Performance enhancement of Sb2(S,Se)3 solar cells through neodymium ion flow doping

Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing the efficiency of the device in terms of providing a preferential crystal orientation and lower defect density. [Display omitted] •Nd3+ dopin...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 490; p. 151574
Main Authors Ni, Xiaomeng, Liu, Jingjing, Xu, Fangxian, Zhang, Jing, Jiang, Sai, Fang, Bijun, Guo, Huafei, Yuan, Ningyi, Ding, Jianning, Zhang, Shuai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2024
Subjects
Online AccessGet full text
ISSN1385-8947
DOI10.1016/j.cej.2024.151574

Cover

Abstract Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing the efficiency of the device in terms of providing a preferential crystal orientation and lower defect density. [Display omitted] •Nd3+ doping for Sb2(S,Se)3 is carried out via modified hydrothermal deposition.•These ions can be incorporated into the crystal lattice.•Most of the ions migrate to the CdS/Sb2(S,Se)3 interface after doping.•Photoelectrical parameters and device stability are both improved after doping.•We provide an effective doping strategy for Sb2(S,Se)3 solar cells. Doping the light absorber layer of antimony chalcogenides with extrinsic ions is an effective approach for improving their photovoltaic quality. These dopant ions generally reside at positions other than the crystal lattice or form an alloy (e.g., AgSb(S,Se)3) with a poor device performance. Therefore, incorporating such ions into an antimony chalcogenide lattice such that there is a positive influence on device quality would be highly useful. Herein, doping of Nd3+ for Sb2(S,Se)3 is carried out via a modified hydrothermal deposition process. Notably, these ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after doping, which are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. Nd3+ doping produces benign effects on the crystal orientation, film morphology, optoelectronic properties, and defect passivation of the Sb2(S,Se)3 films. Consequently, all the photoelectrical parameters of Sb2(S,Se)3 solar cells doped with Nd3+ are enhanced, delivering a remarkable efficiency of 8.24 %. Furthermore, the best device stored in air only shows a slight decrease in efficiency in the 2400-h aging test. Overall, this study provides an effective doping strategy to improve the photovoltaic quality of Sb2(S,Se)3 films.
AbstractList Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing the efficiency of the device in terms of providing a preferential crystal orientation and lower defect density. [Display omitted] •Nd3+ doping for Sb2(S,Se)3 is carried out via modified hydrothermal deposition.•These ions can be incorporated into the crystal lattice.•Most of the ions migrate to the CdS/Sb2(S,Se)3 interface after doping.•Photoelectrical parameters and device stability are both improved after doping.•We provide an effective doping strategy for Sb2(S,Se)3 solar cells. Doping the light absorber layer of antimony chalcogenides with extrinsic ions is an effective approach for improving their photovoltaic quality. These dopant ions generally reside at positions other than the crystal lattice or form an alloy (e.g., AgSb(S,Se)3) with a poor device performance. Therefore, incorporating such ions into an antimony chalcogenide lattice such that there is a positive influence on device quality would be highly useful. Herein, doping of Nd3+ for Sb2(S,Se)3 is carried out via a modified hydrothermal deposition process. Notably, these ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after doping, which are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. Nd3+ doping produces benign effects on the crystal orientation, film morphology, optoelectronic properties, and defect passivation of the Sb2(S,Se)3 films. Consequently, all the photoelectrical parameters of Sb2(S,Se)3 solar cells doped with Nd3+ are enhanced, delivering a remarkable efficiency of 8.24 %. Furthermore, the best device stored in air only shows a slight decrease in efficiency in the 2400-h aging test. Overall, this study provides an effective doping strategy to improve the photovoltaic quality of Sb2(S,Se)3 films.
ArticleNumber 151574
Author Liu, Jingjing
Zhang, Jing
Yuan, Ningyi
Jiang, Sai
Xu, Fangxian
Ding, Jianning
Ni, Xiaomeng
Zhang, Shuai
Fang, Bijun
Guo, Huafei
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Ni
  fullname: Ni, Xiaomeng
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 2
  givenname: Jingjing
  surname: Liu
  fullname: Liu, Jingjing
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 3
  givenname: Fangxian
  surname: Xu
  fullname: Xu, Fangxian
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 5
  givenname: Sai
  surname: Jiang
  fullname: Jiang, Sai
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 6
  givenname: Bijun
  orcidid: 0000-0002-9510-9433
  surname: Fang
  fullname: Fang, Bijun
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 7
  givenname: Huafei
  orcidid: 0000-0002-9398-1105
  surname: Guo
  fullname: Guo, Huafei
  email: guohuafei@cczu.edu.cn
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 8
  givenname: Ningyi
  surname: Yuan
  fullname: Yuan, Ningyi
  email: nyyuan@cczu.edu.cn
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
– sequence: 9
  givenname: Jianning
  surname: Ding
  fullname: Ding, Jianning
  organization: School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China
– sequence: 10
  givenname: Shuai
  orcidid: 0000-0002-3033-9238
  surname: Zhang
  fullname: Zhang, Shuai
  email: shuaizhang@cczu.edu.cn
  organization: School of Materials Science and Engineering, School of Microelectronics and Control Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
BookMark eNp9kL1OwzAYRT0UibbwAGweQSLBdhwnEROq-JMqgRSYLcf53DpK7MpOQX17UpWJgelO5-res0Az5x0gdEVJSgkVd12qoUsZYTylOc0LPkNzmpV5Ula8OEeLGDtCiKhoNUf1OwTjw6CcBgxue8wB3Ii9wXXDruvbGm4yHH2vAtbQ9xGP2-D3my124NvDYPcDtt5h0_tv3PqddZsLdGZUH-HyN5fo8-nxY_WSrN-eX1cP60QzysZEqLKsclbwknORgRakBMgbI5qWV01BW0WbIgcgTGSGlFybotVNRUGwMjOgsyUqTr06-BgDGKntqMZpzRiU7SUl8uhDdnLyIY8-5MnHRNI_5C7YQYXDv8z9iYHp0peFIKO2MOlqbQA9ytbbf-gfZyN8jw
CitedBy_id crossref_primary_10_1002_adfm_202420361
crossref_primary_10_1039_D4EE02877E
crossref_primary_10_1039_D4RA03340J
crossref_primary_10_1016_j_solmat_2025_113455
Cites_doi 10.1021/acsaem.1c04097
10.1002/smll.202102429
10.1016/j.solener.2022.03.005
10.1016/j.cej.2022.135872
10.1016/j.jpowsour.2014.11.138
10.1016/j.jallcom.2022.166842
10.1002/adma.202102055
10.1002/adfm.202110335
10.1002/adma.202305841
10.1016/j.cplett.2021.138362
10.1002/smll.202206175
10.1002/aenm.201902650
10.1038/s41467-020-16726-3
10.1002/adma.202308522
10.1039/D1TA02356J
10.1002/advs.202105142
10.1038/s41560-020-0652-3
10.1016/j.jallcom.2022.165885
10.1002/adfm.202213941
10.3390/catal11020174
10.1002/advs.202304246
10.1002/anie.201916000
10.1016/j.physb.2022.414394
10.1016/j.jpowsour.2022.231294
10.1016/j.jechem.2023.01.049
10.1002/solr.202100320
10.1002/aenm.202002341
10.1021/acsami.2c07157
10.1002/anie.202305551
10.1002/aenm.202103015
10.1021/acsaem.2c00790
10.1007/s00339-014-8411-6
10.1016/j.physb.2023.415221
10.1016/j.cap.2010.11.019
10.1002/adma.202109078
10.1002/smll.202308895
10.1016/j.solener.2022.04.011
10.1016/j.jpowsour.2014.09.037
10.1016/j.solener.2020.11.074
10.1039/C6RA20690E
10.1016/j.solener.2020.07.055
10.1016/j.cej.2022.135341
10.1002/inf2.12400
10.1002/solr.201800272
10.15541/jim20200495
10.1021/am502427s
10.1016/j.materresbull.2013.01.040
10.1016/j.solmat.2017.05.057
10.1016/j.jpowsour.2019.226987
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.151574
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_151574
S1385894724030614
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSH
SSJ
SSZ
T5K
~G-
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEUPX
AFFNX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
ID FETCH-LOGICAL-c212t-6a889527484463ec608ee5bf6bd49b71da1b75ee0263f084cf7dcb91e6283fec3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 23:03:56 EDT 2025
Tue Jul 01 02:12:00 EDT 2025
Sun Apr 06 06:53:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sb2(S,Se)3
Orientation
Flow doping
Neodymium ions
Energy band structures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c212t-6a889527484463ec608ee5bf6bd49b71da1b75ee0263f084cf7dcb91e6283fec3
ORCID 0000-0002-3033-9238
0000-0002-9398-1105
0000-0002-9510-9433
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2024_151574
crossref_primary_10_1016_j_cej_2024_151574
elsevier_sciencedirect_doi_10_1016_j_cej_2024_151574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-15
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References X.P. Yanlin Pan, Rui Wang, Xiaobo Hu, Shaoqiang Chen, Jiahua Tao, Pingxiong Yang, and Junhao Chu, Vapor transport deposition of Sb
Liu, Cai, Wan, Xiao, Che, Yang, Niu, Wang, Zhu, Huang, Zhu, Zelewski, Chen, Hoye, Zhou (b0075) 2023; 36
Zhang, Dong, Lin, Qu, Yuan, Ding (b0150) 2015; 277
Chen, Fu, Ishaq, Li, Ren, Su, Qiao, Fan, Liang, Tang (b0225) 2023; 5
Wang, Lu, Liu, Cao, Zhang, Zhu, Zhang, Zhang, Yuan, Ding (b0165) 2021; 767
Li, Lin, Yao, Wu, Wei, Liu, Huang, Chen, Li, Chen (b0240) 2021; 32
Badgujar, Dusane, Dhage (b0055) 2022; 52
Liu, Ni, Xu, Zhang, Zhang, Guo, Fang, Cheng, Jiang, Yuan, Ding (b0230) 2023; 668
Satale, Bhat (b0045) 2020; 208
Liang, Chen, Ishaq, Li, Tang, Zheng, Su, Fan, Zhang, Chen (b0020) 2022; 9
Tang, Chen, Zheng, Su, Luo, Fan, Zhang, Tang, Liang (b0200) 2022; 34
Greczynski, Hultman (b0130) 2020; 59
Bodenes, Darwiche, Monconduit, Martinez (b0140) 2015; 273
Liu, Cao, Zhang, Jiang, Yu, Hao, Zhang, Guo, Fang, Yuan, Fan, Zhang, Ding (b0145) 2022; 530
Shi, Zhang, Dai, Zeng, Qu, Song (b0100) 2022; 437
Luo, Chen, Chen, Ahmad, Azam, Zheng, Su, Cathelinaud, Ma, Chen, Fan, Zhang, Liang (b0015) 2023; 33
Li, Zhou, Luo, Chen, Yang, Wen, Lu, Chen, Zeng, Song, Tang (b0065) 2016; 6
Dong, Liu, Cao, Liu, Bai, Chen, Liu, Wu, Luo, Zhang, Liu (b0175) 2022; 19
Zhang, Wang, Liu, Cao, Zhang, Yuan, Zhang, Gu (b0215) 2021; 11
)
Zhang, Guo, Jia, Ning, Ma, Wang, Qiu, Yuan, Ding (b0190) 2021; 214
Zhang, Lu, Lin, Zhu, Zhang, Yuan, Ding, Fang (b0155) 2017; 170
Tang, Wang, Lian, Huang, Wei, Huang, Yin, Jiang, Yang, Xing, Chen, Zhu, Hao, Green, Chen (b0010) 2020; 5
J.O. González, S. Shaji, D. Avellaneda, G.A. Castillo, T.K. Das Roy, B. Krishnan, Photovoltaic structures using AgSb(S
González, Shaji, Avellaneda, Castillo, Roy, Krishnan (b0080) 2013; 48
Wang, Tang, Huang, Qian, Lian, Zhu, Chen (b0235) 2022; 14
Wang, Tang, Jiang, Lian, Ju, Jiang, Li, Zhu, Chen (b0025) 2020; 10
Guo, Huang, Zhu, Zhang, Geng, Jiang, Gu, Su, Lu, Zhang, Zhang, Qiu, Yuan, Ding (b0060) 2023; 10
Jiang, Yao, Huang, Tang, Wang, Lei, Zeng, Chang, Zhong, Yao, Zhu, Chen (b0160) 2020; 1
Chen, Luo, Abbas, Ishaq, Zheng, Chen, Su, Zhang, Fan, Liang (b0105) 2023; 36
S,Se
solar cells with continuously tunable band gaps, ACS Appl. Energy Mater. 5(6) (2022) 7240-7248. https://doi.org/10.1021/acsaem.2c00790.
Gao, Zhao, Zhang, You (b0170) 2019; 10
Zhu, Yang, Zhang, Du, Fan, Luo, Zhang, Zhang (b0250) 2022; 5
Yu, Chen, Zhu, Wang, Han, Chen, Zhang, Du, He (b0245) 2021; 33
thin films as absorber, Appl. Phys. A 116(4) (2014) 2095-2105. https://doi.org/10.1007/s00339-014-8411-6.
Ding, Yuan, Zhang, Zhang, Zhang, Cao, Wang, Hu, Liu (b0255) 2021; 36
Li, Li, Jia, Yu, Yang, Bai, Pollard, Liu, Ma, Kampwerth, Lin (b0090) 2023; 20
Li, Gao, Zhang, Xu, Zhuang, Wang, Yang, Ma, Zheng, Song, Chen, Chen (b0210) 2021; 5
Zhang, Hu, Zhang, Jia, Jiang, Chen, Lin, Jiang, Fang, Yuan, Ding (b0195) 2019; 438
Huang, Cai, Wang, Gong, Wei, Chen (b0185) 2021; 17
Jiang, Tang, Wang, Ju, Chen, Chen (b0070) 2018; 3
Lee, McInerney (b0085) 2022; 238
Liu, Cao, Feng, Ni, Zhang, Qiu, Zhang, Guo, Yuan, Ding (b0040) 2022; 920
Liu, Jiang, Feng, Yang, Chen, Ning, Wu (b0205) 2023; 62
Guo, Jia, Liu, Feng, Zhang, Chen, Tian, Qiu, Yuan, Ding (b0120) 2023; 648
Liu, Chen, Luo, Leng, Xia, Zhou, Qin, Xue, Lv, Huang, Niu, Tang (b0135) 2014; 6
Lin, Chen, Ahmad, Ishaq, Chen, Su, Fan, Zhang, Zhang, Liang (b0220) 2023; 80
Y. Zhao, C. Li, J. Niu, Z. Zhi, G. Chen, J. Gong, J. Li, X. Xiao, Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb
Shin, Shin, Kim, Ahn (b0110) 2011; 11
solar cells, J. Mater. Chem. A. 9(21) (2021) 12644–12651. https://doi.org/10.1039/d1ta02356j.
Se
Kumari, Ingole (b0050) 2022; 236
Xing, Guo, Liu, Zhang, Qiu, Yuan, Ding (b0125) 2022; 927
Nakamura, Yakumaru, Truong, Kim, Liu, Hu, Otsuka, Hashimoto, Murdey, Sasamori, Kim, Ohkita, Handa, Kanemitsu, Wakamiya (b0180) 2020; 11
Wu, zhao, Yao, Li, Huang, Lin, Ma, Chen, Li, Chen (b0030) 2022; 440
Zhao, Wang, Jiang, Li, Xiao, Tang, Gong, Chen, Chen, Li, Xiao (b0005) 2021; 12
Nakamura (10.1016/j.cej.2024.151574_b0180) 2020; 11
Lee (10.1016/j.cej.2024.151574_b0085) 2022; 238
Shin (10.1016/j.cej.2024.151574_b0110) 2011; 11
Dong (10.1016/j.cej.2024.151574_b0175) 2022; 19
Chen (10.1016/j.cej.2024.151574_b0225) 2023; 5
Tang (10.1016/j.cej.2024.151574_b0010) 2020; 5
Jiang (10.1016/j.cej.2024.151574_b0070) 2018; 3
Badgujar (10.1016/j.cej.2024.151574_b0055) 2022; 52
Ding (10.1016/j.cej.2024.151574_b0255) 2021; 36
Zhao (10.1016/j.cej.2024.151574_b0005) 2021; 12
Greczynski (10.1016/j.cej.2024.151574_b0130) 2020; 59
Tang (10.1016/j.cej.2024.151574_b0200) 2022; 34
Liu (10.1016/j.cej.2024.151574_b0205) 2023; 62
Li (10.1016/j.cej.2024.151574_b0065) 2016; 6
Yu (10.1016/j.cej.2024.151574_b0245) 2021; 33
Luo (10.1016/j.cej.2024.151574_b0015) 2023; 33
Li (10.1016/j.cej.2024.151574_b0240) 2021; 32
Wu (10.1016/j.cej.2024.151574_b0030) 2022; 440
Liu (10.1016/j.cej.2024.151574_b0135) 2014; 6
Liang (10.1016/j.cej.2024.151574_b0020) 2022; 9
Kumari (10.1016/j.cej.2024.151574_b0050) 2022; 236
Lin (10.1016/j.cej.2024.151574_b0220) 2023; 80
Zhang (10.1016/j.cej.2024.151574_b0150) 2015; 277
Wang (10.1016/j.cej.2024.151574_b0235) 2022; 14
Liu (10.1016/j.cej.2024.151574_b0075) 2023; 36
10.1016/j.cej.2024.151574_b0115
Li (10.1016/j.cej.2024.151574_b0210) 2021; 5
Shi (10.1016/j.cej.2024.151574_b0100) 2022; 437
10.1016/j.cej.2024.151574_b0035
Wang (10.1016/j.cej.2024.151574_b0025) 2020; 10
Jiang (10.1016/j.cej.2024.151574_b0160) 2020; 1
Li (10.1016/j.cej.2024.151574_b0090) 2023; 20
Chen (10.1016/j.cej.2024.151574_b0105) 2023; 36
Huang (10.1016/j.cej.2024.151574_b0185) 2021; 17
González (10.1016/j.cej.2024.151574_b0080) 2013; 48
Zhu (10.1016/j.cej.2024.151574_b0250) 2022; 5
Guo (10.1016/j.cej.2024.151574_b0120) 2023; 648
Wang (10.1016/j.cej.2024.151574_b0165) 2021; 767
Satale (10.1016/j.cej.2024.151574_b0045) 2020; 208
Zhang (10.1016/j.cej.2024.151574_b0215) 2021; 11
Guo (10.1016/j.cej.2024.151574_b0060) 2023; 10
Bodenes (10.1016/j.cej.2024.151574_b0140) 2015; 273
10.1016/j.cej.2024.151574_b0095
Xing (10.1016/j.cej.2024.151574_b0125) 2022; 927
Liu (10.1016/j.cej.2024.151574_b0145) 2022; 530
Zhang (10.1016/j.cej.2024.151574_b0155) 2017; 170
Zhang (10.1016/j.cej.2024.151574_b0190) 2021; 214
Gao (10.1016/j.cej.2024.151574_b0170) 2019; 10
Liu (10.1016/j.cej.2024.151574_b0230) 2023; 668
Liu (10.1016/j.cej.2024.151574_b0040) 2022; 920
Zhang (10.1016/j.cej.2024.151574_b0195) 2019; 438
References_xml – volume: 10
  start-page: 1902650
  year: 2019
  ident: b0170
  article-title: Recent progresses on defect passivation toward efficient perovskite solar cells
  publication-title: Adv. Energy Mater.
– reference: Se
– reference: solar cells with continuously tunable band gaps, ACS Appl. Energy Mater. 5(6) (2022) 7240-7248. https://doi.org/10.1021/acsaem.2c00790.
– volume: 11
  start-page: S59
  year: 2011
  end-page: S64
  ident: b0110
  article-title: Effect of Na doping using Na
  publication-title: Curr. Appl. Phys.
– volume: 1
  year: 2020
  ident: b0160
  article-title: Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells
  publication-title: Cell Rep. Phys. Sci.
– reference: (S,Se)
– volume: 3
  start-page: 1800272
  year: 2018
  ident: b0070
  article-title: Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells
  publication-title: Sol. RRL
– volume: 170
  start-page: 178
  year: 2017
  end-page: 186
  ident: b0155
  article-title: PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 437
  year: 2022
  ident: b0100
  article-title: Nanorod-textured Sb
  publication-title: Chem. Eng. J.
– volume: 648
  year: 2023
  ident: b0120
  article-title: Classification of lattice defects and the microscopic origin of p-type conductivity of Sb
  publication-title: Phys. B
– volume: 34
  start-page: 2109078
  year: 2022
  ident: b0200
  article-title: Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells
  publication-title: Adv. Mater.
– volume: 530
  year: 2022
  ident: b0145
  article-title: Reversible degradation-assisted interface engineering via Cs
  publication-title: J. Power Sources
– volume: 20
  start-page: 2308895
  year: 2023
  ident: b0090
  article-title: Precursor engineering of solution-processed Sb2S3 solar cells
  publication-title: Small
– reference: Y. Zhao, C. Li, J. Niu, Z. Zhi, G. Chen, J. Gong, J. Li, X. Xiao, Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb
– volume: 927
  year: 2022
  ident: b0125
  article-title: High-efficiency Sb
  publication-title: J. Alloys Compd.
– volume: 12
  start-page: 2103015
  year: 2021
  ident: b0005
  article-title: Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2304246
  year: 2023
  ident: b0060
  article-title: Enhancement in the Efficiency of Sb
  publication-title: Adv. Sci.
– volume: 6
  start-page: 10687
  year: 2014
  end-page: 10695
  ident: b0135
  article-title: Thermal Evaporation and characterization of Sb
  publication-title: ACS Appl. Mater.
– volume: 5
  start-page: e12400
  year: 2023
  ident: b0225
  article-title: Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb
  publication-title: InfoMat
– volume: 5
  start-page: 2100320
  year: 2021
  ident: b0210
  article-title: Multifunctional Reductive Molecular Modulator toward Efficient and Stable Perovskite Solar Cells
  publication-title: Sol. RRL
– reference: thin films as absorber, Appl. Phys. A 116(4) (2014) 2095-2105. https://doi.org/10.1007/s00339-014-8411-6.
– reference: solar cells, J. Mater. Chem. A. 9(21) (2021) 12644–12651. https://doi.org/10.1039/d1ta02356j.
– volume: 52
  start-page: 829
  year: 2022
  end-page: 833
  ident: b0055
  article-title: Solution-processed CIGS thin film solar cell by controlled selenization process
  publication-title: Mater. Today: Proc.
– volume: 36
  start-page: 2305841
  year: 2023
  ident: b0075
  article-title: Grain engineering of Sb
  publication-title: Adv. Mater.
– volume: 5
  start-page: 587
  year: 2020
  end-page: 595
  ident: b0010
  article-title: Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency
  publication-title: Nat. Energy
– volume: 273
  start-page: 14
  year: 2015
  end-page: 24
  ident: b0140
  article-title: The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries
  publication-title: J. Power Sources
– volume: 440
  year: 2022
  ident: b0030
  article-title: Manipulating back contact enables over 8%-efficient carbon-based Sb
  publication-title: Chem. Eng. J.
– volume: 36
  start-page: 629
  year: 2021
  end-page: 636
  ident: b0255
  article-title: Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell
  publication-title: J. Inorg. Mater.
– volume: 48
  start-page: 1939
  year: 2013
  end-page: 1945
  ident: b0080
  article-title: AgSb(SxSe1−x)2 thin films for solar cell applications
  publication-title: Mater. Res. Bull.
– volume: 19
  start-page: 2206175
  year: 2022
  ident: b0175
  article-title: Low-cost antimony selenosulfide with tunable bandgap for highly efficient solar cells
  publication-title: Small
– volume: 11
  start-page: 3008
  year: 2020
  ident: b0180
  article-title: Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution
  publication-title: Nat. Commun.
– volume: 33
  start-page: 2213941
  year: 2023
  ident: b0015
  article-title: Carrier transport enhancement mechanism in highly efficient antimony Selenide thin-film solar cell
  publication-title: Adv. Funct. Mater.
– volume: 277
  start-page: 52
  year: 2015
  end-page: 58
  ident: b0150
  article-title: A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells
  publication-title: J. Power Sources
– volume: 6
  start-page: 87288
  year: 2016
  end-page: 87293
  ident: b0065
  article-title: The effect of sodium on antimony selenide thin film solar cells
  publication-title: RSC Adv.
– volume: 920
  year: 2022
  ident: b0040
  article-title: Thermal evaporation–deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 2002341
  year: 2020
  ident: b0025
  article-title: Manipulating the electrical properties of Sb
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 3595
  year: 2022
  end-page: 3604
  ident: b0250
  article-title: Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells
  publication-title: ACS Appl. Energy Mater.
– volume: 32
  start-page: 2110335
  year: 2021
  ident: b0240
  article-title: High-Efficiency Sb
  publication-title: Adv. Funct. Mater.
– volume: 80
  start-page: 256
  year: 2023
  end-page: 264
  ident: b0220
  article-title: Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells
  publication-title: J. Energy Chem.
– reference: X.P. Yanlin Pan, Rui Wang, Xiaobo Hu, Shaoqiang Chen, Jiahua Tao, Pingxiong Yang, and Junhao Chu, Vapor transport deposition of Sb
– volume: 214
  start-page: 231
  year: 2021
  end-page: 238
  ident: b0190
  article-title: Improving the performance of Sb
  publication-title: Sol. Energy
– volume: 767
  year: 2021
  ident: b0165
  article-title: Perovskite with inhomogeneous composition: Presence of the Cl-rich layer improves the device performance
  publication-title: Chem. Phys. Lett.
– volume: 11
  start-page: 174
  year: 2021
  ident: b0215
  article-title: Synthesis of Au or Pt@Perovskite Nanocrystals via Interfacial Photoreduction
  publication-title: Catalysts
– volume: 14
  start-page: 33181
  year: 2022
  end-page: 33190
  ident: b0235
  article-title: Post-Treatment of TiO
  publication-title: ACS Appl. Mater.
– volume: 208
  start-page: 220
  year: 2020
  end-page: 226
  ident: b0045
  article-title: Superstrate type CZTS solar cell with all solution processed functional layers at low temperature
  publication-title: Sol. Energy
– volume: 62
  start-page: 2305551
  year: 2023
  ident: b0205
  article-title: Synergic Electron and Defect Compensation Minimizes Voltage Loss in Lead-Free Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 2308522
  year: 2023
  ident: b0105
  article-title: Suppressing buried interface nonradiative recombination losses toward high-efficiency antimony triselenide solar cells
  publication-title: Adv. Mater.
– reference: )
– volume: 33
  start-page: 2102055
  year: 2021
  ident: b0245
  article-title: Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%
  publication-title: Adv. Mater.
– volume: 59
  start-page: 5002
  year: 2020
  end-page: 5006
  ident: b0130
  article-title: Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data
  publication-title: Angew. Chem. Int. Ed.
– volume: 236
  start-page: 301
  year: 2022
  end-page: 307
  ident: b0050
  article-title: Enhancement of CZTS photovoltaic device performance with silicon at back-contact: A study using SCAPS-1D
  publication-title: Sol. Energy
– volume: 238
  start-page: 363
  year: 2022
  end-page: 370
  ident: b0085
  article-title: Modeling of Ag incorporated Sb
  publication-title: Sol. Energy
– volume: 17
  start-page: 2102429
  year: 2021
  ident: b0185
  article-title: More Se Vacancies in Sb2Se3 under Se-Rich Conditions: An Abnormal Behavior Induced by Defect-Correlation in Compensated Compound Semiconductors
  publication-title: Small
– volume: 438
  year: 2019
  ident: b0195
  article-title: Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability
  publication-title: J. Power Sources
– reference: J.O. González, S. Shaji, D. Avellaneda, G.A. Castillo, T.K. Das Roy, B. Krishnan, Photovoltaic structures using AgSb(S
– volume: 668
  year: 2023
  ident: b0230
  article-title: Optimizing the Se/S atom ratio and suppressing Sb
  publication-title: Physical B
– volume: 9
  start-page: 2105142
  year: 2022
  ident: b0020
  article-title: Crystal growth promotion and defects healing enable minimum open-circuit voltage deficit in antimony Selenide solar cells
  publication-title: Adv. Sci.
– volume: 5
  start-page: 3595
  issue: 3
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0250
  article-title: Unveiling the Critical Role of Oxidants and Additives in Doped Spiro-OMeTAD toward Stable and Efficient Perovskite Solar Cells
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c04097
– volume: 17
  start-page: 2102429
  issue: 36
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0185
  article-title: More Se Vacancies in Sb2Se3 under Se-Rich Conditions: An Abnormal Behavior Induced by Defect-Correlation in Compensated Compound Semiconductors
  publication-title: Small
  doi: 10.1002/smll.202102429
– volume: 236
  start-page: 301
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0050
  article-title: Enhancement of CZTS photovoltaic device performance with silicon at back-contact: A study using SCAPS-1D
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.03.005
– volume: 440
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0030
  article-title: Manipulating back contact enables over 8%-efficient carbon-based Sb2(S, Se)3 solar cells
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135872
– volume: 277
  start-page: 52
  year: 2015
  ident: 10.1016/j.cej.2024.151574_b0150
  article-title: A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.138
– volume: 927
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0125
  article-title: High-efficiency Sb2(S, Se)3 solar cells with MoO3 as a hole-transport layer
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166842
– volume: 33
  start-page: 2102055
  issue: 36
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0245
  article-title: Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102055
– volume: 32
  start-page: 2110335
  issue: 10
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0240
  article-title: High-Efficiency Sb2(S, Se)3 Solar Cells with New Hole Transport Layer-Free Back Architecture via 2D Titanium-Carbide Mxene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202110335
– volume: 36
  start-page: 2305841
  issue: 1
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0075
  article-title: Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305841
– volume: 767
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0165
  article-title: Perovskite with inhomogeneous composition: Presence of the Cl-rich layer improves the device performance
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.138362
– volume: 19
  start-page: 2206175
  issue: 9
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0175
  article-title: Low-cost antimony selenosulfide with tunable bandgap for highly efficient solar cells
  publication-title: Small
  doi: 10.1002/smll.202206175
– volume: 10
  start-page: 1902650
  issue: 13
  year: 2019
  ident: 10.1016/j.cej.2024.151574_b0170
  article-title: Recent progresses on defect passivation toward efficient perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902650
– volume: 11
  start-page: 3008
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2024.151574_b0180
  article-title: Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16726-3
– volume: 36
  start-page: 2308522
  issue: 5
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0105
  article-title: Suppressing buried interface nonradiative recombination losses toward high-efficiency antimony triselenide solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202308522
– ident: 10.1016/j.cej.2024.151574_b0035
  doi: 10.1039/D1TA02356J
– volume: 9
  start-page: 2105142
  issue: 9
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0020
  article-title: Crystal growth promotion and defects healing enable minimum open-circuit voltage deficit in antimony Selenide solar cells
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105142
– volume: 5
  start-page: 587
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2024.151574_b0010
  article-title: Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0652-3
– volume: 920
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0040
  article-title: Thermal evaporation–deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S, Se)3 solar cells
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165885
– volume: 33
  start-page: 2213941
  issue: 14
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0015
  article-title: Carrier transport enhancement mechanism in highly efficient antimony Selenide thin-film solar cell
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213941
– volume: 11
  start-page: 174
  issue: 2
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0215
  article-title: Synthesis of Au or Pt@Perovskite Nanocrystals via Interfacial Photoreduction
  publication-title: Catalysts
  doi: 10.3390/catal11020174
– volume: 10
  start-page: 2304246
  issue: 31
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0060
  article-title: Enhancement in the Efficiency of Sb2Se3 Solar Cells by Triple Function of Lithium Hydroxide Modified at the Back Contact Interface
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202304246
– volume: 59
  start-page: 5002
  issue: 13
  year: 2020
  ident: 10.1016/j.cej.2024.151574_b0130
  article-title: Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916000
– volume: 648
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0120
  article-title: Classification of lattice defects and the microscopic origin of p-type conductivity of Sb2Se3 solar cell absorber with varying Al2O3-layer thicknesses
  publication-title: Phys. B
  doi: 10.1016/j.physb.2022.414394
– volume: 530
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0145
  article-title: Reversible degradation-assisted interface engineering via Cs4PbBr6 nanocrystals to boost the performance of CsPbI2Br perovskite solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231294
– volume: 80
  start-page: 256
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0220
  article-title: Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.01.049
– volume: 5
  start-page: 2100320
  issue: 10
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0210
  article-title: Multifunctional Reductive Molecular Modulator toward Efficient and Stable Perovskite Solar Cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100320
– volume: 10
  start-page: 2002341
  issue: 40
  year: 2020
  ident: 10.1016/j.cej.2024.151574_b0025
  article-title: Manipulating the electrical properties of Sb2(S, Se)3 film for high-efficiency solar cell
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002341
– volume: 14
  start-page: 33181
  issue: 29
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0235
  article-title: Post-Treatment of TiO2 Film Enables High-Quality Sb2Se3 Film Deposition for Solar Cell Applications
  publication-title: ACS Appl. Mater.
  doi: 10.1021/acsami.2c07157
– volume: 62
  start-page: 2305551
  issue: 39
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0205
  article-title: Synergic Electron and Defect Compensation Minimizes Voltage Loss in Lead-Free Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202305551
– volume: 12
  start-page: 2103015
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0005
  article-title: Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb2(S, Se)3 solar cells with 10.7% efficiency
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103015
– ident: 10.1016/j.cej.2024.151574_b0115
  doi: 10.1021/acsaem.2c00790
– ident: 10.1016/j.cej.2024.151574_b0095
  doi: 10.1007/s00339-014-8411-6
– volume: 52
  start-page: 829
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0055
  article-title: Solution-processed CIGS thin film solar cell by controlled selenization process
  publication-title: Mater. Today: Proc.
– volume: 668
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0230
  article-title: Optimizing the Se/S atom ratio and suppressing Sb2O3 impurities in hydrothermal deposition of Sb2(S, Se)3 films via Na+ doping
  publication-title: Physical B
  doi: 10.1016/j.physb.2023.415221
– volume: 11
  start-page: S59
  issue: 1
  year: 2011
  ident: 10.1016/j.cej.2024.151574_b0110
  article-title: Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2010.11.019
– volume: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2024.151574_b0160
  article-title: Perovskite quantum dots exhibiting strong hole extraction capability for efficient inorganic thin film solar cells
  publication-title: Cell Rep. Phys. Sci.
– volume: 34
  start-page: 2109078
  issue: 14
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0200
  article-title: Heterojunction Annealing Enabling Record Open-Circuit Voltage in Antimony Triselenide Solar Cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109078
– volume: 20
  start-page: 2308895
  issue: 10
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0090
  article-title: Precursor engineering of solution-processed Sb2S3 solar cells
  publication-title: Small
  doi: 10.1002/smll.202308895
– volume: 238
  start-page: 363
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0085
  article-title: Modeling of Ag incorporated Sb2(SxSe1−x)3 bi-layer devices: enhanced bi-layer absorber configuration
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.04.011
– volume: 273
  start-page: 14
  year: 2015
  ident: 10.1016/j.cej.2024.151574_b0140
  article-title: The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.037
– volume: 214
  start-page: 231
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0190
  article-title: Improving the performance of Sb2Se3 thin-film solar cells using n-type MoO3 as the back contact layer
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.11.074
– volume: 6
  start-page: 87288
  issue: 90
  year: 2016
  ident: 10.1016/j.cej.2024.151574_b0065
  article-title: The effect of sodium on antimony selenide thin film solar cells
  publication-title: RSC Adv.
  doi: 10.1039/C6RA20690E
– volume: 208
  start-page: 220
  year: 2020
  ident: 10.1016/j.cej.2024.151574_b0045
  article-title: Superstrate type CZTS solar cell with all solution processed functional layers at low temperature
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.07.055
– volume: 437
  year: 2022
  ident: 10.1016/j.cej.2024.151574_b0100
  article-title: Nanorod-textured Sb2(S, Se)3 bilayer with enhanced light harvesting and accelerated charge extraction for high-efficiency Sb2(S, Se)3 solar cells
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135341
– volume: 5
  start-page: e12400
  issue: 4
  year: 2023
  ident: 10.1016/j.cej.2024.151574_b0225
  article-title: Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors
  publication-title: InfoMat
  doi: 10.1002/inf2.12400
– volume: 3
  start-page: 1800272
  issue: 1
  year: 2018
  ident: 10.1016/j.cej.2024.151574_b0070
  article-title: Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800272
– volume: 36
  start-page: 629
  issue: 6
  year: 2021
  ident: 10.1016/j.cej.2024.151574_b0255
  article-title: Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell
  publication-title: J. Inorg. Mater.
  doi: 10.15541/jim20200495
– volume: 6
  start-page: 10687
  issue: 13
  year: 2014
  ident: 10.1016/j.cej.2024.151574_b0135
  article-title: Thermal Evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells
  publication-title: ACS Appl. Mater.
  doi: 10.1021/am502427s
– volume: 48
  start-page: 1939
  issue: 5
  year: 2013
  ident: 10.1016/j.cej.2024.151574_b0080
  article-title: AgSb(SxSe1−x)2 thin films for solar cell applications
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.01.040
– volume: 170
  start-page: 178
  year: 2017
  ident: 10.1016/j.cej.2024.151574_b0155
  article-title: PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.05.057
– volume: 438
  year: 2019
  ident: 10.1016/j.cej.2024.151574_b0195
  article-title: Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226987
SSID ssj0006919
Score 2.44238
Snippet Interestingly, the Nd3+ ions are incorporated into the crystal lattice and migrate to the CdS/Sb2(S,Se)3 interface after the doping process, thereby enhancing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 151574
SubjectTerms Energy band structures
Flow doping
Neodymium ions
Orientation
Sb2(S,Se)3
Title Performance enhancement of Sb2(S,Se)3 solar cells through neodymium ion flow doping
URI https://dx.doi.org/10.1016/j.cej.2024.151574
Volume 490
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1385-8947
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1385-8947
  databaseCode: ACRLP
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1385-8947
  databaseCode: AIKHN
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 1385-8947
  databaseCode: .~1
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1385-8947
  databaseCode: AKRWK
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn1hf5OBBxbT7SLKbYxFLtVjEteht2WQTbNHdYlvEi7_dzD58gHrwFHaZYZfJMI9k5huEDhNmY1DfSwj3FCcwbJuExvOJFJKmCdNJCbFxNeC9Ib28Z_cL6KzuhYGyysr2lza9sNbVm3YlzfZkNGpHLtxpCRoAohzkNdDBbj9mdbr19lnmwUUx3AOICVDXN5tFjZfSY5sierQFbj2gP_umL_6mu4pWqkARd8p_WUMLOltHy1_gAzdQdP1Z9Y919gArHPbh3OBIekfRaaSPfTyF7BXDCf0UV2N5cKbz9PVpNH_Cdl-wecxfcFq0Tm2iYff89qxHqiEJRFmvMyM8CUPBPIAEpdzXijuh1kwaLlMqZOCmiSsDprXNtXzjhFSZIFVSuJrbwMJo5W-hRpZnehthppRnw6WEGmWocLiNHUKmqVCOTEQaBk3k1OKJVYUgDoMsHuO6VGwcW4nGING4lGgTnXywTEr4jL-IaS3z-JsOxNa8_8628z-2XbQET1D25bI91Jg9z_W-DTBm8qDQoAO02Lno9waw9m_u-u8Vos9Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_odlAP4ifOzxw8qFjXjyRtjmMom7ohVMFbadIEJ1snOhH_e_PWVieoB0-FNg_KL-G930tefg_gMGWWgwZ-6nBfcQebbTuR8QNHCkmzlOm0kNjo9Xnnjl7es_s5aFd3YbCssvT9hU-feuvyTbNEs_k0GDRjD8-0BA1RUQ7zmnmoU2Z9cg3qre5Vp__pkLmY9vfA8Q4aVIeb0zIvpR9tlujTM4zsIf05PM2EnIsVWC65ImkVv7MKczpfg6UZBcF1iG--Cv-Jzh_wift9ZGxILP2j-DTWxwF5wQSW4Cb9Cyk785Bcj7P30eB1ROzUEDMcv5FsentqA-4uzm_bHafsk-AoG3gmDk-jSDAfVUEpD7TibqQ1k4bLjAoZelnqyZBpbdOtwLgRVSbMlBSe5pZbGK2CTajl41xvAWFK-ZYxpdQoQ4XLLX2ImKZCuTIVWRQ2wK3gSVQpIo69LIZJVS32mFhEE0Q0KRBtwMmnyVOhoPHXYFphnnxbBon18L-bbf_P7AAWOre96-S627_agUX8glVgHtuF2uT5Ve9ZvjGR--V6-gC2y9Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+enhancement+of+Sb2%28S%2CSe%293+solar+cells+through+neodymium+ion+flow+doping&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Ni%2C+Xiaomeng&rft.au=Liu%2C+Jingjing&rft.au=Xu%2C+Fangxian&rft.au=Zhang%2C+Jing&rft.date=2024-06-15&rft.issn=1385-8947&rft.volume=490&rft.spage=151574&rft_id=info:doi/10.1016%2Fj.cej.2024.151574&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_151574
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon