year: 2002 ident: bib0015 publication-title: Learning to classify text using support vector machines – volume: 57 start-page: 81 year: 2015 end-page: 87 ident: bib0009 article-title: Iris liveness detection for mobile devices based on local descriptors publication-title: Pattern Recognition Letters – volume: 41 start-page: 765 year: 2011 end-page: 781 ident: bib0013 article-title: Local binary patterns and its application to facial image analysis: A survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 14 start-page: 4 year: 2004 end-page: 20 ident: bib0001 article-title: An introduction to biometric recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology – reference: Z. He, Z. Sun, T. Tan, Z. Wei, Efficient iris spoof detection via boosted local binary patterns, in: M. Tistarelli, M. S. Nixon (Eds.), Advances in Biometrics, Springer Berlin Heidelberg, 2009, pp. 1080–1090. doi: – volume: 17 start-page: 42 year: 2022 ident: 10.1016/j.procs.2024.05.185_bib0006 article-title: Iris liveness detection using a cascade of dedicated deep learning networks publication-title: IEEE Transactions on Information Forensics and Security doi: 10.1109/TIFS.2021.3132582 – volume: 668 year: 2002 ident: 10.1016/j.procs.2024.05.185_bib0015 – volume: 6 issue: 2 year: 2022 ident: 10.1016/j.procs.2024.05.185_bib0007 article-title: Iris liveness detection using multiple deep convolution networks publication-title: Big Data and Cognitive Computing doi: 10.3390/bdcc6020067 – volume: 6 issue: 4 year: 2021 ident: 10.1016/j.procs.2024.05.185_bib0004 article-title: Iris liveness detection for biometric authentication: A systematic literature review and future directions publication-title: Inventions doi: 10.3390/inventions6040065 – start-page: 1 year: 2015 ident: 10.1016/j.procs.2024.05.185_bib0016 article-title: Livdet-iris 2015 - iris liveness detection competition – volume: 57 start-page: 81 year: 2015 ident: 10.1016/j.procs.2024.05.185_bib0009 article-title: Iris liveness detection for mobile devices based on local descriptors publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2014.10.018 – start-page: 685 year: 2018 ident: 10.1016/j.procs.2024.05.185_bib0008 article-title: Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection – volume: 14 start-page: 21 issue: 1 year: 2004 ident: 10.1016/j.procs.2024.05.185_bib0002 article-title: How iris recognition works publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2003.818350 – volume: 9 start-page: 169231 year: 2021 ident: 10.1016/j.procs.2024.05.185_bib0003 article-title: Detection of iris presentation attacks using hybridization of discrete cosine transform and haar transform with machine learning classifiers and ensembles publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3138455 – volume: 9 start-page: 95 issue: 3 year: 2021 ident: 10.1016/j.procs.2024.05.185_bib0012 article-title: A novel iris texture extraction scheme for iris presentation attack detection publication-title: Journal of Image and Graphics doi: 10.18178/joig.9.3.95-102 – volume: 21 issue: 21 year: 2021 ident: 10.1016/j.procs.2024.05.185_bib0010 article-title: Detection of iris presentation attacks using feature fusion of thepade's sorted block truncation coding with gray-level co-occurrence matrix features publication-title: Sensors doi: 10.3390/s21217408 – start-page: 10 year: 2018 ident: 10.1016/j.procs.2024.05.185_bib0014 article-title: A low-cost svm classifier on fpga for pedestrian detection – start-page: 733 year: 2017 ident: 10.1016/j.procs.2024.05.185_bib0017 article-title: Livdet iris 2017 — iris liveness detection competition – year: 2018 ident: 10.1016/j.procs.2024.05.185_bib0018 article-title: Open source presentation attack detection baseline for iris recognition publication-title: arXiv preprint – volume: 3 start-page: 610 issue: 6 year: 1973 ident: 10.1016/j.procs.2024.05.185_bib0005 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics SMC doi: 10.1109/TSMC.1973.4309314 – ident: 10.1016/j.procs.2024.05.185_bib0011 doi: 10.1007/978-3-642-01793-3_109 – volume: 14 start-page: 4 issue: 1 year: 2004 ident: 10.1016/j.procs.2024.05.185_bib0001 article-title: An introduction to biometric recognition publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2003.818349 – volume: 41 start-page: 765 issue: 6 year: 2011 ident: 10.1016/j.procs.2024.05.185_bib0013 article-title: Local binary patterns and its application to facial image analysis: A survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2011.2118750 |
| SSID | ssj0000388917 |
| Score | 2.3107326 |
| Snippet | Iris recognition is a widely used biometric authentication technique due to its high accuracy and uniqueness. However, iris recognition systems are susceptible... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 858 |
| SubjectTerms | gray-level co-occurrence matrix iris recognition liveness detection local binary pattern textural feature |
| SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jL_rit_hNHny0bGmTpn2cc2PK9MUN9lby1TnZujFbxH9vbpsOBRHxsaEh5SY555LenIPQdch0SmOpPK009ai2O11Y2vWIbwxnsSKi9AZ8fAoHY_owYZMG6tZ3YaCs0mF_heklWruWlotmazWbtZ5JxDmol1hOIpbG4MJvQCOwb7if3G7OWUDtJC6Nd-F9DzrU4kNlmRfwBMh2-xQUPAl4Kv9MUFtFthIf72I-_0JA_T204zJH3Kk-bh81THaAdmtXBuw26SESHdwXbzkG73g8dGCG70xeFl1l2GapuLeQxiKOxk6wHEP5-xSPLFKDDAeGxLBYGzyEkiLcL-BIDXfm0-V6lr8sjtC43xt1B54zUvCUTwLmqdTXbR34XBDfJyaiioI-OVWKy5ArzZUgYSjjNG3bhSVUxJg2kiqhlOTKJjHHqJktM3OCcORLaiALCgIGv4IjFlMZcKGppblUBKfopo5esqr0MpK6kOw1KYOdQLCTNktssE9RWEc4-TbtiUX03zt6m_n4y0Bn_x3oHG3DU3XqcoGa-bowlzYPyeVVudA-ATmA240 priority: 102 providerName: Elsevier |
| Title | A Fast Iris Liveness Detection for Embedded Systems using Textural Feature Level Fusion Algorithm |
| URI | https://dx.doi.org/10.1016/j.procs.2024.05.185 https://doi.org/10.1016/j.procs.2024.05.185 |
| UnpaywallVersion | publishedVersion |
| Volume | 237 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgPXBiRxRB5QNHUjWJHafHsFSFlgqhVpRT5C1laVNUEiH4ejxZECBA5R4r1ow97yV-foPQoUdVRFpCWkoqYhFldjo3sGvZjtaMtqTNs96Al32vMyQXIzoqfLbhLsyX8_tMhwWFHHy1HQIWmwZellHVo4Z4V1B12L8KbuGTymfMAieT0lfo55G_Yc9KGj_x1xc-mXzClvZafmn7ObMkBEnJYyNNREO-fTNsXHDa62i14Jg4yBfFBlrS8SZaK_s34GI7byEe4DZ_TjB0mce9ouzhU51k8qwYGz6Lz6ZCm9qkcGFtjkEoP8YDU9PBsAMDhUznGvdAfITbKfx8w8FkPJvfJ3fTbTRsnw1OOlbRcsGSju1SS0aOairXYdx2HFv7RBJwMidSMuExqZjktueJVhQ1zRLk0qdUaUEkl1IwaejODqrEs1jvIuw7gmjgS65L4dDYpy0iXMYVMYAYcbeGjspkhE-5s0ZYSs4ewix8IYQvbNLQhK-GvDJhYUEOctAPTez_Hmh9pHeRF-398_l9VEnmqT4w3CQRdVQNutc33TpaPh8d14sV-g6nceWN |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsMwELRKOcCFN-KNDxyJWid2nBxLISoQuFCk3iy_AkVtqEoqxN_jTZMKJIQQ10SWo7U9M9qsZxE6C5nJaKy0Z7ShHjXupEtHux7xreUs1kSWvQHv7sPeI70ZsEEDdeu7MFBWWWH_HNNLtK6etKpotibDYeuBRJyDe4njJOJoLFpCy5Q5dQK3-AYXi0QL2J3EZeddGODBiNp9qKzzAqIA326fgoUngabKPzPUyiyfyI93ORp9YaBkA61V0hF35l-3iRo230LrdVsGXJ3SbSQ7OJFvBYbm8Tit0Axf2qKsusqxk6n4aqysgxyDK8dyDPXvT7jvoBp8ODAow9nU4hRqinAyg5wa7oyeXqfD4nm8gx6Tq36351WdFDztk4B5OvNN2wQ-l8T3iY2opmBQTrXmKuTacC1JGKo4y9puZ0kdMWasolpqrbh2KmYXNfPX3O4hHPmKWpBBQcDgX3DEYqoCLg11PJfJYB-d19ETk7lhhqgryV5EGWwBwRZtJlyw91FYR1h8W3fhIP33gd5iPf4y0cF_JzpFK73-XSrS6_vbQ7QKb-YpmCPULKYze-xESaFOyk33CV7C3rM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgPXCirKIIkA8cSdUkdpwcI2hUIag4tFI5Rd5Sljat2kQIvh5PFgQIULnHijVjz3uJn98gdO5RlZBASEtJRSyizE7nBnYt29Ga0UDavOgNeDvw-iNyPabjymcb7sJ8Ob8vdFhQyMFX2yFgsWngZRM1PWqIdwM1R4O78B4-qXzGLHAyqX2Ffh75G_Zs5emCv77w6fQTtkSt8tL2qrAkBEnJcyfPREe-fTNsXHPaO2i74pg4LBfFLtrQ6R5q1f0bcLWd9xEPccRXGYYu8_imKnv4SmeFPCvFhs_i3kxoU5sUrqzNMQjlJ3hoajoYdmCgkPlS4xsQH-Eoh59vOJxO5svH7GF2gEZRb3jZt6qWC5Z0bJdaMnFUV7kO47bj2NonkoCTOZGSCY9JxSS3PU8ESdI1S5BLn1KlBZFcSsGkoTuHqJHOU32EsO8IooEvuS6FQ2OfBkS4jCtiADHhbhtd1MmIF6WzRlxLzp7iInwxhC_u0tiEr428OmFxRQ5K0I9N7P8eaH2kd50XHf_z-RPUyJa5PjXcJBNn1Zp8By7E4uY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Iris+Liveness+Detection+for+Embedded+Systems+using+Textural+Feature+Level+Fusion+Algorithm&rft.jtitle=Procedia+computer+science&rft.au=Tran%2C+Chung+Nguyen&rft.au=Nguyen%2C+Minh+Son&rft.au=Castells-Rufas%2C+David&rft.au=Carrabina%2C+Jordi&rft.date=2024&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=237&rft.spage=858&rft.epage=865&rft_id=info:doi/10.1016%2Fj.procs.2024.05.185&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2024_05_185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |