Performance enhancement of Sb2(S,Se)3 solar cells through neodymium ion flow doping
Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing the efficiency of the device in terms of providing a preferential crystal orientation and lower defect density. [Display omitted] •Nd3+ dopin...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 490; p. 151574 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 |
DOI | 10.1016/j.cej.2024.151574 |
Cover
Abstract | Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing the efficiency of the device in terms of providing a preferential crystal orientation and lower defect density.
[Display omitted]
•Nd3+ doping for Sb2(S,Se)3 is carried out via modified hydrothermal deposition.•These ions can be incorporated into the crystal lattice.•Most of the ions migrate to the CdS/Sb2(S,Se)3 interface after doping.•Photoelectrical parameters and device stability are both improved after doping.•We provide an effective doping strategy for Sb2(S,Se)3 solar cells.
Doping the light absorber layer of antimony chalcogenides with extrinsic ions is an effective approach for improving their photovoltaic quality. These dopant ions generally reside at positions other than the crystal lattice or form an alloy (e.g., AgSb(S,Se)3) with a poor device performance. Therefore, incorporating such ions into an antimony chalcogenide lattice such that there is a positive influence on device quality would be highly useful. Herein, doping of Nd3+ for Sb2(S,Se)3 is carried out via a modified hydrothermal deposition process. Notably, these ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after doping, which are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. Nd3+ doping produces benign effects on the crystal orientation, film morphology, optoelectronic properties, and defect passivation of the Sb2(S,Se)3 films. Consequently, all the photoelectrical parameters of Sb2(S,Se)3 solar cells doped with Nd3+ are enhanced, delivering a remarkable efficiency of 8.24 %. Furthermore, the best device stored in air only shows a slight decrease in efficiency in the 2400-h aging test. Overall, this study provides an effective doping strategy to improve the photovoltaic quality of Sb2(S,Se)3 films. |
---|---|
AbstractList | Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing the efficiency of the device in terms of providing a preferential crystal orientation and lower defect density.
[Display omitted]
•Nd3+ doping for Sb2(S,Se)3 is carried out via modified hydrothermal deposition.•These ions can be incorporated into the crystal lattice.•Most of the ions migrate to the CdS/Sb2(S,Se)3 interface after doping.•Photoelectrical parameters and device stability are both improved after doping.•We provide an effective doping strategy for Sb2(S,Se)3 solar cells.
Doping the light absorber layer of antimony chalcogenides with extrinsic ions is an effective approach for improving their photovoltaic quality. These dopant ions generally reside at positions other than the crystal lattice or form an alloy (e.g., AgSb(S,Se)3) with a poor device performance. Therefore, incorporating such ions into an antimony chalcogenide lattice such that there is a positive influence on device quality would be highly useful. Herein, doping of Nd3+ for Sb2(S,Se)3 is carried out via a modified hydrothermal deposition process. Notably, these ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after doping, which are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. Nd3+ doping produces benign effects on the crystal orientation, film morphology, optoelectronic properties, and defect passivation of the Sb2(S,Se)3 films. Consequently, all the photoelectrical parameters of Sb2(S,Se)3 solar cells doped with Nd3+ are enhanced, delivering a remarkable efficiency of 8.24 %. Furthermore, the best device stored in air only shows a slight decrease in efficiency in the 2400-h aging test. Overall, this study provides an effective doping strategy to improve the photovoltaic quality of Sb2(S,Se)3 films. |
ArticleNumber | 151574 |
Author | Liu, Jingjing Zhang, Jing Yuan, Ningyi Jiang, Sai Xu, Fangxian Ding, Jianning Ni, Xiaomeng Zhang, Shuai Fang, Bijun Guo, Huafei |
Author_xml | – sequence: 1 givenname: Xiaomeng surname: Ni fullname: Ni, Xiaomeng organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 2 givenname: Jingjing surname: Liu fullname: Liu, Jingjing organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 3 givenname: Fangxian surname: Xu fullname: Xu, Fangxian organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 5 givenname: Sai surname: Jiang fullname: Jiang, Sai organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 6 givenname: Bijun orcidid: 0000-0002-9510-9433 surname: Fang fullname: Fang, Bijun organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 7 givenname: Huafei orcidid: 0000-0002-9398-1105 surname: Guo fullname: Guo, Huafei email: guohuafei@cczu.edu.cn organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 8 givenname: Ningyi surname: Yuan fullname: Yuan, Ningyi email: nyyuan@cczu.edu.cn organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 9 givenname: Jianning surname: Ding fullname: Ding, Jianning organization: School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China – sequence: 10 givenname: Shuai orcidid: 0000-0002-3033-9238 surname: Zhang fullname: Zhang, Shuai email: shuaizhang@cczu.edu.cn organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China |
BookMark | eNp9kL1OwzAYRT0UibbwAGweQSLBdhwnEROq-JMqgRSYLcf53DpK7MpOQX17UpWJgelO5-res0Az5x0gdEVJSgkVd12qoUsZYTylOc0LPkNzmpV5Ula8OEeLGDtCiKhoNUf1OwTjw6CcBgxue8wB3Ii9wXXDruvbGm4yHH2vAtbQ9xGP2-D3my124NvDYPcDtt5h0_tv3PqddZsLdGZUH-HyN5fo8-nxY_WSrN-eX1cP60QzysZEqLKsclbwknORgRakBMgbI5qWV01BW0WbIgcgTGSGlFybotVNRUGwMjOgsyUqTr06-BgDGKntqMZpzRiU7SUl8uhDdnLyIY8-5MnHRNI_5C7YQYXDv8z9iYHp0peFIKO2MOlqbQA9ytbbf-gfZyN8jw |
CitedBy_id | crossref_primary_10_1002_adfm_202420361 crossref_primary_10_1039_D4EE02877E crossref_primary_10_1039_D4RA03340J crossref_primary_10_1016_j_solmat_2025_113455 |
Cites_doi | 10.1021/acsaem.1c04097 10.1002/smll.202102429 10.1016/j.solener.2022.03.005 10.1016/j.cej.2022.135872 10.1016/j.jpowsour.2014.11.138 10.1016/j.jallcom.2022.166842 10.1002/adma.202102055 10.1002/adfm.202110335 10.1002/adma.202305841 10.1016/j.cplett.2021.138362 10.1002/smll.202206175 10.1002/aenm.201902650 10.1038/s41467-020-16726-3 10.1002/adma.202308522 10.1039/D1TA02356J 10.1002/advs.202105142 10.1038/s41560-020-0652-3 10.1016/j.jallcom.2022.165885 10.1002/adfm.202213941 10.3390/catal11020174 10.1002/advs.202304246 10.1002/anie.201916000 10.1016/j.physb.2022.414394 10.1016/j.jpowsour.2022.231294 10.1016/j.jechem.2023.01.049 10.1002/solr.202100320 10.1002/aenm.202002341 10.1021/acsami.2c07157 10.1002/anie.202305551 10.1002/aenm.202103015 10.1021/acsaem.2c00790 10.1007/s00339-014-8411-6 10.1016/j.physb.2023.415221 10.1016/j.cap.2010.11.019 10.1002/adma.202109078 10.1002/smll.202308895 10.1016/j.solener.2022.04.011 10.1016/j.jpowsour.2014.09.037 10.1016/j.solener.2020.11.074 10.1039/C6RA20690E 10.1016/j.solener.2020.07.055 10.1016/j.cej.2022.135341 10.1002/inf2.12400 10.1002/solr.201800272 10.15541/jim20200495 10.1021/am502427s 10.1016/j.materresbull.2013.01.040 10.1016/j.solmat.2017.05.057 10.1016/j.jpowsour.2019.226987 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2024.151574 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2024_151574 S1385894724030614 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSJ SSZ T5K ~G- AAYWO AAYXX ABXDB ACVFH ADCNI AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 |
ID | FETCH-LOGICAL-c212t-6a889527484463ec608ee5bf6bd49b71da1b75ee0263f084cf7dcb91e6283fec3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:03:56 EDT 2025 Tue Jul 01 02:12:00 EDT 2025 Sun Apr 06 06:53:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sb2(S,Se)3 Orientation Flow doping Neodymium ions Energy band structures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c212t-6a889527484463ec608ee5bf6bd49b71da1b75ee0263f084cf7dcb91e6283fec3 |
ORCID | 0000-0002-3033-9238 0000-0002-9398-1105 0000-0002-9510-9433 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2024_151574 crossref_primary_10_1016_j_cej_2024_151574 elsevier_sciencedirect_doi_10_1016_j_cej_2024_151574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-15 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | X.P. Yanlin Pan, Rui Wang, Xiaobo Hu, Shaoqiang Chen, Jiahua Tao, Pingxiong Yang, and Junhao Chu, Vapor transport deposition of Sb Liu, Cai, Wan, Xiao, Che, Yang, Niu, Wang, Zhu, Huang, Zhu, Zelewski, Chen, Hoye, Zhou (b0075) 2023; 36 Zhang, Dong, Lin, Qu, Yuan, Ding (b0150) 2015; 277 Chen, Fu, Ishaq, Li, Ren, Su, Qiao, Fan, Liang, Tang (b0225) 2023; 5 Wang, Lu, Liu, Cao, Zhang, Zhu, Zhang, Zhang, Yuan, Ding (b0165) 2021; 767 Li, Lin, Yao, Wu, Wei, Liu, Huang, Chen, Li, Chen (b0240) 2021; 32 Badgujar, Dusane, Dhage (b0055) 2022; 52 Liu, Ni, Xu, Zhang, Zhang, Guo, Fang, Cheng, Jiang, Yuan, Ding (b0230) 2023; 668 Satale, Bhat (b0045) 2020; 208 Liang, Chen, Ishaq, Li, Tang, Zheng, Su, Fan, Zhang, Chen (b0020) 2022; 9 Tang, Chen, Zheng, Su, Luo, Fan, Zhang, Tang, Liang (b0200) 2022; 34 Greczynski, Hultman (b0130) 2020; 59 Bodenes, Darwiche, Monconduit, Martinez (b0140) 2015; 273 Liu, Cao, Zhang, Jiang, Yu, Hao, Zhang, Guo, Fang, Yuan, Fan, Zhang, Ding (b0145) 2022; 530 Shi, Zhang, Dai, Zeng, Qu, Song (b0100) 2022; 437 Luo, Chen, Chen, Ahmad, Azam, Zheng, Su, Cathelinaud, Ma, Chen, Fan, Zhang, Liang (b0015) 2023; 33 Li, Zhou, Luo, Chen, Yang, Wen, Lu, Chen, Zeng, Song, Tang (b0065) 2016; 6 Dong, Liu, Cao, Liu, Bai, Chen, Liu, Wu, Luo, Zhang, Liu (b0175) 2022; 19 Zhang, Wang, Liu, Cao, Zhang, Yuan, Zhang, Gu (b0215) 2021; 11 ) Zhang, Guo, Jia, Ning, Ma, Wang, Qiu, Yuan, Ding (b0190) 2021; 214 Zhang, Lu, Lin, Zhu, Zhang, Yuan, Ding, Fang (b0155) 2017; 170 Tang, Wang, Lian, Huang, Wei, Huang, Yin, Jiang, Yang, Xing, Chen, Zhu, Hao, Green, Chen (b0010) 2020; 5 J.O. González, S. Shaji, D. Avellaneda, G.A. Castillo, T.K. Das Roy, B. Krishnan, Photovoltaic structures using AgSb(S González, Shaji, Avellaneda, Castillo, Roy, Krishnan (b0080) 2013; 48 Wang, Tang, Huang, Qian, Lian, Zhu, Chen (b0235) 2022; 14 Wang, Tang, Jiang, Lian, Ju, Jiang, Li, Zhu, Chen (b0025) 2020; 10 Guo, Huang, Zhu, Zhang, Geng, Jiang, Gu, Su, Lu, Zhang, Zhang, Qiu, Yuan, Ding (b0060) 2023; 10 Jiang, Yao, Huang, Tang, Wang, Lei, Zeng, Chang, Zhong, Yao, Zhu, Chen (b0160) 2020; 1 Chen, Luo, Abbas, Ishaq, Zheng, Chen, Su, Zhang, Fan, Liang (b0105) 2023; 36 S,Se solar cells with continuously tunable band gaps, ACS Appl. Energy Mater. 5(6) (2022) 7240-7248. https://doi.org/10.1021/acsaem.2c00790. Gao, Zhao, Zhang, You (b0170) 2019; 10 Zhu, Yang, Zhang, Du, Fan, Luo, Zhang, Zhang (b0250) 2022; 5 Yu, Chen, Zhu, Wang, Han, Chen, Zhang, Du, He (b0245) 2021; 33 thin films as absorber, Appl. Phys. A 116(4) (2014) 2095-2105. https://doi.org/10.1007/s00339-014-8411-6. Ding, Yuan, Zhang, Zhang, Zhang, Cao, Wang, Hu, Liu (b0255) 2021; 36 Li, Li, Jia, Yu, Yang, Bai, Pollard, Liu, Ma, Kampwerth, Lin (b0090) 2023; 20 Li, Gao, Zhang, Xu, Zhuang, Wang, Yang, Ma, Zheng, Song, Chen, Chen (b0210) 2021; 5 Zhang, Hu, Zhang, Jia, Jiang, Chen, Lin, Jiang, Fang, Yuan, Ding (b0195) 2019; 438 Huang, Cai, Wang, Gong, Wei, Chen (b0185) 2021; 17 Jiang, Tang, Wang, Ju, Chen, Chen (b0070) 2018; 3 Lee, McInerney (b0085) 2022; 238 Liu, Cao, Feng, Ni, Zhang, Qiu, Zhang, Guo, Yuan, Ding (b0040) 2022; 920 Liu, Jiang, Feng, Yang, Chen, Ning, Wu (b0205) 2023; 62 Guo, Jia, Liu, Feng, Zhang, Chen, Tian, Qiu, Yuan, Ding (b0120) 2023; 648 Liu, Chen, Luo, Leng, Xia, Zhou, Qin, Xue, Lv, Huang, Niu, Tang (b0135) 2014; 6 Lin, Chen, Ahmad, Ishaq, Chen, Su, Fan, Zhang, Zhang, Liang (b0220) 2023; 80 Y. Zhao, C. Li, J. Niu, Z. Zhi, G. Chen, J. Gong, J. Li, X. Xiao, Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb Shin, Shin, Kim, Ahn (b0110) 2011; 11 solar cells, J. Mater. Chem. A. 9(21) (2021) 12644–12651. https://doi.org/10.1039/d1ta02356j. Se Kumari, Ingole (b0050) 2022; 236 Xing, Guo, Liu, Zhang, Qiu, Yuan, Ding (b0125) 2022; 927 Nakamura, Yakumaru, Truong, Kim, Liu, Hu, Otsuka, Hashimoto, Murdey, Sasamori, Kim, Ohkita, Handa, Kanemitsu, Wakamiya (b0180) 2020; 11 Wu, zhao, Yao, Li, Huang, Lin, Ma, Chen, Li, Chen (b0030) 2022; 440 Zhao, Wang, Jiang, Li, Xiao, Tang, Gong, Chen, Chen, Li, Xiao (b0005) 2021; 12 Nakamura (10.1016/j.cej.2024.151574_b0180) 2020; 11 Lee (10.1016/j.cej.2024.151574_b0085) 2022; 238 Shin (10.1016/j.cej.2024.151574_b0110) 2011; 11 Dong (10.1016/j.cej.2024.151574_b0175) 2022; 19 Chen (10.1016/j.cej.2024.151574_b0225) 2023; 5 Tang (10.1016/j.cej.2024.151574_b0010) 2020; 5 Jiang (10.1016/j.cej.2024.151574_b0070) 2018; 3 Badgujar (10.1016/j.cej.2024.151574_b0055) 2022; 52 Ding (10.1016/j.cej.2024.151574_b0255) 2021; 36 Zhao (10.1016/j.cej.2024.151574_b0005) 2021; 12 Greczynski (10.1016/j.cej.2024.151574_b0130) 2020; 59 Tang (10.1016/j.cej.2024.151574_b0200) 2022; 34 Liu (10.1016/j.cej.2024.151574_b0205) 2023; 62 Li (10.1016/j.cej.2024.151574_b0065) 2016; 6 Yu (10.1016/j.cej.2024.151574_b0245) 2021; 33 Luo (10.1016/j.cej.2024.151574_b0015) 2023; 33 Li (10.1016/j.cej.2024.151574_b0240) 2021; 32 Wu (10.1016/j.cej.2024.151574_b0030) 2022; 440 Liu (10.1016/j.cej.2024.151574_b0135) 2014; 6 Liang (10.1016/j.cej.2024.151574_b0020) 2022; 9 Kumari (10.1016/j.cej.2024.151574_b0050) 2022; 236 Lin (10.1016/j.cej.2024.151574_b0220) 2023; 80 Zhang (10.1016/j.cej.2024.151574_b0150) 2015; 277 Wang (10.1016/j.cej.2024.151574_b0235) 2022; 14 Liu (10.1016/j.cej.2024.151574_b0075) 2023; 36 10.1016/j.cej.2024.151574_b0115 Li (10.1016/j.cej.2024.151574_b0210) 2021; 5 Shi (10.1016/j.cej.2024.151574_b0100) 2022; 437 10.1016/j.cej.2024.151574_b0035 Wang (10.1016/j.cej.2024.151574_b0025) 2020; 10 Jiang (10.1016/j.cej.2024.151574_b0160) 2020; 1 Li (10.1016/j.cej.2024.151574_b0090) 2023; 20 Chen (10.1016/j.cej.2024.151574_b0105) 2023; 36 Huang (10.1016/j.cej.2024.151574_b0185) 2021; 17 González (10.1016/j.cej.2024.151574_b0080) 2013; 48 Zhu (10.1016/j.cej.2024.151574_b0250) 2022; 5 Guo (10.1016/j.cej.2024.151574_b0120) 2023; 648 Wang (10.1016/j.cej.2024.151574_b0165) 2021; 767 Satale (10.1016/j.cej.2024.151574_b0045) 2020; 208 Zhang (10.1016/j.cej.2024.151574_b0215) 2021; 11 Guo (10.1016/j.cej.2024.151574_b0060) 2023; 10 Bodenes (10.1016/j.cej.2024.151574_b0140) 2015; 273 10.1016/j.cej.2024.151574_b0095 Xing (10.1016/j.cej.2024.151574_b0125) 2022; 927 Liu (10.1016/j.cej.2024.151574_b0145) 2022; 530 Zhang (10.1016/j.cej.2024.151574_b0155) 2017; 170 Zhang (10.1016/j.cej.2024.151574_b0190) 2021; 214 Gao (10.1016/j.cej.2024.151574_b0170) 2019; 10 Liu (10.1016/j.cej.2024.151574_b0230) 2023; 668 Liu (10.1016/j.cej.2024.151574_b0040) 2022; 920 Zhang (10.1016/j.cej.2024.151574_b0195) 2019; 438 |
References_xml | – volume: 10 start-page: 1902650 year: 2019 ident: b0170 article-title: Recent progresses on defect passivation toward efficient perovskite solar cells publication-title: Adv. Energy Mater. – reference: Se – reference: solar cells with continuously tunable band gaps, ACS Appl. Energy Mater. 5(6) (2022) 7240-7248. https://doi.org/10.1021/acsaem.2c00790. – volume: 11 start-page: S59 year: 2011 end-page: S64 ident: b0110 article-title: Effect of Na doping using Na publication-title: Curr. Appl. Phys. – volume: 1 year: 2020 ident: b0160 article-title: Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells publication-title: Cell Rep. Phys. Sci. – reference: (S,Se) – volume: 3 start-page: 1800272 year: 2018 ident: b0070 article-title: Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells publication-title: Sol. RRL – volume: 170 start-page: 178 year: 2017 end-page: 186 ident: b0155 article-title: PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance publication-title: Sol. Energy Mater. Sol. Cells – volume: 437 year: 2022 ident: b0100 article-title: Nanorod-textured Sb publication-title: Chem. Eng. J. – volume: 648 year: 2023 ident: b0120 article-title: Classification of lattice defects and the microscopic origin of p-type conductivity of Sb publication-title: Phys. B – volume: 34 start-page: 2109078 year: 2022 ident: b0200 article-title: Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells publication-title: Adv. Mater. – volume: 530 year: 2022 ident: b0145 article-title: Reversible degradation-assisted interface engineering via Cs publication-title: J. Power Sources – volume: 20 start-page: 2308895 year: 2023 ident: b0090 article-title: Precursor engineering of solution-processed Sb2S3 solar cells publication-title: Small – reference: Y. Zhao, C. Li, J. Niu, Z. Zhi, G. Chen, J. Gong, J. Li, X. Xiao, Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb – volume: 927 year: 2022 ident: b0125 article-title: High-efficiency Sb publication-title: J. Alloys Compd. – volume: 12 start-page: 2103015 year: 2021 ident: b0005 article-title: Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb publication-title: Adv. Energy Mater. – volume: 10 start-page: 2304246 year: 2023 ident: b0060 article-title: Enhancement in the Efficiency of Sb publication-title: Adv. Sci. – volume: 6 start-page: 10687 year: 2014 end-page: 10695 ident: b0135 article-title: Thermal Evaporation and characterization of Sb publication-title: ACS Appl. Mater. – volume: 5 start-page: e12400 year: 2023 ident: b0225 article-title: Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb publication-title: InfoMat – volume: 5 start-page: 2100320 year: 2021 ident: b0210 article-title: Multifunctional Reductive Molecular Modulator toward Efficient and Stable Perovskite Solar Cells publication-title: Sol. RRL – reference: thin films as absorber, Appl. Phys. A 116(4) (2014) 2095-2105. https://doi.org/10.1007/s00339-014-8411-6. – reference: solar cells, J. Mater. Chem. A. 9(21) (2021) 12644–12651. https://doi.org/10.1039/d1ta02356j. – volume: 52 start-page: 829 year: 2022 end-page: 833 ident: b0055 article-title: Solution-processed CIGS thin film solar cell by controlled selenization process publication-title: Mater. Today: Proc. – volume: 36 start-page: 2305841 year: 2023 ident: b0075 article-title: Grain engineering of Sb publication-title: Adv. Mater. – volume: 5 start-page: 587 year: 2020 end-page: 595 ident: b0010 article-title: Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency publication-title: Nat. Energy – volume: 273 start-page: 14 year: 2015 end-page: 24 ident: b0140 article-title: The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries publication-title: J. Power Sources – volume: 440 year: 2022 ident: b0030 article-title: Manipulating back contact enables over 8%-efficient carbon-based Sb publication-title: Chem. Eng. J. – volume: 36 start-page: 629 year: 2021 end-page: 636 ident: b0255 article-title: Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell publication-title: J. Inorg. Mater. – volume: 48 start-page: 1939 year: 2013 end-page: 1945 ident: b0080 article-title: AgSb(SxSe1−x)2 thin films for solar cell applications publication-title: Mater. Res. Bull. – volume: 19 start-page: 2206175 year: 2022 ident: b0175 article-title: Low-cost antimony selenosulfide with tunable bandgap for highly efficient solar cells publication-title: Small – volume: 11 start-page: 3008 year: 2020 ident: b0180 article-title: Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution publication-title: Nat. Commun. – volume: 33 start-page: 2213941 year: 2023 ident: b0015 article-title: Carrier transport enhancement mechanism in highly efficient antimony Selenide thin-film solar cell publication-title: Adv. Funct. Mater. – volume: 277 start-page: 52 year: 2015 end-page: 58 ident: b0150 article-title: A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells publication-title: J. Power Sources – volume: 6 start-page: 87288 year: 2016 end-page: 87293 ident: b0065 article-title: The effect of sodium on antimony selenide thin film solar cells publication-title: RSC Adv. – volume: 920 year: 2022 ident: b0040 article-title: Thermal evaporation–deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb publication-title: J. Alloys Compd. – volume: 10 start-page: 2002341 year: 2020 ident: b0025 article-title: Manipulating the electrical properties of Sb publication-title: Adv. Energy Mater. – volume: 5 start-page: 3595 year: 2022 end-page: 3604 ident: b0250 article-title: Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells publication-title: ACS Appl. Energy Mater. – volume: 32 start-page: 2110335 year: 2021 ident: b0240 article-title: High-Efficiency Sb publication-title: Adv. Funct. Mater. – volume: 80 start-page: 256 year: 2023 end-page: 264 ident: b0220 article-title: Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells publication-title: J. Energy Chem. – reference: X.P. Yanlin Pan, Rui Wang, Xiaobo Hu, Shaoqiang Chen, Jiahua Tao, Pingxiong Yang, and Junhao Chu, Vapor transport deposition of Sb – volume: 214 start-page: 231 year: 2021 end-page: 238 ident: b0190 article-title: Improving the performance of Sb publication-title: Sol. Energy – volume: 767 year: 2021 ident: b0165 article-title: Perovskite with inhomogeneous composition: Presence of the Cl-rich layer improves the device performance publication-title: Chem. Phys. Lett. – volume: 11 start-page: 174 year: 2021 ident: b0215 article-title: Synthesis of Au or Pt@Perovskite Nanocrystals via Interfacial Photoreduction publication-title: Catalysts – volume: 14 start-page: 33181 year: 2022 end-page: 33190 ident: b0235 article-title: Post-Treatment of TiO publication-title: ACS Appl. Mater. – volume: 208 start-page: 220 year: 2020 end-page: 226 ident: b0045 article-title: Superstrate type CZTS solar cell with all solution processed functional layers at low temperature publication-title: Sol. Energy – volume: 62 start-page: 2305551 year: 2023 ident: b0205 article-title: Synergic Electron and Defect Compensation Minimizes Voltage Loss in Lead-Free Perovskite Solar Cells publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 2308522 year: 2023 ident: b0105 article-title: Suppressing buried interface nonradiative recombination losses toward high-efficiency antimony triselenide solar cells publication-title: Adv. Mater. – reference: ) – volume: 33 start-page: 2102055 year: 2021 ident: b0245 article-title: Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14% publication-title: Adv. Mater. – volume: 59 start-page: 5002 year: 2020 end-page: 5006 ident: b0130 article-title: Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data publication-title: Angew. Chem. Int. Ed. – volume: 236 start-page: 301 year: 2022 end-page: 307 ident: b0050 article-title: Enhancement of CZTS photovoltaic device performance with silicon at back-contact: A study using SCAPS-1D publication-title: Sol. Energy – volume: 238 start-page: 363 year: 2022 end-page: 370 ident: b0085 article-title: Modeling of Ag incorporated Sb publication-title: Sol. Energy – volume: 17 start-page: 2102429 year: 2021 ident: b0185 article-title: More Se Vacancies in Sb2Se3 under Se-Rich Conditions: An Abnormal Behavior Induced by Defect-Correlation in Compensated Compound Semiconductors publication-title: Small – volume: 438 year: 2019 ident: b0195 article-title: Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability publication-title: J. Power Sources – reference: J.O. González, S. Shaji, D. Avellaneda, G.A. Castillo, T.K. Das Roy, B. Krishnan, Photovoltaic structures using AgSb(S – volume: 668 year: 2023 ident: b0230 article-title: Optimizing the Se/S atom ratio and suppressing Sb publication-title: Physical B – volume: 9 start-page: 2105142 year: 2022 ident: b0020 article-title: Crystal growth promotion and defects healing enable minimum open-circuit voltage deficit in antimony Selenide solar cells publication-title: Adv. Sci. – volume: 5 start-page: 3595 issue: 3 year: 2022 ident: 10.1016/j.cej.2024.151574_b0250 article-title: Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c04097 – volume: 17 start-page: 2102429 issue: 36 year: 2021 ident: 10.1016/j.cej.2024.151574_b0185 article-title: More Se Vacancies in Sb2Se3 under Se-Rich Conditions: An Abnormal Behavior Induced by Defect-Correlation in Compensated Compound Semiconductors publication-title: Small doi: 10.1002/smll.202102429 – volume: 236 start-page: 301 year: 2022 ident: 10.1016/j.cej.2024.151574_b0050 article-title: Enhancement of CZTS photovoltaic device performance with silicon at back-contact: A study using SCAPS-1D publication-title: Sol. Energy doi: 10.1016/j.solener.2022.03.005 – volume: 440 year: 2022 ident: 10.1016/j.cej.2024.151574_b0030 article-title: Manipulating back contact enables over 8%-efficient carbon-based Sb2(S, Se)3 solar cells publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135872 – volume: 277 start-page: 52 year: 2015 ident: 10.1016/j.cej.2024.151574_b0150 article-title: A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.138 – volume: 927 year: 2022 ident: 10.1016/j.cej.2024.151574_b0125 article-title: High-efficiency Sb2(S, Se)3 solar cells with MoO3 as a hole-transport layer publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166842 – volume: 33 start-page: 2102055 issue: 36 year: 2021 ident: 10.1016/j.cej.2024.151574_b0245 article-title: Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14% publication-title: Adv. Mater. doi: 10.1002/adma.202102055 – volume: 32 start-page: 2110335 issue: 10 year: 2021 ident: 10.1016/j.cej.2024.151574_b0240 article-title: High-Efficiency Sb2(S, Se)3 Solar Cells with New Hole Transport Layer-Free Back Architecture via 2D Titanium-Carbide Mxene publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202110335 – volume: 36 start-page: 2305841 issue: 1 year: 2023 ident: 10.1016/j.cej.2024.151574_b0075 article-title: Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage publication-title: Adv. Mater. doi: 10.1002/adma.202305841 – volume: 767 year: 2021 ident: 10.1016/j.cej.2024.151574_b0165 article-title: Perovskite with inhomogeneous composition: Presence of the Cl-rich layer improves the device performance publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2021.138362 – volume: 19 start-page: 2206175 issue: 9 year: 2022 ident: 10.1016/j.cej.2024.151574_b0175 article-title: Low-cost antimony selenosulfide with tunable bandgap for highly efficient solar cells publication-title: Small doi: 10.1002/smll.202206175 – volume: 10 start-page: 1902650 issue: 13 year: 2019 ident: 10.1016/j.cej.2024.151574_b0170 article-title: Recent progresses on defect passivation toward efficient perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902650 – volume: 11 start-page: 3008 issue: 1 year: 2020 ident: 10.1016/j.cej.2024.151574_b0180 article-title: Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution publication-title: Nat. Commun. doi: 10.1038/s41467-020-16726-3 – volume: 36 start-page: 2308522 issue: 5 year: 2023 ident: 10.1016/j.cej.2024.151574_b0105 article-title: Suppressing buried interface nonradiative recombination losses toward high-efficiency antimony triselenide solar cells publication-title: Adv. Mater. doi: 10.1002/adma.202308522 – ident: 10.1016/j.cej.2024.151574_b0035 doi: 10.1039/D1TA02356J – volume: 9 start-page: 2105142 issue: 9 year: 2022 ident: 10.1016/j.cej.2024.151574_b0020 article-title: Crystal growth promotion and defects healing enable minimum open-circuit voltage deficit in antimony Selenide solar cells publication-title: Adv. Sci. doi: 10.1002/advs.202105142 – volume: 5 start-page: 587 issue: 8 year: 2020 ident: 10.1016/j.cej.2024.151574_b0010 article-title: Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency publication-title: Nat. Energy doi: 10.1038/s41560-020-0652-3 – volume: 920 year: 2022 ident: 10.1016/j.cej.2024.151574_b0040 article-title: Thermal evaporation–deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S, Se)3 solar cells publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165885 – volume: 33 start-page: 2213941 issue: 14 year: 2023 ident: 10.1016/j.cej.2024.151574_b0015 article-title: Carrier transport enhancement mechanism in highly efficient antimony Selenide thin-film solar cell publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213941 – volume: 11 start-page: 174 issue: 2 year: 2021 ident: 10.1016/j.cej.2024.151574_b0215 article-title: Synthesis of Au or Pt@Perovskite Nanocrystals via Interfacial Photoreduction publication-title: Catalysts doi: 10.3390/catal11020174 – volume: 10 start-page: 2304246 issue: 31 year: 2023 ident: 10.1016/j.cej.2024.151574_b0060 article-title: Enhancement in the Efficiency of Sb2Se3 Solar Cells by Triple Function of Lithium Hydroxide Modified at the Back Contact Interface publication-title: Adv. Sci. doi: 10.1002/advs.202304246 – volume: 59 start-page: 5002 issue: 13 year: 2020 ident: 10.1016/j.cej.2024.151574_b0130 article-title: Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916000 – volume: 648 year: 2023 ident: 10.1016/j.cej.2024.151574_b0120 article-title: Classification of lattice defects and the microscopic origin of p-type conductivity of Sb2Se3 solar cell absorber with varying Al2O3-layer thicknesses publication-title: Phys. B doi: 10.1016/j.physb.2022.414394 – volume: 530 year: 2022 ident: 10.1016/j.cej.2024.151574_b0145 article-title: Reversible degradation-assisted interface engineering via Cs4PbBr6 nanocrystals to boost the performance of CsPbI2Br perovskite solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231294 – volume: 80 start-page: 256 year: 2023 ident: 10.1016/j.cej.2024.151574_b0220 article-title: Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.01.049 – volume: 5 start-page: 2100320 issue: 10 year: 2021 ident: 10.1016/j.cej.2024.151574_b0210 article-title: Multifunctional Reductive Molecular Modulator toward Efficient and Stable Perovskite Solar Cells publication-title: Sol. RRL doi: 10.1002/solr.202100320 – volume: 10 start-page: 2002341 issue: 40 year: 2020 ident: 10.1016/j.cej.2024.151574_b0025 article-title: Manipulating the electrical properties of Sb2(S, Se)3 film for high-efficiency solar cell publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002341 – volume: 14 start-page: 33181 issue: 29 year: 2022 ident: 10.1016/j.cej.2024.151574_b0235 article-title: Post-Treatment of TiO2 Film Enables High-Quality Sb2Se3 Film Deposition for Solar Cell Applications publication-title: ACS Appl. Mater. doi: 10.1021/acsami.2c07157 – volume: 62 start-page: 2305551 issue: 39 year: 2023 ident: 10.1016/j.cej.2024.151574_b0205 article-title: Synergic Electron and Defect Compensation Minimizes Voltage Loss in Lead-Free Perovskite Solar Cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202305551 – volume: 12 start-page: 2103015 issue: 1 year: 2021 ident: 10.1016/j.cej.2024.151574_b0005 article-title: Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb2(S, Se)3 solar cells with 10.7% efficiency publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103015 – ident: 10.1016/j.cej.2024.151574_b0115 doi: 10.1021/acsaem.2c00790 – ident: 10.1016/j.cej.2024.151574_b0095 doi: 10.1007/s00339-014-8411-6 – volume: 52 start-page: 829 year: 2022 ident: 10.1016/j.cej.2024.151574_b0055 article-title: Solution-processed CIGS thin film solar cell by controlled selenization process publication-title: Mater. Today: Proc. – volume: 668 year: 2023 ident: 10.1016/j.cej.2024.151574_b0230 article-title: Optimizing the Se/S atom ratio and suppressing Sb2O3 impurities in hydrothermal deposition of Sb2(S, Se)3 films via Na+ doping publication-title: Physical B doi: 10.1016/j.physb.2023.415221 – volume: 11 start-page: S59 issue: 1 year: 2011 ident: 10.1016/j.cej.2024.151574_b0110 article-title: Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.11.019 – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.cej.2024.151574_b0160 article-title: Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells publication-title: Cell Rep. Phys. Sci. – volume: 34 start-page: 2109078 issue: 14 year: 2022 ident: 10.1016/j.cej.2024.151574_b0200 article-title: Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells publication-title: Adv. Mater. doi: 10.1002/adma.202109078 – volume: 20 start-page: 2308895 issue: 10 year: 2023 ident: 10.1016/j.cej.2024.151574_b0090 article-title: Precursor engineering of solution-processed Sb2S3 solar cells publication-title: Small doi: 10.1002/smll.202308895 – volume: 238 start-page: 363 year: 2022 ident: 10.1016/j.cej.2024.151574_b0085 article-title: Modeling of Ag incorporated Sb2(SxSe1−x)3 bi-layer devices: enhanced bi-layer absorber configuration publication-title: Sol. Energy doi: 10.1016/j.solener.2022.04.011 – volume: 273 start-page: 14 year: 2015 ident: 10.1016/j.cej.2024.151574_b0140 article-title: The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.037 – volume: 214 start-page: 231 year: 2021 ident: 10.1016/j.cej.2024.151574_b0190 article-title: Improving the performance of Sb2Se3 thin-film solar cells using n-type MoO3 as the back contact layer publication-title: Sol. Energy doi: 10.1016/j.solener.2020.11.074 – volume: 6 start-page: 87288 issue: 90 year: 2016 ident: 10.1016/j.cej.2024.151574_b0065 article-title: The effect of sodium on antimony selenide thin film solar cells publication-title: RSC Adv. doi: 10.1039/C6RA20690E – volume: 208 start-page: 220 year: 2020 ident: 10.1016/j.cej.2024.151574_b0045 article-title: Superstrate type CZTS solar cell with all solution processed functional layers at low temperature publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.055 – volume: 437 year: 2022 ident: 10.1016/j.cej.2024.151574_b0100 article-title: Nanorod-textured Sb2(S, Se)3 bilayer with enhanced light harvesting and accelerated charge extraction for high-efficiency Sb2(S, Se)3 solar cells publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135341 – volume: 5 start-page: e12400 issue: 4 year: 2023 ident: 10.1016/j.cej.2024.151574_b0225 article-title: Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors publication-title: InfoMat doi: 10.1002/inf2.12400 – volume: 3 start-page: 1800272 issue: 1 year: 2018 ident: 10.1016/j.cej.2024.151574_b0070 article-title: Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells publication-title: Sol. RRL doi: 10.1002/solr.201800272 – volume: 36 start-page: 629 issue: 6 year: 2021 ident: 10.1016/j.cej.2024.151574_b0255 article-title: Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell publication-title: J. Inorg. Mater. doi: 10.15541/jim20200495 – volume: 6 start-page: 10687 issue: 13 year: 2014 ident: 10.1016/j.cej.2024.151574_b0135 article-title: Thermal Evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells publication-title: ACS Appl. Mater. doi: 10.1021/am502427s – volume: 48 start-page: 1939 issue: 5 year: 2013 ident: 10.1016/j.cej.2024.151574_b0080 article-title: AgSb(SxSe1−x)2 thin films for solar cell applications publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.01.040 – volume: 170 start-page: 178 year: 2017 ident: 10.1016/j.cej.2024.151574_b0155 article-title: PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.05.057 – volume: 438 year: 2019 ident: 10.1016/j.cej.2024.151574_b0195 article-title: Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226987 |
SSID | ssj0006919 |
Score | 2.44238 |
Snippet | Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 151574 |
SubjectTerms | Energy band structures Flow doping Neodymium ions Orientation Sb2(S,Se)3 |
Title | Performance enhancement of Sb2(S,Se)3 solar cells through neodymium ion flow doping |
URI | https://dx.doi.org/10.1016/j.cej.2024.151574 |
Volume | 490 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1385-8947 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1385-8947 databaseCode: ACRLP dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1385-8947 databaseCode: AIKHN dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 1385-8947 databaseCode: .~1 dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1385-8947 databaseCode: AKRWK dateStart: 19970115 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn1hf5OBBxbT7SLKbYxFLtVjEteht2WQTbNHdYlvEi7_dzD58gHrwFHaZYZfJMI9k5huEDhNmY1DfSwj3FCcwbJuExvOJFJKmCdNJCbFxNeC9Ib28Z_cL6KzuhYGyysr2lza9sNbVm3YlzfZkNGpHLtxpCRoAohzkNdDBbj9mdbr19lnmwUUx3AOICVDXN5tFjZfSY5sierQFbj2gP_umL_6mu4pWqkARd8p_WUMLOltHy1_gAzdQdP1Z9Y919gArHPbh3OBIekfRaaSPfTyF7BXDCf0UV2N5cKbz9PVpNH_Cdl-wecxfcFq0Tm2iYff89qxHqiEJRFmvMyM8CUPBPIAEpdzXijuh1kwaLlMqZOCmiSsDprXNtXzjhFSZIFVSuJrbwMJo5W-hRpZnehthppRnw6WEGmWocLiNHUKmqVCOTEQaBk3k1OKJVYUgDoMsHuO6VGwcW4nGING4lGgTnXywTEr4jL-IaS3z-JsOxNa8_8628z-2XbQET1D25bI91Jg9z_W-DTBm8qDQoAO02Lno9waw9m_u-u8Vos9Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_odlAP4ifOzxw8qFjXjyRtjmMom7ohVMFbadIEJ1snOhH_e_PWVieoB0-FNg_KL-G930tefg_gMGWWgwZ-6nBfcQebbTuR8QNHCkmzlOm0kNjo9Xnnjl7es_s5aFd3YbCssvT9hU-feuvyTbNEs_k0GDRjD8-0BA1RUQ7zmnmoU2Z9cg3qre5Vp__pkLmY9vfA8Q4aVIeb0zIvpR9tlujTM4zsIf05PM2EnIsVWC65ImkVv7MKczpfg6UZBcF1iG--Cv-Jzh_wift9ZGxILP2j-DTWxwF5wQSW4Cb9Cyk785Bcj7P30eB1ROzUEDMcv5FsentqA-4uzm_bHafsk-AoG3gmDk-jSDAfVUEpD7TibqQ1k4bLjAoZelnqyZBpbdOtwLgRVSbMlBSe5pZbGK2CTajl41xvAWFK-ZYxpdQoQ4XLLX2ImKZCuTIVWRQ2wK3gSVQpIo69LIZJVS32mFhEE0Q0KRBtwMmnyVOhoPHXYFphnnxbBon18L-bbf_P7AAWOre96-S627_agUX8glVgHtuF2uT5Ve9ZvjGR--V6-gC2y9Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+enhancement+of+Sb2%28S%2CSe%293+solar+cells+through+neodymium+ion+flow+doping&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Ni%2C+Xiaomeng&rft.au=Liu%2C+Jingjing&rft.au=Xu%2C+Fangxian&rft.au=Zhang%2C+Jing&rft.date=2024-06-15&rft.issn=1385-8947&rft.volume=490&rft.spage=151574&rft_id=info:doi/10.1016%2Fj.cej.2024.151574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_151574 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |