An improved method for retrieving aerosol optical depth using the ground-level meteorological data over the South-central Plain of Hebei Province, China

To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval model (R-ERM), was developed based on the meteorological observations to retrieve the AOD. The aerosol scale height (ASH1) algorithm might...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric pollution research Vol. 13; no. 3; p. 101334
Main Authors Li, Fuxing, Zhang, Lingyun, Wei, Qiang, Yang, Yi, Han, Fang, Li, Weimiao, Zhao, Chunli, Wang, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text
ISSN1309-1042
1309-1042
DOI10.1016/j.apr.2022.101334

Cover

Abstract To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval model (R-ERM), was developed based on the meteorological observations to retrieve the AOD. The aerosol scale height (ASH1) algorithm might introduce significant biases into AOD retrieval. Thus, the model enhances the AOD retrieval precision by redefining the ASH1 algorithm. The model was evaluated and validated against the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD data with a 1-km spatial resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) collected over the South-central Plain of Hebei Province region, China for the period of 2016–2017. Results indicate that, with the redefinition of the ASH1 algorithm, the overall the Pearson's correlation coefficient is 0.69 in 2017 between R-ERM and MAIAC AOD, and root mean squared error and the relative error (RE) are 0.20 and 23%, respectively. The evaluation proves that the R-ERM performs previous models, such as Elterman's retrieval model (ERM) with an overall validation R of 0.11 and Qiu's retrieval model (QRM) with an overall validation R of 0.35. The spatial patterns of the retrieved AOD after ordinary Kriging interpolation are consistent with those of the MAIAC datasets. Adding the water vapor pressure parameter significantly improved the estimation accuracy of ASH1, which is a key factor to the AOD retrieval results. The findings from the study demonstrate the great potential and value of the R-ERM for regional AOD retrieval. •An improved model for AOD estimation based on the meteorological variables is proposed.•ASH1 algorithm is revised to enhance the model's performance.•The proposed model with an over-all R = 0.78 outperforms previous studies.
AbstractList To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval model (R-ERM), was developed based on the meteorological observations to retrieve the AOD. The aerosol scale height (ASH1) algorithm might introduce significant biases into AOD retrieval. Thus, the model enhances the AOD retrieval precision by redefining the ASH1 algorithm. The model was evaluated and validated against the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD data with a 1-km spatial resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) collected over the South-central Plain of Hebei Province region, China for the period of 2016–2017. Results indicate that, with the redefinition of the ASH1 algorithm, the overall the Pearson's correlation coefficient is 0.69 in 2017 between R-ERM and MAIAC AOD, and root mean squared error and the relative error (RE) are 0.20 and 23%, respectively. The evaluation proves that the R-ERM performs previous models, such as Elterman's retrieval model (ERM) with an overall validation R of 0.11 and Qiu's retrieval model (QRM) with an overall validation R of 0.35. The spatial patterns of the retrieved AOD after ordinary Kriging interpolation are consistent with those of the MAIAC datasets. Adding the water vapor pressure parameter significantly improved the estimation accuracy of ASH1, which is a key factor to the AOD retrieval results. The findings from the study demonstrate the great potential and value of the R-ERM for regional AOD retrieval. •An improved model for AOD estimation based on the meteorological variables is proposed.•ASH1 algorithm is revised to enhance the model's performance.•The proposed model with an over-all R = 0.78 outperforms previous studies.
ArticleNumber 101334
Author Wang, Wei
Han, Fang
Wei, Qiang
Zhao, Chunli
Li, Weimiao
Li, Fuxing
Zhang, Lingyun
Yang, Yi
Author_xml – sequence: 1
  givenname: Fuxing
  orcidid: 0000-0003-1673-2567
  surname: Li
  fullname: Li, Fuxing
  email: lifuxing6042@hebtu.edu.cn
  organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China
– sequence: 2
  givenname: Lingyun
  surname: Zhang
  fullname: Zhang, Lingyun
  organization: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China
– sequence: 3
  givenname: Qiang
  surname: Wei
  fullname: Wei, Qiang
  organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China
– sequence: 4
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China
– sequence: 5
  givenname: Fang
  surname: Han
  fullname: Han, Fang
  organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China
– sequence: 6
  givenname: Weimiao
  surname: Li
  fullname: Li, Weimiao
  organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China
– sequence: 7
  givenname: Chunli
  surname: Zhao
  fullname: Zhao, Chunli
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-9670-8465
  surname: Wang
  fullname: Wang, Wei
  email: wangwei@hebtu.edu.cn
  organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China
BookMark eNp9kM1KAzEUhYNUsNY-gLs8gFPzM9N0cFWKWqFgQV2HNLntpEyTIZMWfBMf14zjQlw0m5vce79DzrlGA-cdIHRLyYQSOr3fT1QTJoww1r05zy_QkHJSZpTkbPDnfoXGbbsn6fCyEIwM0dfcYXtogj-BwQeIlTd46wMOEIOFk3U7rCD41tfYN9FqVWMDTazwse1msQK8C_7oTFbDCepOAnzwtd_1uyoqnLTDz-abP8Yq0-BiSLN1razDfouXsAGL1-kP1mm4w4vKOnWDLreqbmH8W0fo4-nxfbHMVq_PL4v5KtOMspgxQbgGrvPpTJipVoWgeia4MKXgG85FUfCCqikXWkG5MSrfsNROAcxKVehc8RGiva5OLtsAW9kEe1DhU1Iiu3TlXqZ0ZZeu7NNNjPjHaBtVtL4zZuuz5ENPQrJ0shBkqy0k18YG0FEab8_Q32ynmGw
CitedBy_id crossref_primary_10_3724_EE_1672_9250_2024_52_046
crossref_primary_10_3390_su15032609
Cites_doi 10.5194/acp-5-715-2005
10.1016/j.rse.2019.111221
10.1016/j.scitotenv.2017.12.136
10.1002/joc.7089
10.1029/2018JD028573
10.1016/j.envint.2019.01.016
10.1016/j.rse.2021.112617
10.1016/j.rse.2012.09.002
10.1016/j.rse.2014.08.008
10.3390/ijerph14101244
10.3390/rs11111344
10.1016/j.atmosenv.2019.04.020
10.1002/anie.200501122
10.1016/j.atmosenv.2017.09.004
10.1016/j.envpol.2018.09.052
10.1126/science.1064034
10.5194/amt-11-5741-2018
10.1016/j.atmosenv.2019.01.013
10.1016/j.earscirev.2019.102986
10.1016/j.rse.2017.07.023
10.5194/acp-15-7619-2015
10.1016/j.scitotenv.2018.03.202
10.1016/j.jastp.2017.08.029
10.1007/s11356-014-2571-y
10.3390/ijerph17061923
10.1016/j.rse.2018.12.002
10.1016/j.atmosenv.2019.01.027
10.1088/1748-9326/10/1/015003
10.1364/AO.9.001804
10.1016/j.scitotenv.2019.01.169
10.1016/S0034-4257(98)00031-5
10.3390/rs11192218
10.1016/j.apr.2019.08.003
10.1080/15481603.2019.1703288
10.1016/j.scitotenv.2021.147543
10.1021/acs.est.7b01210
10.5194/acp-19-1327-2019
10.1029/2011JD016817
10.3390/app8122624
10.1016/j.rse.2021.112410
10.3390/s21196342
10.1016/j.atmosres.2019.104815
10.1002/2014JD021550
ContentType Journal Article
Copyright 2022 Turkish National Committee for Air Pollution Research and Control
Copyright_xml – notice: 2022 Turkish National Committee for Air Pollution Research and Control
DBID AAYXX
CITATION
DOI 10.1016/j.apr.2022.101334
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1309-1042
ExternalDocumentID 10_1016_j_apr_2022_101334
S1309104222000216
GroupedDBID --M
0R~
0SF
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABQYD
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GX1
KOM
NCXOZ
O9-
OAUVE
OK1
ROL
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TR2
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c212t-2703ce3c4687d6ca571c8737d973b33755351a637cae9bda4b2b3300089a5c4a3
IEDL.DBID AIKHN
ISSN 1309-1042
IngestDate Wed Oct 29 21:26:07 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Fri Feb 23 02:40:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords South-central plain of hebei province
Ground-level meteorological data
Aerosol optical depth
Aerosol scale height
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c212t-2703ce3c4687d6ca571c8737d973b33755351a637cae9bda4b2b3300089a5c4a3
ORCID 0000-0003-1673-2567
0000-0001-9670-8465
ParticipantIDs crossref_primary_10_1016_j_apr_2022_101334
crossref_citationtrail_10_1016_j_apr_2022_101334
elsevier_sciencedirect_doi_10_1016_j_apr_2022_101334
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Atmospheric pollution research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lolli (bib24) 2021; 21
Webley, Steensen, Stuefer, Grell, Freitas, Pavolonis (bib41) 2012; 117
Hu, Belle, Meng, Wildani, Waller, Strickland, Liu (bib17) 2017; 51
Yang, Hu (bib46) 2018; 633
Che, Zhang, Xia, Goloub, Holben, Zhao, Wang, Zhang, Wang, Blarel, Damiri, Zhang, Deng, Ma, Wang, Geng, Qi, Zhu, Yu, Chen, Shi (bib7) 2015; 15
Chen, Zhang, Zhang, Zhu, Yang, Chen, Ou, Guo (bib9) 2019; 202
Shin, Kang, Park, Im, Quackenbush (bib37) 2020; 57
Poschl (bib34) 2005; 44
Gui, Che, Zheng, Wang, Zhang, Zhao, Li, Zhong, Yao, Zhang (bib13) 2021; 787
Zhang, Wu, Fan, Yang, Zhao (bib48) 2020; 200
Benkhalifa, Leon, Chaabane (bib2) 2017; 164
Chen, Li, Lv, Wang, Wei, Zhang, Wang, Yan, Sun, Cribb (bib8) 2018; 19
Wei, Huang, Li, Xue, Cribb (bib42) 2019; 231
Zhao, Wang, Ding, Wu, Chang, Wang, Xing, Jang, Fu, Zhu, Zheng, Gu (bib51) 2019; 661
Koschmieder (bib20) 1924; 12
Belle, Chang, Wang, Hu, Alexei, Yang (bib1) 2017; 14
Jin, Ma, Zhang, Gong, Yang (bib18) 2019; 11
Stafoggia, Bellander, Bucci, Davoli, de Hoogh, de' Donato, Gariazzo, Lyapustin, Michelozzi, Renzi, Scortichini, Shtein, Viegi, Kloog, Schwartz (bib40) 2019; 124
Molnár, Imre, Ferenczi, Kiss, Gelencsér (bib32) 2020; 23
Qiu, Lin (bib35) 2001; 59
Oh, Ma, Kim (bib33) 2020; 17
Song, Jia, Huang, Zhang (bib38) 2014; 154
Bilal, Mhawish, Nichol, Qiu, Nazeer, Ali, Leeuw, Levy, Wang, Chen, Wang, Shi, Bleiweiss, Mazhar, Atique, Ke (bib5) 2021; 264
Boers, van Weele, van Meijgaard, Savenije, Siebesma, Bosveld, Stammes (bib6) 2015
Wu, Luo, Zhang, Xia, Zhao, Tang (bib43) 2014; 119
Landlová, Cupr, Franců, Lammel (bib21) 2014; 21
Geng, Murray, Tong, Joshua, Fu, Lee, Meng, Chang, Liu (bib12) 2018; 123
Song, Fu, Zhang, Han, Xia (bib39) 2019; 209
Levy, Remer, Dubovik (bib22) 2007; 112
Lyapustin, Wang, Laszlo, Kahn, Korkin, Remer, Levy, Reid (bib28) 2011; 116
Mhawish, Sorek-Hamer, Chatfield, Banerjee, Kalashnikova (bib31) 2021; 259
Han, Tong, Chen, Li, Liu (bib15) 2018; 8
Holben, Eck, Slutsker, Tanré, Buis, Setzer, Vermote, Reagan, Kaufman, Nakajima, Lavenu, Jankowiak, Smirnov (bib16) 1998; 66
Lyapustin, Wang, Laszlo, Hilker, Hall, Sellers, Tucker, Korkinet (bib27) 2012; 127
Luo, Liu, Zhu, Tang, Shao (bib25) 2021; 41
Lyapustin, Wang, Korkin, Huang (bib26) 2018; 11
Zhang, Di, Luo, Deng, Grieneisen, Wang, Yao, Zhan (bib47) 2018; 243
Elterman (bib10) 1970; 9
Ramanathan, Crutzen, Kiehl, Rosenfeld (bib36) 2001; 294
Bi, Belle, Wang, Lyapustin, Wildani, Liu (bib3) 2019; 221
Ferrero, Riccio, Ferrini, D'Angelo, Rovelli, Casati, Angelini, Barnaba, Gobbi, Cataldi, Bolzacchini (bib11) 2019; 10
McClatchey, Fenn, Selby (bib30) 1972
Xiao, Wang, Chang, Xia, Yang (bib44) 2017; 199
Mamali, Mikkilä, Henzing, Spoor, Ehn, Petäjä, Russchenberg, Biskos (bib29) 2018; 625
Zhang, Wu, Wei, Song, Yan, Zhu, Wang (bib49) 2017; 171
Lohmann, Feichter (bib23) 2004; 5
Kahn, Yu, Schwartz, Chin, Feingold, Remer, Rind, Halthore, DeCola (bib19) 2009
Bilal, Nazeer, Nichol, Bleiweiss, Qiu, Jäkel, Campbell, Atique, Huang, Lolli (bib4) 2019; 11
Zhang, Wu, Fan, Wei, Tan, Wang (bib50) 2019; 202
Lyapustin (10.1016/j.apr.2022.101334_bib27) 2012; 127
Ramanathan (10.1016/j.apr.2022.101334_bib36) 2001; 294
Elterman (10.1016/j.apr.2022.101334_bib10) 1970; 9
Wei (10.1016/j.apr.2022.101334_bib42) 2019; 231
Mhawish (10.1016/j.apr.2022.101334_bib31) 2021; 259
Belle (10.1016/j.apr.2022.101334_bib1) 2017; 14
Stafoggia (10.1016/j.apr.2022.101334_bib40) 2019; 124
Webley (10.1016/j.apr.2022.101334_bib41) 2012; 117
Zhang (10.1016/j.apr.2022.101334_bib48) 2020; 200
Gui (10.1016/j.apr.2022.101334_bib13) 2021; 787
Lyapustin (10.1016/j.apr.2022.101334_bib28) 2011; 116
Boers (10.1016/j.apr.2022.101334_bib6) 2015
Lyapustin (10.1016/j.apr.2022.101334_bib26) 2018; 11
Zhang (10.1016/j.apr.2022.101334_bib50) 2019; 202
Lohmann (10.1016/j.apr.2022.101334_bib23) 2004; 5
Ferrero (10.1016/j.apr.2022.101334_bib11) 2019; 10
Poschl (10.1016/j.apr.2022.101334_bib34) 2005; 44
Zhang (10.1016/j.apr.2022.101334_bib47) 2018; 243
Chen (10.1016/j.apr.2022.101334_bib8) 2018; 19
Geng (10.1016/j.apr.2022.101334_bib12) 2018; 123
Song (10.1016/j.apr.2022.101334_bib39) 2019; 209
Zhang (10.1016/j.apr.2022.101334_bib49) 2017; 171
McClatchey (10.1016/j.apr.2022.101334_bib30) 1972
Yang (10.1016/j.apr.2022.101334_bib46) 2018; 633
Oh (10.1016/j.apr.2022.101334_bib33) 2020; 17
Mamali (10.1016/j.apr.2022.101334_bib29) 2018; 625
Hu (10.1016/j.apr.2022.101334_bib17) 2017; 51
Che (10.1016/j.apr.2022.101334_bib7) 2015; 15
Benkhalifa (10.1016/j.apr.2022.101334_bib2) 2017; 164
Bilal (10.1016/j.apr.2022.101334_bib5) 2021; 264
Luo (10.1016/j.apr.2022.101334_bib25) 2021; 41
Koschmieder (10.1016/j.apr.2022.101334_bib20) 1924; 12
Lolli (10.1016/j.apr.2022.101334_bib24) 2021; 21
Landlová (10.1016/j.apr.2022.101334_bib21) 2014; 21
Bilal (10.1016/j.apr.2022.101334_bib4) 2019; 11
Kahn (10.1016/j.apr.2022.101334_bib19) 2009
Holben (10.1016/j.apr.2022.101334_bib16) 1998; 66
Shin (10.1016/j.apr.2022.101334_bib37) 2020; 57
Wu (10.1016/j.apr.2022.101334_bib43) 2014; 119
Bi (10.1016/j.apr.2022.101334_bib3) 2019; 221
Qiu (10.1016/j.apr.2022.101334_bib35) 2001; 59
Chen (10.1016/j.apr.2022.101334_bib9) 2019; 202
Levy (10.1016/j.apr.2022.101334_bib22) 2007; 112
Xiao (10.1016/j.apr.2022.101334_bib44) 2017; 199
Molnár (10.1016/j.apr.2022.101334_bib32) 2020; 23
Jin (10.1016/j.apr.2022.101334_bib18) 2019; 11
Zhao (10.1016/j.apr.2022.101334_bib51) 2019; 661
Song (10.1016/j.apr.2022.101334_bib38) 2014; 154
Han (10.1016/j.apr.2022.101334_bib15) 2018; 8
References_xml – volume: 17
  year: 2020
  ident: bib33
  article-title: Human inhalation exposure to aerosol and health effect: aerosol monitoring and modelling regional deposited doses
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 44
  start-page: 7520
  year: 2005
  end-page: 7540
  ident: bib34
  article-title: Atmospheric aerosols: composition, transformation, climate and health effects
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 19
  start-page: 1327
  year: 2018
  end-page: 1342
  ident: bib8
  article-title: Aerosol hygroscopic growth, contributing factors and impact on haze events in a severely polluted region in northern China
  publication-title: Atmos. Chem. Phys.
– volume: 200
  start-page: 102986
  year: 2020
  ident: bib48
  article-title: Review of aerosol optical depth retrieval using visibility data
  publication-title: Earth Sci. Rev.
– volume: 116
  year: 2011
  ident: bib28
  article-title: Multiangle implementation of atmospheric correction (maiac): 2. Aerosol algorithm
  publication-title: J. Geophys. Res.
– volume: 259
  year: 2021
  ident: bib31
  article-title: Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019)
  publication-title: Remote Sens. Environ.
– volume: 221
  start-page: 665
  year: 2019
  end-page: 674
  ident: bib3
  article-title: Impacts of snow and cloud covers on satellite-derived PM
  publication-title: Remote Sens. Environ.
– volume: 59
  start-page: 368
  year: 2001
  end-page: 372
  ident: bib35
  article-title: A parameterization model of aerosol optical depths in China
  publication-title: Acta Meteorol. Sin.
– volume: 14
  start-page: 1244
  year: 2017
  ident: bib1
  article-title: The potential impact of satellite-retrieved cloud parameters on ground-level PM
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 661
  start-page: 375
  year: 2019
  end-page: 385
  ident: bib51
  article-title: Nonlinear relationships between air pollutant emissions and PM
  publication-title: Sci. Total Environ.
– volume: 66
  start-page: 1
  year: 1998
  end-page: 16
  ident: bib16
  article-title: AERONET—a federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: D13
  year: 2007
  ident: bib22
  article-title: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land
  publication-title: J. Geophys. Res. Atmos.
– volume: 294
  start-page: 2119
  year: 2001
  end-page: 2124
  ident: bib36
  article-title: Aerosols, climate, and the hydrological cycle
  publication-title: Science
– volume: 202
  start-page: 8
  year: 2019
  end-page: 16
  ident: bib50
  article-title: Evaluation of MAIAC aerosol retrievals over China
  publication-title: Atmos. Environ.
– volume: 787
  year: 2021
  ident: bib13
  article-title: Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations
  publication-title: Sci. Total Environ.
– volume: 21
  start-page: 6188
  year: 2014
  end-page: 6204
  ident: bib21
  article-title: Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: Part I. PAHs, PCBs and OCPs and the matrix chemical composition
  publication-title: Environ. Sci. Pollut. R.
– volume: 57
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib37
  article-title: Estimating ground-level particulate matter concentrations using satellite-based data: a review
  publication-title: GISci. Remote. Sens.
– volume: 12
  start-page: 171
  year: 1924
  end-page: 181
  ident: bib20
  article-title: Theorie der horizontalen Sichtweite
  publication-title: Beitr. Phys. Freien Atmos.
– volume: 164
  start-page: 222
  year: 2017
  end-page: 228
  ident: bib2
  article-title: Aerosol optical properties of western Mediterranean basin from multi-year AERONET data
  publication-title: J. Atmos. Sol. Phys.
– year: 1972
  ident: bib30
  article-title: Optical Properties of the Atmosphere
– volume: 171
  start-page: 38
  year: 2017
  end-page: 48
  ident: bib49
  article-title: Aerosol optical depth retrieval from visibility in China during 1973–2014
  publication-title: Atmos. Environ.
– volume: 127
  start-page: 385
  year: 2012
  end-page: 393
  ident: bib27
  article-title: Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 2218
  year: 2019
  ident: bib18
  article-title: Retrieval of 500 m aerosol optical depths from MODIS measurements over urban surfaces under heavy aerosol loading conditions in winter
  publication-title: Rem. Sens.
– volume: 209
  start-page: 14
  year: 2019
  end-page: 22
  ident: bib39
  article-title: MODIS AOD sampling rate and its effect on PM
  publication-title: Atmos. Environ.
– volume: 243
  start-page: 998
  year: 2018
  end-page: 1007
  ident: bib47
  article-title: A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM
  publication-title: Environ. Pollut.
– volume: 23
  start-page: 104815
  year: 2020
  ident: bib32
  article-title: Aerosol hygroscopicity: hygroscopic growth proxy based on visibility for low-cost PM monitoring
  publication-title: Atmos. Res.
– volume: 124
  start-page: 170
  year: 2019
  end-page: 179
  ident: bib40
  article-title: Estimation of daily PM
  publication-title: Environ. Int.
– volume: 231
  start-page: 111221
  year: 2019
  ident: bib42
  article-title: Estimating 1-km-resolution PM
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 6936
  year: 2017
  end-page: 6944
  ident: bib17
  article-title: Estimating PM
  publication-title: Environ. Sci. Technol.
– year: 2009
  ident: bib19
  article-title: Introduction, in Atmospheric Aerosol Properties and Climate Impacts, a Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research
– volume: 9
  start-page: 1804
  year: 1970
  end-page: 1810
  ident: bib10
  article-title: Relationships between vertical attenuation and surface meteorological range
  publication-title: Appl. Opt.
– volume: 11
  start-page: 1344
  year: 2019
  ident: bib4
  article-title: A simplified and robust surface reflectance estimation method (SREM) for use over diverse land surfaces using multi-sensor data
  publication-title: Remote. Sens-basel.
– volume: 625
  start-page: 752
  year: 2018
  end-page: 761
  ident: bib29
  article-title: Long-term observations of the background aerosol at Cabauw, The Netherlands
  publication-title: Sci. Total Environ.
– volume: 154
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib38
  article-title: A satellite-based geographically weighted regression model for regional PM
  publication-title: Remote Sens. Environ.
– volume: 264
  start-page: 112617
  year: 2021
  ident: bib5
  article-title: Air pollution scenario over Pakistan: characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 715
  year: 2004
  end-page: 737
  ident: bib23
  article-title: Global indirect aerosol effects: a review
  publication-title: Atmos. Chem. Phys.
– volume: 8
  start-page: 2624
  year: 2018
  ident: bib15
  article-title: Estimation of high-resolution daily ground-level PM
  publication-title: Appl. Sci.
– volume: 123
  start-page: 8159
  year: 2018
  end-page: 8171
  ident: bib12
  article-title: Satellite-based daily PM
  publication-title: J. Geophys. Res. Atmos.
– volume: 119
  start-page: 13370
  year: 2014
  end-page: 13387
  ident: bib43
  article-title: Improvement of aerosol optical depth retrieval using visibility data in China during the past 50years
  publication-title: J. Geophys. Res. Atmos.
– volume: 15
  start-page: 7619
  year: 2015
  end-page: 7652
  ident: bib7
  article-title: Ground-based aerosol climatology of China: aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002-2013
  publication-title: Atmos. Chem. Phys.
– volume: 11
  start-page: 5741
  year: 2018
  end-page: 5765
  ident: bib26
  article-title: MODIS Collection 6 MAIAC algorithm
  publication-title: Atmos. Meas. Tech.
– volume: 633
  start-page: 677
  year: 2018
  end-page: 683
  ident: bib46
  article-title: Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation
  publication-title: Sci. Total Environ.
– volume: 21
  start-page: 6342
  year: 2021
  ident: bib24
  article-title: Is the air too polluted for outdoor activities? Check by using your photovoltaic System as an air-quality monitoring device
  publication-title: Sensors
– volume: 202
  start-page: 180
  year: 2019
  end-page: 189
  ident: bib9
  article-title: Extreme gradient boosting model to estimate PM
  publication-title: Atmos. Environ.
– start-page: 15003
  year: 2015
  ident: bib6
  article-title: Observations and projections of visibility and aerosol optical thickness (1956–2100) in The Netherlands: impacts of time-varying aerosol composition and hygroscopicity
  publication-title: Environ. Res. Lett.
– volume: 10
  year: 2019
  ident: bib11
  article-title: Satellite AOD conversion into ground PM
  publication-title: Atmos. Pollut. Res.
– volume: 199
  year: 2017
  ident: bib44
  article-title: Full-coverage high-resolution daily PM
  publication-title: Remote Sens. Environ.
– volume: 41
  start-page: 4603
  year: 2021
  end-page: 4618
  ident: bib25
  article-title: Effects of aerosols on cloud and precipitation in East-Asian drylands
  publication-title: Int. J. Climatol.
– volume: 117
  year: 2012
  ident: bib41
  article-title: Analyzing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and WRF-Chem dispersion and tracking model
  publication-title: J. Geophys. Res. Atmos.
– volume: 5
  start-page: 715
  year: 2004
  ident: 10.1016/j.apr.2022.101334_bib23
  article-title: Global indirect aerosol effects: a review
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-5-715-2005
– volume: 231
  start-page: 111221
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib42
  article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111221
– volume: 625
  start-page: 752
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib29
  article-title: Long-term observations of the background aerosol at Cabauw, The Netherlands
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.136
– volume: 41
  start-page: 4603
  year: 2021
  ident: 10.1016/j.apr.2022.101334_bib25
  article-title: Effects of aerosols on cloud and precipitation in East-Asian drylands
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7089
– volume: 123
  start-page: 8159
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib12
  article-title: Satellite-based daily PM2.5 estimates during fire seasons in Colorado
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028573
– volume: 124
  start-page: 170
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib40
  article-title: Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.01.016
– year: 1972
  ident: 10.1016/j.apr.2022.101334_bib30
– volume: 264
  start-page: 112617
  year: 2021
  ident: 10.1016/j.apr.2022.101334_bib5
  article-title: Air pollution scenario over Pakistan: characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112617
– volume: 127
  start-page: 385
  year: 2012
  ident: 10.1016/j.apr.2022.101334_bib27
  article-title: Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.002
– volume: 154
  start-page: 1
  year: 2014
  ident: 10.1016/j.apr.2022.101334_bib38
  article-title: A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.008
– volume: 14
  start-page: 1244
  year: 2017
  ident: 10.1016/j.apr.2022.101334_bib1
  article-title: The potential impact of satellite-retrieved cloud parameters on ground-level PM2.5 mass and composition
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph14101244
– volume: 11
  start-page: 1344
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib4
  article-title: A simplified and robust surface reflectance estimation method (SREM) for use over diverse land surfaces using multi-sensor data
  publication-title: Remote. Sens-basel.
  doi: 10.3390/rs11111344
– volume: 209
  start-page: 14
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib39
  article-title: MODIS AOD sampling rate and its effect on PM2.5 estimation in North China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.04.020
– volume: 44
  start-page: 7520
  year: 2005
  ident: 10.1016/j.apr.2022.101334_bib34
  article-title: Atmospheric aerosols: composition, transformation, climate and health effects
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200501122
– volume: 171
  start-page: 38
  year: 2017
  ident: 10.1016/j.apr.2022.101334_bib49
  article-title: Aerosol optical depth retrieval from visibility in China during 1973–2014
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.09.004
– volume: 243
  start-page: 998
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib47
  article-title: A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.052
– volume: 294
  start-page: 2119
  year: 2001
  ident: 10.1016/j.apr.2022.101334_bib36
  article-title: Aerosols, climate, and the hydrological cycle
  publication-title: Science
  doi: 10.1126/science.1064034
– volume: 11
  start-page: 5741
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib26
  article-title: MODIS Collection 6 MAIAC algorithm
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-5741-2018
– volume: 202
  start-page: 8
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib50
  article-title: Evaluation of MAIAC aerosol retrievals over China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.01.013
– volume: 200
  start-page: 102986
  year: 2020
  ident: 10.1016/j.apr.2022.101334_bib48
  article-title: Review of aerosol optical depth retrieval using visibility data
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2019.102986
– volume: 59
  start-page: 368
  year: 2001
  ident: 10.1016/j.apr.2022.101334_bib35
  article-title: A parameterization model of aerosol optical depths in China
  publication-title: Acta Meteorol. Sin.
– volume: 199
  year: 2017
  ident: 10.1016/j.apr.2022.101334_bib44
  article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.023
– volume: 15
  start-page: 7619
  year: 2015
  ident: 10.1016/j.apr.2022.101334_bib7
  article-title: Ground-based aerosol climatology of China: aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002-2013
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-7619-2015
– volume: 633
  start-page: 677
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib46
  article-title: Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.202
– volume: 12
  start-page: 171
  year: 1924
  ident: 10.1016/j.apr.2022.101334_bib20
  article-title: Theorie der horizontalen Sichtweite
  publication-title: Beitr. Phys. Freien Atmos.
– volume: 164
  start-page: 222
  year: 2017
  ident: 10.1016/j.apr.2022.101334_bib2
  article-title: Aerosol optical properties of western Mediterranean basin from multi-year AERONET data
  publication-title: J. Atmos. Sol. Phys.
  doi: 10.1016/j.jastp.2017.08.029
– volume: 21
  start-page: 6188
  year: 2014
  ident: 10.1016/j.apr.2022.101334_bib21
  article-title: Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: Part I. PAHs, PCBs and OCPs and the matrix chemical composition
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-014-2571-y
– volume: 17
  year: 2020
  ident: 10.1016/j.apr.2022.101334_bib33
  article-title: Human inhalation exposure to aerosol and health effect: aerosol monitoring and modelling regional deposited doses
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph17061923
– volume: 221
  start-page: 665
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib3
  article-title: Impacts of snow and cloud covers on satellite-derived PM2.5 levels
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.002
– volume: 202
  start-page: 180
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib9
  article-title: Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.01.027
– start-page: 15003
  year: 2015
  ident: 10.1016/j.apr.2022.101334_bib6
  article-title: Observations and projections of visibility and aerosol optical thickness (1956–2100) in The Netherlands: impacts of time-varying aerosol composition and hygroscopicity
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/1/015003
– volume: 9
  start-page: 1804
  year: 1970
  ident: 10.1016/j.apr.2022.101334_bib10
  article-title: Relationships between vertical attenuation and surface meteorological range
  publication-title: Appl. Opt.
  doi: 10.1364/AO.9.001804
– volume: 661
  start-page: 375
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib51
  article-title: Nonlinear relationships between air pollutant emissions and PM2.5-related health impacts in the Beijing-Tianjin-Hebei region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.169
– volume: 66
  start-page: 1
  year: 1998
  ident: 10.1016/j.apr.2022.101334_bib16
  article-title: AERONET—a federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00031-5
– volume: 112
  start-page: D13
  year: 2007
  ident: 10.1016/j.apr.2022.101334_bib22
  article-title: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land
  publication-title: J. Geophys. Res. Atmos.
– volume: 11
  start-page: 2218
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib18
  article-title: Retrieval of 500 m aerosol optical depths from MODIS measurements over urban surfaces under heavy aerosol loading conditions in winter
  publication-title: Rem. Sens.
  doi: 10.3390/rs11192218
– volume: 10
  year: 2019
  ident: 10.1016/j.apr.2022.101334_bib11
  article-title: Satellite AOD conversion into ground PM10, PM2.5 and PM1 over the Po valley (Milan, Italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2019.08.003
– volume: 57
  start-page: 1
  year: 2020
  ident: 10.1016/j.apr.2022.101334_bib37
  article-title: Estimating ground-level particulate matter concentrations using satellite-based data: a review
  publication-title: GISci. Remote. Sens.
  doi: 10.1080/15481603.2019.1703288
– volume: 787
  year: 2021
  ident: 10.1016/j.apr.2022.101334_bib13
  article-title: Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147543
– volume: 51
  start-page: 6936
  year: 2017
  ident: 10.1016/j.apr.2022.101334_bib17
  article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01210
– volume: 19
  start-page: 1327
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib8
  article-title: Aerosol hygroscopic growth, contributing factors and impact on haze events in a severely polluted region in northern China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-1327-2019
– volume: 117
  issue: D20
  year: 2012
  ident: 10.1016/j.apr.2022.101334_bib41
  article-title: Analyzing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and WRF-Chem dispersion and tracking model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD016817
– volume: 8
  start-page: 2624
  year: 2018
  ident: 10.1016/j.apr.2022.101334_bib15
  article-title: Estimation of high-resolution daily ground-level PM2.5 concentration in Beijing 2013–2017 using 1 km MAIAC AOT data
  publication-title: Appl. Sci.
  doi: 10.3390/app8122624
– year: 2009
  ident: 10.1016/j.apr.2022.101334_bib19
– volume: 259
  year: 2021
  ident: 10.1016/j.apr.2022.101334_bib31
  article-title: Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112410
– volume: 116
  issue: D3
  year: 2011
  ident: 10.1016/j.apr.2022.101334_bib28
  article-title: Multiangle implementation of atmospheric correction (maiac): 2. Aerosol algorithm
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 6342
  year: 2021
  ident: 10.1016/j.apr.2022.101334_bib24
  article-title: Is the air too polluted for outdoor activities? Check by using your photovoltaic System as an air-quality monitoring device
  publication-title: Sensors
  doi: 10.3390/s21196342
– volume: 23
  start-page: 104815
  year: 2020
  ident: 10.1016/j.apr.2022.101334_bib32
  article-title: Aerosol hygroscopicity: hygroscopic growth proxy based on visibility for low-cost PM monitoring
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.104815
– volume: 119
  start-page: 13370
  year: 2014
  ident: 10.1016/j.apr.2022.101334_bib43
  article-title: Improvement of aerosol optical depth retrieval using visibility data in China during the past 50years
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD021550
SSID ssj0000395720
Score 2.2395678
Snippet To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101334
SubjectTerms Aerosol optical depth
Aerosol scale height
Ground-level meteorological data
South-central plain of hebei province
Title An improved method for retrieving aerosol optical depth using the ground-level meteorological data over the South-central Plain of Hebei Province, China
URI https://dx.doi.org/10.1016/j.apr.2022.101334
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1309-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395720
  issn: 1309-1042
  databaseCode: AIKHN
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1309-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395720
  issn: 1309-1042
  databaseCode: ACRLP
  dateStart: 20150901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1309-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395720
  issn: 1309-1042
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1309-1042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000395720
  issn: 1309-1042
  databaseCode: AKRWK
  dateStart: 20100101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aIH8YnPZQ6exLLbJm3a4yLqqiiCCnsraZJqZWnLsv4Xf66ZtBUF9eAxIdOWTDrfMPlmBuA40z7BeORxHYUej7XwZKAzL1C5zCMuNXd1Zm_voskTv56G0x6cdbkwRKtsbX9j0521bmeG7W4O66IYPljra7GOQhj0W_vREixb_InjPiyPr24md5-hlhHdRQVNvjAV_7cy3f2mY3rJmgqDBgGNGeM_I9QX1LlYh7XWXcRx80Ub0DPlJqx-KSK4Be_jEgsXGjAam4bQaD1RnLteWRQvQGnsm6oZVrWLXKM29eIFifL-jNYBRErtKLU3IwIRPcJU884mIlFIkXiebqXruOe1jE68n8mixCrHiVVSgfcuPKHMKbqu3NvwdHH-eDbx2n4LnrIAtqDUNKYMUzyKhY6UDIWvYsGETgTLGBNhyEJfRkwoaZJMS54Fdpq8iESGiku2A_2yKs0uIBf5yBhrwWRitT1SiVAq4XFO991xmJk9GHV7nKq2GDn1xJilHevsNbVqSUktaaOWPTj5FKmbShx_Lead4tJvxym1SPG72P7_xA5ghUYNNe0Q-ov5mzmyvsoiG7RncQBLl1P_A6d36L4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4inG0wdOiGpbkzTtcZpABbYJCZC4VWmSQtHUVtP4L_xc4rRFIAEHjk3jNooT27I_24ScpXqAajzwmA64x0ItPOnr1PNVJrOASc1cndnJNIgf2c0Tf1oiozYXBmGVjeyvZbqT1s1Ir9nNXpXnvXsrfa2uQxcGXutBsExWGKfC3s6V4fVtPP10tfQxFuXX-cJY_N_StPFNh_SSFRYG9X18ppT9rKG-aJ2rTbLRmIswrFe0RZZMsU3WvxQR3CHvwwJy5xowGuqG0GAtUZi7XlnoLwBp7J_KGZSV81yDNtXiBRDy_gzWAARM7Si0N0MAEX7ClPNWJgJCSAFxnm6m67jnNYhOuJvJvIAyg9gyKYc7555Q5gJcV-5d8nh1-TCKvabfgqesAltgahpVhioWhEIHSnIxUKGgQkeCppQKzikfyIAKJU2UaslS3w6jFRFJrpike6RTlIXZJ8BE1jfGSjAZWW73VSSUiliYYbw75Knpkn67x4lqipFjT4xZ0qLOXhPLlgTZktRs6ZLzT5KqrsTx12TWMi75dpwSqyl-Jzv4H9kpWY0fJuNkfD29PSRr-KaGqR2RzmL-Zo6t3bJIT5pz-QEcpequ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+method+for+retrieving+aerosol+optical+depth+using+the+ground-level+meteorological+data+over+the+South-central+Plain+of+Hebei+Province%2C+China&rft.jtitle=Atmospheric+pollution+research&rft.au=Li%2C+Fuxing&rft.au=Zhang%2C+Lingyun&rft.au=Wei%2C+Qiang&rft.au=Yang%2C+Yi&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=1309-1042&rft.eissn=1309-1042&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1016%2Fj.apr.2022.101334&rft.externalDocID=S1309104222000216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1309-1042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1309-1042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1309-1042&client=summon