An improved method for retrieving aerosol optical depth using the ground-level meteorological data over the South-central Plain of Hebei Province, China
To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval model (R-ERM), was developed based on the meteorological observations to retrieve the AOD. The aerosol scale height (ASH1) algorithm might...
        Saved in:
      
    
          | Published in | Atmospheric pollution research Vol. 13; no. 3; p. 101334 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.03.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1309-1042 1309-1042  | 
| DOI | 10.1016/j.apr.2022.101334 | 
Cover
| Abstract | To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval model (R-ERM), was developed based on the meteorological observations to retrieve the AOD. The aerosol scale height (ASH1) algorithm might introduce significant biases into AOD retrieval. Thus, the model enhances the AOD retrieval precision by redefining the ASH1 algorithm. The model was evaluated and validated against the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD data with a 1-km spatial resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) collected over the South-central Plain of Hebei Province region, China for the period of 2016–2017. Results indicate that, with the redefinition of the ASH1 algorithm, the overall the Pearson's correlation coefficient is 0.69 in 2017 between R-ERM and MAIAC AOD, and root mean squared error and the relative error (RE) are 0.20 and 23%, respectively. The evaluation proves that the R-ERM performs previous models, such as Elterman's retrieval model (ERM) with an overall validation R of 0.11 and Qiu's retrieval model (QRM) with an overall validation R of 0.35. The spatial patterns of the retrieved AOD after ordinary Kriging interpolation are consistent with those of the MAIAC datasets. Adding the water vapor pressure parameter significantly improved the estimation accuracy of ASH1, which is a key factor to the AOD retrieval results. The findings from the study demonstrate the great potential and value of the R-ERM for regional AOD retrieval.
•An improved model for AOD estimation based on the meteorological variables is proposed.•ASH1 algorithm is revised to enhance the model's performance.•The proposed model with an over-all R = 0.78 outperforms previous studies. | 
    
|---|---|
| AbstractList | To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval model (R-ERM), was developed based on the meteorological observations to retrieve the AOD. The aerosol scale height (ASH1) algorithm might introduce significant biases into AOD retrieval. Thus, the model enhances the AOD retrieval precision by redefining the ASH1 algorithm. The model was evaluated and validated against the Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD data with a 1-km spatial resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) collected over the South-central Plain of Hebei Province region, China for the period of 2016–2017. Results indicate that, with the redefinition of the ASH1 algorithm, the overall the Pearson's correlation coefficient is 0.69 in 2017 between R-ERM and MAIAC AOD, and root mean squared error and the relative error (RE) are 0.20 and 23%, respectively. The evaluation proves that the R-ERM performs previous models, such as Elterman's retrieval model (ERM) with an overall validation R of 0.11 and Qiu's retrieval model (QRM) with an overall validation R of 0.35. The spatial patterns of the retrieved AOD after ordinary Kriging interpolation are consistent with those of the MAIAC datasets. Adding the water vapor pressure parameter significantly improved the estimation accuracy of ASH1, which is a key factor to the AOD retrieval results. The findings from the study demonstrate the great potential and value of the R-ERM for regional AOD retrieval.
•An improved model for AOD estimation based on the meteorological variables is proposed.•ASH1 algorithm is revised to enhance the model's performance.•The proposed model with an over-all R = 0.78 outperforms previous studies. | 
    
| ArticleNumber | 101334 | 
    
| Author | Wang, Wei Han, Fang Wei, Qiang Zhao, Chunli Li, Weimiao Li, Fuxing Zhang, Lingyun Yang, Yi  | 
    
| Author_xml | – sequence: 1 givenname: Fuxing orcidid: 0000-0003-1673-2567 surname: Li fullname: Li, Fuxing email: lifuxing6042@hebtu.edu.cn organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China – sequence: 2 givenname: Lingyun surname: Zhang fullname: Zhang, Lingyun organization: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China – sequence: 3 givenname: Qiang surname: Wei fullname: Wei, Qiang organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China – sequence: 4 givenname: Yi surname: Yang fullname: Yang, Yi organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China – sequence: 5 givenname: Fang surname: Han fullname: Han, Fang organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China – sequence: 6 givenname: Weimiao surname: Li fullname: Li, Weimiao organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China – sequence: 7 givenname: Chunli surname: Zhao fullname: Zhao, Chunli organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China – sequence: 8 givenname: Wei orcidid: 0000-0001-9670-8465 surname: Wang fullname: Wang, Wei email: wangwei@hebtu.edu.cn organization: School of Geographical Sciences, Hebei Normal University, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Shijiazhuang, 050024, China  | 
    
| BookMark | eNp9kM1KAzEUhYNUsNY-gLs8gFPzM9N0cFWKWqFgQV2HNLntpEyTIZMWfBMf14zjQlw0m5vce79DzrlGA-cdIHRLyYQSOr3fT1QTJoww1r05zy_QkHJSZpTkbPDnfoXGbbsn6fCyEIwM0dfcYXtogj-BwQeIlTd46wMOEIOFk3U7rCD41tfYN9FqVWMDTazwse1msQK8C_7oTFbDCepOAnzwtd_1uyoqnLTDz-abP8Yq0-BiSLN1razDfouXsAGL1-kP1mm4w4vKOnWDLreqbmH8W0fo4-nxfbHMVq_PL4v5KtOMspgxQbgGrvPpTJipVoWgeia4MKXgG85FUfCCqikXWkG5MSrfsNROAcxKVehc8RGiva5OLtsAW9kEe1DhU1Iiu3TlXqZ0ZZeu7NNNjPjHaBtVtL4zZuuz5ENPQrJ0shBkqy0k18YG0FEab8_Q32ynmGw | 
    
| CitedBy_id | crossref_primary_10_3724_EE_1672_9250_2024_52_046 crossref_primary_10_3390_su15032609  | 
    
| Cites_doi | 10.5194/acp-5-715-2005 10.1016/j.rse.2019.111221 10.1016/j.scitotenv.2017.12.136 10.1002/joc.7089 10.1029/2018JD028573 10.1016/j.envint.2019.01.016 10.1016/j.rse.2021.112617 10.1016/j.rse.2012.09.002 10.1016/j.rse.2014.08.008 10.3390/ijerph14101244 10.3390/rs11111344 10.1016/j.atmosenv.2019.04.020 10.1002/anie.200501122 10.1016/j.atmosenv.2017.09.004 10.1016/j.envpol.2018.09.052 10.1126/science.1064034 10.5194/amt-11-5741-2018 10.1016/j.atmosenv.2019.01.013 10.1016/j.earscirev.2019.102986 10.1016/j.rse.2017.07.023 10.5194/acp-15-7619-2015 10.1016/j.scitotenv.2018.03.202 10.1016/j.jastp.2017.08.029 10.1007/s11356-014-2571-y 10.3390/ijerph17061923 10.1016/j.rse.2018.12.002 10.1016/j.atmosenv.2019.01.027 10.1088/1748-9326/10/1/015003 10.1364/AO.9.001804 10.1016/j.scitotenv.2019.01.169 10.1016/S0034-4257(98)00031-5 10.3390/rs11192218 10.1016/j.apr.2019.08.003 10.1080/15481603.2019.1703288 10.1016/j.scitotenv.2021.147543 10.1021/acs.est.7b01210 10.5194/acp-19-1327-2019 10.1029/2011JD016817 10.3390/app8122624 10.1016/j.rse.2021.112410 10.3390/s21196342 10.1016/j.atmosres.2019.104815 10.1002/2014JD021550  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Turkish National Committee for Air Pollution Research and Control | 
    
| Copyright_xml | – notice: 2022 Turkish National Committee for Air Pollution Research and Control | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.apr.2022.101334 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1309-1042 | 
    
| ExternalDocumentID | 10_1016_j_apr_2022_101334 S1309104222000216  | 
    
| GroupedDBID | --M 0R~ 0SF 457 4G. 7-5 AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GX1 KOM NCXOZ O9- OAUVE OK1 ROL SPC SPCBC SSE SSJ SSZ T5K TR2 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS  | 
    
| ID | FETCH-LOGICAL-c212t-2703ce3c4687d6ca571c8737d973b33755351a637cae9bda4b2b3300089a5c4a3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 1309-1042 | 
    
| IngestDate | Wed Oct 29 21:26:07 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Fri Feb 23 02:40:18 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | South-central plain of hebei province Ground-level meteorological data Aerosol optical depth Aerosol scale height  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c212t-2703ce3c4687d6ca571c8737d973b33755351a637cae9bda4b2b3300089a5c4a3 | 
    
| ORCID | 0000-0003-1673-2567 0000-0001-9670-8465  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_apr_2022_101334 crossref_citationtrail_10_1016_j_apr_2022_101334 elsevier_sciencedirect_doi_10_1016_j_apr_2022_101334  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2022 2022-03-00  | 
    
| PublicationDateYYYYMMDD | 2022-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Atmospheric pollution research | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Lolli (bib24) 2021; 21 Webley, Steensen, Stuefer, Grell, Freitas, Pavolonis (bib41) 2012; 117 Hu, Belle, Meng, Wildani, Waller, Strickland, Liu (bib17) 2017; 51 Yang, Hu (bib46) 2018; 633 Che, Zhang, Xia, Goloub, Holben, Zhao, Wang, Zhang, Wang, Blarel, Damiri, Zhang, Deng, Ma, Wang, Geng, Qi, Zhu, Yu, Chen, Shi (bib7) 2015; 15 Chen, Zhang, Zhang, Zhu, Yang, Chen, Ou, Guo (bib9) 2019; 202 Shin, Kang, Park, Im, Quackenbush (bib37) 2020; 57 Poschl (bib34) 2005; 44 Gui, Che, Zheng, Wang, Zhang, Zhao, Li, Zhong, Yao, Zhang (bib13) 2021; 787 Zhang, Wu, Fan, Yang, Zhao (bib48) 2020; 200 Benkhalifa, Leon, Chaabane (bib2) 2017; 164 Chen, Li, Lv, Wang, Wei, Zhang, Wang, Yan, Sun, Cribb (bib8) 2018; 19 Wei, Huang, Li, Xue, Cribb (bib42) 2019; 231 Zhao, Wang, Ding, Wu, Chang, Wang, Xing, Jang, Fu, Zhu, Zheng, Gu (bib51) 2019; 661 Koschmieder (bib20) 1924; 12 Belle, Chang, Wang, Hu, Alexei, Yang (bib1) 2017; 14 Jin, Ma, Zhang, Gong, Yang (bib18) 2019; 11 Stafoggia, Bellander, Bucci, Davoli, de Hoogh, de' Donato, Gariazzo, Lyapustin, Michelozzi, Renzi, Scortichini, Shtein, Viegi, Kloog, Schwartz (bib40) 2019; 124 Molnár, Imre, Ferenczi, Kiss, Gelencsér (bib32) 2020; 23 Qiu, Lin (bib35) 2001; 59 Oh, Ma, Kim (bib33) 2020; 17 Song, Jia, Huang, Zhang (bib38) 2014; 154 Bilal, Mhawish, Nichol, Qiu, Nazeer, Ali, Leeuw, Levy, Wang, Chen, Wang, Shi, Bleiweiss, Mazhar, Atique, Ke (bib5) 2021; 264 Boers, van Weele, van Meijgaard, Savenije, Siebesma, Bosveld, Stammes (bib6) 2015 Wu, Luo, Zhang, Xia, Zhao, Tang (bib43) 2014; 119 Landlová, Cupr, Franců, Lammel (bib21) 2014; 21 Geng, Murray, Tong, Joshua, Fu, Lee, Meng, Chang, Liu (bib12) 2018; 123 Song, Fu, Zhang, Han, Xia (bib39) 2019; 209 Levy, Remer, Dubovik (bib22) 2007; 112 Lyapustin, Wang, Laszlo, Kahn, Korkin, Remer, Levy, Reid (bib28) 2011; 116 Mhawish, Sorek-Hamer, Chatfield, Banerjee, Kalashnikova (bib31) 2021; 259 Han, Tong, Chen, Li, Liu (bib15) 2018; 8 Holben, Eck, Slutsker, Tanré, Buis, Setzer, Vermote, Reagan, Kaufman, Nakajima, Lavenu, Jankowiak, Smirnov (bib16) 1998; 66 Lyapustin, Wang, Laszlo, Hilker, Hall, Sellers, Tucker, Korkinet (bib27) 2012; 127 Luo, Liu, Zhu, Tang, Shao (bib25) 2021; 41 Lyapustin, Wang, Korkin, Huang (bib26) 2018; 11 Zhang, Di, Luo, Deng, Grieneisen, Wang, Yao, Zhan (bib47) 2018; 243 Elterman (bib10) 1970; 9 Ramanathan, Crutzen, Kiehl, Rosenfeld (bib36) 2001; 294 Bi, Belle, Wang, Lyapustin, Wildani, Liu (bib3) 2019; 221 Ferrero, Riccio, Ferrini, D'Angelo, Rovelli, Casati, Angelini, Barnaba, Gobbi, Cataldi, Bolzacchini (bib11) 2019; 10 McClatchey, Fenn, Selby (bib30) 1972 Xiao, Wang, Chang, Xia, Yang (bib44) 2017; 199 Mamali, Mikkilä, Henzing, Spoor, Ehn, Petäjä, Russchenberg, Biskos (bib29) 2018; 625 Zhang, Wu, Wei, Song, Yan, Zhu, Wang (bib49) 2017; 171 Lohmann, Feichter (bib23) 2004; 5 Kahn, Yu, Schwartz, Chin, Feingold, Remer, Rind, Halthore, DeCola (bib19) 2009 Bilal, Nazeer, Nichol, Bleiweiss, Qiu, Jäkel, Campbell, Atique, Huang, Lolli (bib4) 2019; 11 Zhang, Wu, Fan, Wei, Tan, Wang (bib50) 2019; 202 Lyapustin (10.1016/j.apr.2022.101334_bib27) 2012; 127 Ramanathan (10.1016/j.apr.2022.101334_bib36) 2001; 294 Elterman (10.1016/j.apr.2022.101334_bib10) 1970; 9 Wei (10.1016/j.apr.2022.101334_bib42) 2019; 231 Mhawish (10.1016/j.apr.2022.101334_bib31) 2021; 259 Belle (10.1016/j.apr.2022.101334_bib1) 2017; 14 Stafoggia (10.1016/j.apr.2022.101334_bib40) 2019; 124 Webley (10.1016/j.apr.2022.101334_bib41) 2012; 117 Zhang (10.1016/j.apr.2022.101334_bib48) 2020; 200 Gui (10.1016/j.apr.2022.101334_bib13) 2021; 787 Lyapustin (10.1016/j.apr.2022.101334_bib28) 2011; 116 Boers (10.1016/j.apr.2022.101334_bib6) 2015 Lyapustin (10.1016/j.apr.2022.101334_bib26) 2018; 11 Zhang (10.1016/j.apr.2022.101334_bib50) 2019; 202 Lohmann (10.1016/j.apr.2022.101334_bib23) 2004; 5 Ferrero (10.1016/j.apr.2022.101334_bib11) 2019; 10 Poschl (10.1016/j.apr.2022.101334_bib34) 2005; 44 Zhang (10.1016/j.apr.2022.101334_bib47) 2018; 243 Chen (10.1016/j.apr.2022.101334_bib8) 2018; 19 Geng (10.1016/j.apr.2022.101334_bib12) 2018; 123 Song (10.1016/j.apr.2022.101334_bib39) 2019; 209 Zhang (10.1016/j.apr.2022.101334_bib49) 2017; 171 McClatchey (10.1016/j.apr.2022.101334_bib30) 1972 Yang (10.1016/j.apr.2022.101334_bib46) 2018; 633 Oh (10.1016/j.apr.2022.101334_bib33) 2020; 17 Mamali (10.1016/j.apr.2022.101334_bib29) 2018; 625 Hu (10.1016/j.apr.2022.101334_bib17) 2017; 51 Che (10.1016/j.apr.2022.101334_bib7) 2015; 15 Benkhalifa (10.1016/j.apr.2022.101334_bib2) 2017; 164 Bilal (10.1016/j.apr.2022.101334_bib5) 2021; 264 Luo (10.1016/j.apr.2022.101334_bib25) 2021; 41 Koschmieder (10.1016/j.apr.2022.101334_bib20) 1924; 12 Lolli (10.1016/j.apr.2022.101334_bib24) 2021; 21 Landlová (10.1016/j.apr.2022.101334_bib21) 2014; 21 Bilal (10.1016/j.apr.2022.101334_bib4) 2019; 11 Kahn (10.1016/j.apr.2022.101334_bib19) 2009 Holben (10.1016/j.apr.2022.101334_bib16) 1998; 66 Shin (10.1016/j.apr.2022.101334_bib37) 2020; 57 Wu (10.1016/j.apr.2022.101334_bib43) 2014; 119 Bi (10.1016/j.apr.2022.101334_bib3) 2019; 221 Qiu (10.1016/j.apr.2022.101334_bib35) 2001; 59 Chen (10.1016/j.apr.2022.101334_bib9) 2019; 202 Levy (10.1016/j.apr.2022.101334_bib22) 2007; 112 Xiao (10.1016/j.apr.2022.101334_bib44) 2017; 199 Molnár (10.1016/j.apr.2022.101334_bib32) 2020; 23 Jin (10.1016/j.apr.2022.101334_bib18) 2019; 11 Zhao (10.1016/j.apr.2022.101334_bib51) 2019; 661 Song (10.1016/j.apr.2022.101334_bib38) 2014; 154 Han (10.1016/j.apr.2022.101334_bib15) 2018; 8  | 
    
| References_xml | – volume: 17 year: 2020 ident: bib33 article-title: Human inhalation exposure to aerosol and health effect: aerosol monitoring and modelling regional deposited doses publication-title: Int. J. Environ. Res. Publ. Health – volume: 44 start-page: 7520 year: 2005 end-page: 7540 ident: bib34 article-title: Atmospheric aerosols: composition, transformation, climate and health effects publication-title: Angew. Chem. Int. Ed. Engl. – volume: 19 start-page: 1327 year: 2018 end-page: 1342 ident: bib8 article-title: Aerosol hygroscopic growth, contributing factors and impact on haze events in a severely polluted region in northern China publication-title: Atmos. Chem. Phys. – volume: 200 start-page: 102986 year: 2020 ident: bib48 article-title: Review of aerosol optical depth retrieval using visibility data publication-title: Earth Sci. Rev. – volume: 116 year: 2011 ident: bib28 article-title: Multiangle implementation of atmospheric correction (maiac): 2. Aerosol algorithm publication-title: J. Geophys. Res. – volume: 259 year: 2021 ident: bib31 article-title: Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019) publication-title: Remote Sens. Environ. – volume: 221 start-page: 665 year: 2019 end-page: 674 ident: bib3 article-title: Impacts of snow and cloud covers on satellite-derived PM publication-title: Remote Sens. Environ. – volume: 59 start-page: 368 year: 2001 end-page: 372 ident: bib35 article-title: A parameterization model of aerosol optical depths in China publication-title: Acta Meteorol. Sin. – volume: 14 start-page: 1244 year: 2017 ident: bib1 article-title: The potential impact of satellite-retrieved cloud parameters on ground-level PM publication-title: Int. J. Environ. Res. Publ. Health – volume: 661 start-page: 375 year: 2019 end-page: 385 ident: bib51 article-title: Nonlinear relationships between air pollutant emissions and PM publication-title: Sci. Total Environ. – volume: 66 start-page: 1 year: 1998 end-page: 16 ident: bib16 article-title: AERONET—a federated instrument network and data archive for aerosol characterization publication-title: Remote Sens. Environ. – volume: 112 start-page: D13 year: 2007 ident: bib22 article-title: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land publication-title: J. Geophys. Res. Atmos. – volume: 294 start-page: 2119 year: 2001 end-page: 2124 ident: bib36 article-title: Aerosols, climate, and the hydrological cycle publication-title: Science – volume: 202 start-page: 8 year: 2019 end-page: 16 ident: bib50 article-title: Evaluation of MAIAC aerosol retrievals over China publication-title: Atmos. Environ. – volume: 787 year: 2021 ident: bib13 article-title: Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations publication-title: Sci. Total Environ. – volume: 21 start-page: 6188 year: 2014 end-page: 6204 ident: bib21 article-title: Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: Part I. PAHs, PCBs and OCPs and the matrix chemical composition publication-title: Environ. Sci. Pollut. R. – volume: 57 start-page: 1 year: 2020 end-page: 16 ident: bib37 article-title: Estimating ground-level particulate matter concentrations using satellite-based data: a review publication-title: GISci. Remote. Sens. – volume: 12 start-page: 171 year: 1924 end-page: 181 ident: bib20 article-title: Theorie der horizontalen Sichtweite publication-title: Beitr. Phys. Freien Atmos. – volume: 164 start-page: 222 year: 2017 end-page: 228 ident: bib2 article-title: Aerosol optical properties of western Mediterranean basin from multi-year AERONET data publication-title: J. Atmos. Sol. Phys. – year: 1972 ident: bib30 article-title: Optical Properties of the Atmosphere – volume: 171 start-page: 38 year: 2017 end-page: 48 ident: bib49 article-title: Aerosol optical depth retrieval from visibility in China during 1973–2014 publication-title: Atmos. Environ. – volume: 127 start-page: 385 year: 2012 end-page: 393 ident: bib27 article-title: Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction publication-title: Remote Sens. Environ. – volume: 11 start-page: 2218 year: 2019 ident: bib18 article-title: Retrieval of 500 m aerosol optical depths from MODIS measurements over urban surfaces under heavy aerosol loading conditions in winter publication-title: Rem. Sens. – volume: 209 start-page: 14 year: 2019 end-page: 22 ident: bib39 article-title: MODIS AOD sampling rate and its effect on PM publication-title: Atmos. Environ. – volume: 243 start-page: 998 year: 2018 end-page: 1007 ident: bib47 article-title: A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM publication-title: Environ. Pollut. – volume: 23 start-page: 104815 year: 2020 ident: bib32 article-title: Aerosol hygroscopicity: hygroscopic growth proxy based on visibility for low-cost PM monitoring publication-title: Atmos. Res. – volume: 124 start-page: 170 year: 2019 end-page: 179 ident: bib40 article-title: Estimation of daily PM publication-title: Environ. Int. – volume: 231 start-page: 111221 year: 2019 ident: bib42 article-title: Estimating 1-km-resolution PM publication-title: Remote Sens. Environ. – volume: 51 start-page: 6936 year: 2017 end-page: 6944 ident: bib17 article-title: Estimating PM publication-title: Environ. Sci. Technol. – year: 2009 ident: bib19 article-title: Introduction, in Atmospheric Aerosol Properties and Climate Impacts, a Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research – volume: 9 start-page: 1804 year: 1970 end-page: 1810 ident: bib10 article-title: Relationships between vertical attenuation and surface meteorological range publication-title: Appl. Opt. – volume: 11 start-page: 1344 year: 2019 ident: bib4 article-title: A simplified and robust surface reflectance estimation method (SREM) for use over diverse land surfaces using multi-sensor data publication-title: Remote. Sens-basel. – volume: 625 start-page: 752 year: 2018 end-page: 761 ident: bib29 article-title: Long-term observations of the background aerosol at Cabauw, The Netherlands publication-title: Sci. Total Environ. – volume: 154 start-page: 1 year: 2014 end-page: 7 ident: bib38 article-title: A satellite-based geographically weighted regression model for regional PM publication-title: Remote Sens. Environ. – volume: 264 start-page: 112617 year: 2021 ident: bib5 article-title: Air pollution scenario over Pakistan: characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases publication-title: Remote Sens. Environ. – volume: 5 start-page: 715 year: 2004 end-page: 737 ident: bib23 article-title: Global indirect aerosol effects: a review publication-title: Atmos. Chem. Phys. – volume: 8 start-page: 2624 year: 2018 ident: bib15 article-title: Estimation of high-resolution daily ground-level PM publication-title: Appl. Sci. – volume: 123 start-page: 8159 year: 2018 end-page: 8171 ident: bib12 article-title: Satellite-based daily PM publication-title: J. Geophys. Res. Atmos. – volume: 119 start-page: 13370 year: 2014 end-page: 13387 ident: bib43 article-title: Improvement of aerosol optical depth retrieval using visibility data in China during the past 50years publication-title: J. Geophys. Res. Atmos. – volume: 15 start-page: 7619 year: 2015 end-page: 7652 ident: bib7 article-title: Ground-based aerosol climatology of China: aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002-2013 publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 5741 year: 2018 end-page: 5765 ident: bib26 article-title: MODIS Collection 6 MAIAC algorithm publication-title: Atmos. Meas. Tech. – volume: 633 start-page: 677 year: 2018 end-page: 683 ident: bib46 article-title: Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation publication-title: Sci. Total Environ. – volume: 21 start-page: 6342 year: 2021 ident: bib24 article-title: Is the air too polluted for outdoor activities? Check by using your photovoltaic System as an air-quality monitoring device publication-title: Sensors – volume: 202 start-page: 180 year: 2019 end-page: 189 ident: bib9 article-title: Extreme gradient boosting model to estimate PM publication-title: Atmos. Environ. – start-page: 15003 year: 2015 ident: bib6 article-title: Observations and projections of visibility and aerosol optical thickness (1956–2100) in The Netherlands: impacts of time-varying aerosol composition and hygroscopicity publication-title: Environ. Res. Lett. – volume: 10 year: 2019 ident: bib11 article-title: Satellite AOD conversion into ground PM publication-title: Atmos. Pollut. Res. – volume: 199 year: 2017 ident: bib44 article-title: Full-coverage high-resolution daily PM publication-title: Remote Sens. Environ. – volume: 41 start-page: 4603 year: 2021 end-page: 4618 ident: bib25 article-title: Effects of aerosols on cloud and precipitation in East-Asian drylands publication-title: Int. J. Climatol. – volume: 117 year: 2012 ident: bib41 article-title: Analyzing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and WRF-Chem dispersion and tracking model publication-title: J. Geophys. Res. Atmos. – volume: 5 start-page: 715 year: 2004 ident: 10.1016/j.apr.2022.101334_bib23 article-title: Global indirect aerosol effects: a review publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-5-715-2005 – volume: 231 start-page: 111221 year: 2019 ident: 10.1016/j.apr.2022.101334_bib42 article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111221 – volume: 625 start-page: 752 year: 2018 ident: 10.1016/j.apr.2022.101334_bib29 article-title: Long-term observations of the background aerosol at Cabauw, The Netherlands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.136 – volume: 41 start-page: 4603 year: 2021 ident: 10.1016/j.apr.2022.101334_bib25 article-title: Effects of aerosols on cloud and precipitation in East-Asian drylands publication-title: Int. J. Climatol. doi: 10.1002/joc.7089 – volume: 123 start-page: 8159 year: 2018 ident: 10.1016/j.apr.2022.101334_bib12 article-title: Satellite-based daily PM2.5 estimates during fire seasons in Colorado publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028573 – volume: 124 start-page: 170 year: 2019 ident: 10.1016/j.apr.2022.101334_bib40 article-title: Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model publication-title: Environ. Int. doi: 10.1016/j.envint.2019.01.016 – year: 1972 ident: 10.1016/j.apr.2022.101334_bib30 – volume: 264 start-page: 112617 year: 2021 ident: 10.1016/j.apr.2022.101334_bib5 article-title: Air pollution scenario over Pakistan: characterization and ranking of extremely polluted cities using long-term concentrations of aerosols and trace gases publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112617 – volume: 127 start-page: 385 year: 2012 ident: 10.1016/j.apr.2022.101334_bib27 article-title: Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.002 – volume: 154 start-page: 1 year: 2014 ident: 10.1016/j.apr.2022.101334_bib38 article-title: A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.008 – volume: 14 start-page: 1244 year: 2017 ident: 10.1016/j.apr.2022.101334_bib1 article-title: The potential impact of satellite-retrieved cloud parameters on ground-level PM2.5 mass and composition publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph14101244 – volume: 11 start-page: 1344 year: 2019 ident: 10.1016/j.apr.2022.101334_bib4 article-title: A simplified and robust surface reflectance estimation method (SREM) for use over diverse land surfaces using multi-sensor data publication-title: Remote. Sens-basel. doi: 10.3390/rs11111344 – volume: 209 start-page: 14 year: 2019 ident: 10.1016/j.apr.2022.101334_bib39 article-title: MODIS AOD sampling rate and its effect on PM2.5 estimation in North China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.04.020 – volume: 44 start-page: 7520 year: 2005 ident: 10.1016/j.apr.2022.101334_bib34 article-title: Atmospheric aerosols: composition, transformation, climate and health effects publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200501122 – volume: 171 start-page: 38 year: 2017 ident: 10.1016/j.apr.2022.101334_bib49 article-title: Aerosol optical depth retrieval from visibility in China during 1973–2014 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.09.004 – volume: 243 start-page: 998 year: 2018 ident: 10.1016/j.apr.2022.101334_bib47 article-title: A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.052 – volume: 294 start-page: 2119 year: 2001 ident: 10.1016/j.apr.2022.101334_bib36 article-title: Aerosols, climate, and the hydrological cycle publication-title: Science doi: 10.1126/science.1064034 – volume: 11 start-page: 5741 year: 2018 ident: 10.1016/j.apr.2022.101334_bib26 article-title: MODIS Collection 6 MAIAC algorithm publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-5741-2018 – volume: 202 start-page: 8 year: 2019 ident: 10.1016/j.apr.2022.101334_bib50 article-title: Evaluation of MAIAC aerosol retrievals over China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.01.013 – volume: 200 start-page: 102986 year: 2020 ident: 10.1016/j.apr.2022.101334_bib48 article-title: Review of aerosol optical depth retrieval using visibility data publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.102986 – volume: 59 start-page: 368 year: 2001 ident: 10.1016/j.apr.2022.101334_bib35 article-title: A parameterization model of aerosol optical depths in China publication-title: Acta Meteorol. Sin. – volume: 199 year: 2017 ident: 10.1016/j.apr.2022.101334_bib44 article-title: Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.023 – volume: 15 start-page: 7619 year: 2015 ident: 10.1016/j.apr.2022.101334_bib7 article-title: Ground-based aerosol climatology of China: aerosol optical depths from the China aerosol remote sensing network (CARSNET) 2002-2013 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-7619-2015 – volume: 633 start-page: 677 year: 2018 ident: 10.1016/j.apr.2022.101334_bib46 article-title: Filling the missing data gaps of daily MODIS AOD using spatiotemporal interpolation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.202 – volume: 12 start-page: 171 year: 1924 ident: 10.1016/j.apr.2022.101334_bib20 article-title: Theorie der horizontalen Sichtweite publication-title: Beitr. Phys. Freien Atmos. – volume: 164 start-page: 222 year: 2017 ident: 10.1016/j.apr.2022.101334_bib2 article-title: Aerosol optical properties of western Mediterranean basin from multi-year AERONET data publication-title: J. Atmos. Sol. Phys. doi: 10.1016/j.jastp.2017.08.029 – volume: 21 start-page: 6188 year: 2014 ident: 10.1016/j.apr.2022.101334_bib21 article-title: Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: Part I. PAHs, PCBs and OCPs and the matrix chemical composition publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-014-2571-y – volume: 17 year: 2020 ident: 10.1016/j.apr.2022.101334_bib33 article-title: Human inhalation exposure to aerosol and health effect: aerosol monitoring and modelling regional deposited doses publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17061923 – volume: 221 start-page: 665 year: 2019 ident: 10.1016/j.apr.2022.101334_bib3 article-title: Impacts of snow and cloud covers on satellite-derived PM2.5 levels publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.002 – volume: 202 start-page: 180 year: 2019 ident: 10.1016/j.apr.2022.101334_bib9 article-title: Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.01.027 – start-page: 15003 year: 2015 ident: 10.1016/j.apr.2022.101334_bib6 article-title: Observations and projections of visibility and aerosol optical thickness (1956–2100) in The Netherlands: impacts of time-varying aerosol composition and hygroscopicity publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/1/015003 – volume: 9 start-page: 1804 year: 1970 ident: 10.1016/j.apr.2022.101334_bib10 article-title: Relationships between vertical attenuation and surface meteorological range publication-title: Appl. Opt. doi: 10.1364/AO.9.001804 – volume: 661 start-page: 375 year: 2019 ident: 10.1016/j.apr.2022.101334_bib51 article-title: Nonlinear relationships between air pollutant emissions and PM2.5-related health impacts in the Beijing-Tianjin-Hebei region publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.169 – volume: 66 start-page: 1 year: 1998 ident: 10.1016/j.apr.2022.101334_bib16 article-title: AERONET—a federated instrument network and data archive for aerosol characterization publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00031-5 – volume: 112 start-page: D13 year: 2007 ident: 10.1016/j.apr.2022.101334_bib22 article-title: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land publication-title: J. Geophys. Res. Atmos. – volume: 11 start-page: 2218 year: 2019 ident: 10.1016/j.apr.2022.101334_bib18 article-title: Retrieval of 500 m aerosol optical depths from MODIS measurements over urban surfaces under heavy aerosol loading conditions in winter publication-title: Rem. Sens. doi: 10.3390/rs11192218 – volume: 10 year: 2019 ident: 10.1016/j.apr.2022.101334_bib11 article-title: Satellite AOD conversion into ground PM10, PM2.5 and PM1 over the Po valley (Milan, Italy) exploiting information on aerosol vertical profiles, chemistry, hygroscopicity and meteorology publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.08.003 – volume: 57 start-page: 1 year: 2020 ident: 10.1016/j.apr.2022.101334_bib37 article-title: Estimating ground-level particulate matter concentrations using satellite-based data: a review publication-title: GISci. Remote. Sens. doi: 10.1080/15481603.2019.1703288 – volume: 787 year: 2021 ident: 10.1016/j.apr.2022.101334_bib13 article-title: Seasonal variability and trends in global type-segregated aerosol optical depth as revealed by MISR satellite observations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147543 – volume: 51 start-page: 6936 year: 2017 ident: 10.1016/j.apr.2022.101334_bib17 article-title: Estimating PM2.5 concentrations in the conterminous United States using the random forest approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01210 – volume: 19 start-page: 1327 year: 2018 ident: 10.1016/j.apr.2022.101334_bib8 article-title: Aerosol hygroscopic growth, contributing factors and impact on haze events in a severely polluted region in northern China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-1327-2019 – volume: 117 issue: D20 year: 2012 ident: 10.1016/j.apr.2022.101334_bib41 article-title: Analyzing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and WRF-Chem dispersion and tracking model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD016817 – volume: 8 start-page: 2624 year: 2018 ident: 10.1016/j.apr.2022.101334_bib15 article-title: Estimation of high-resolution daily ground-level PM2.5 concentration in Beijing 2013–2017 using 1 km MAIAC AOT data publication-title: Appl. Sci. doi: 10.3390/app8122624 – year: 2009 ident: 10.1016/j.apr.2022.101334_bib19 – volume: 259 year: 2021 ident: 10.1016/j.apr.2022.101334_bib31 article-title: Aerosol characteristics from earth observation systems: a comprehensive investigation over South Asia (2000-2019) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112410 – volume: 116 issue: D3 year: 2011 ident: 10.1016/j.apr.2022.101334_bib28 article-title: Multiangle implementation of atmospheric correction (maiac): 2. Aerosol algorithm publication-title: J. Geophys. Res. – volume: 21 start-page: 6342 year: 2021 ident: 10.1016/j.apr.2022.101334_bib24 article-title: Is the air too polluted for outdoor activities? Check by using your photovoltaic System as an air-quality monitoring device publication-title: Sensors doi: 10.3390/s21196342 – volume: 23 start-page: 104815 year: 2020 ident: 10.1016/j.apr.2022.101334_bib32 article-title: Aerosol hygroscopicity: hygroscopic growth proxy based on visibility for low-cost PM monitoring publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.104815 – volume: 119 start-page: 13370 year: 2014 ident: 10.1016/j.apr.2022.101334_bib43 article-title: Improvement of aerosol optical depth retrieval using visibility data in China during the past 50years publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD021550  | 
    
| SSID | ssj0000395720 | 
    
| Score | 2.2395678 | 
    
| Snippet | To retrieve the aerosol optical depth (AOD) from ground-level meteorological measurements at regional scale, a new method, the revised Elterman's retrieval... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 101334 | 
    
| SubjectTerms | Aerosol optical depth Aerosol scale height Ground-level meteorological data South-central plain of hebei province  | 
    
| Title | An improved method for retrieving aerosol optical depth using the ground-level meteorological data over the South-central Plain of Hebei Province, China | 
    
| URI | https://dx.doi.org/10.1016/j.apr.2022.101334 | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1309-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000395720 issn: 1309-1042 databaseCode: AIKHN dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1309-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000395720 issn: 1309-1042 databaseCode: ACRLP dateStart: 20150901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1309-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000395720 issn: 1309-1042 databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1309-1042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000395720 issn: 1309-1042 databaseCode: AKRWK dateStart: 20100101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aIH8YnPZQ6exLLbJm3a4yLqqiiCCnsraZJqZWnLsv4Xf66ZtBUF9eAxIdOWTDrfMPlmBuA40z7BeORxHYUej7XwZKAzL1C5zCMuNXd1Zm_voskTv56G0x6cdbkwRKtsbX9j0521bmeG7W4O66IYPljra7GOQhj0W_vREixb_InjPiyPr24md5-hlhHdRQVNvjAV_7cy3f2mY3rJmgqDBgGNGeM_I9QX1LlYh7XWXcRx80Ub0DPlJqx-KSK4Be_jEgsXGjAam4bQaD1RnLteWRQvQGnsm6oZVrWLXKM29eIFifL-jNYBRErtKLU3IwIRPcJU884mIlFIkXiebqXruOe1jE68n8mixCrHiVVSgfcuPKHMKbqu3NvwdHH-eDbx2n4LnrIAtqDUNKYMUzyKhY6UDIWvYsGETgTLGBNhyEJfRkwoaZJMS54Fdpq8iESGiku2A_2yKs0uIBf5yBhrwWRitT1SiVAq4XFO991xmJk9GHV7nKq2GDn1xJilHevsNbVqSUktaaOWPTj5FKmbShx_Lead4tJvxym1SPG72P7_xA5ghUYNNe0Q-ov5mzmyvsoiG7RncQBLl1P_A6d36L4 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIAD4inG0wdOiGpbkzTtcZpABbYJCZC4VWmSQtHUVtP4L_xc4rRFIAEHjk3jNooT27I_24ScpXqAajzwmA64x0ItPOnr1PNVJrOASc1cndnJNIgf2c0Tf1oiozYXBmGVjeyvZbqT1s1Ir9nNXpXnvXsrfa2uQxcGXutBsExWGKfC3s6V4fVtPP10tfQxFuXX-cJY_N_StPFNh_SSFRYG9X18ppT9rKG-aJ2rTbLRmIswrFe0RZZMsU3WvxQR3CHvwwJy5xowGuqG0GAtUZi7XlnoLwBp7J_KGZSV81yDNtXiBRDy_gzWAARM7Si0N0MAEX7ClPNWJgJCSAFxnm6m67jnNYhOuJvJvIAyg9gyKYc7555Q5gJcV-5d8nh1-TCKvabfgqesAltgahpVhioWhEIHSnIxUKGgQkeCppQKzikfyIAKJU2UaslS3w6jFRFJrpike6RTlIXZJ8BE1jfGSjAZWW73VSSUiliYYbw75Knpkn67x4lqipFjT4xZ0qLOXhPLlgTZktRs6ZLzT5KqrsTx12TWMi75dpwSqyl-Jzv4H9kpWY0fJuNkfD29PSRr-KaGqR2RzmL-Zo6t3bJIT5pz-QEcpequ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+method+for+retrieving+aerosol+optical+depth+using+the+ground-level+meteorological+data+over+the+South-central+Plain+of+Hebei+Province%2C+China&rft.jtitle=Atmospheric+pollution+research&rft.au=Li%2C+Fuxing&rft.au=Zhang%2C+Lingyun&rft.au=Wei%2C+Qiang&rft.au=Yang%2C+Yi&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=1309-1042&rft.eissn=1309-1042&rft.volume=13&rft.issue=3&rft_id=info:doi/10.1016%2Fj.apr.2022.101334&rft.externalDocID=S1309104222000216 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1309-1042&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1309-1042&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1309-1042&client=summon |