Robust M Estimation for Poisson Panel Data Model with Fixed Effects: Method, Algorithm, Simulation, and Application
The fixed effects Poisson (FEP) model is one of the most important for the count data when the data containperiods and cross-sectional units. The maximum likelihood (ML) estimation method for the FEP model provides good results in the absence of outliers, but it is affected by outliers. So, we intro...
Saved in:
| Published in | Statistics, optimization & information computing Vol. 12; no. 5; pp. 1292 - 1305 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.09.2024
|
| Online Access | Get full text |
| ISSN | 2311-004X 2310-5070 2310-5070 |
| DOI | 10.19139/soic-2310-5070-1996 |
Cover
| Abstract | The fixed effects Poisson (FEP) model is one of the most important for the count data when the data containperiods and cross-sectional units. The maximum likelihood (ML) estimation method for the FEP model provides good results in the absence of outliers, but it is affected by outliers. So, we introduce in this paper robust estimators for the FEP model. These estimators yield stable and good results in case of the presence of outliers. The Monte Carlo simulation study and empirical application were conducted to assess the performance of the non-robust fixed Poisson maximum likelihood (FPML) estimator and the robust estimators: fixed Poisson Huber (FPHR), fixed Poisson Hampel (FPHM) and fixed Poisson Tukey (FPTK). The results of simulation and application show that robust estimators are better than FPML estimator when the count panel data contains outliers. In addition, FPTK is more efficient than other robust estimators. |
|---|---|
| AbstractList | The fixed effects Poisson (FEP) model is one of the most important for the count data when the data containperiods and cross-sectional units. The maximum likelihood (ML) estimation method for the FEP model provides good results in the absence of outliers, but it is affected by outliers. So, we introduce in this paper robust estimators for the FEP model. These estimators yield stable and good results in case of the presence of outliers. The Monte Carlo simulation study and empirical application were conducted to assess the performance of the non-robust fixed Poisson maximum likelihood (FPML) estimator and the robust estimators: fixed Poisson Huber (FPHR), fixed Poisson Hampel (FPHM) and fixed Poisson Tukey (FPTK). The results of simulation and application show that robust estimators are better than FPML estimator when the count panel data contains outliers. In addition, FPTK is more efficient than other robust estimators. |
| Author | Abonazel, Mohamed Reda Ahmed, Elsayed G. Youssef, Ahmed Hassen |
| Author_xml | – sequence: 1 givenname: Ahmed Hassen surname: Youssef fullname: Youssef, Ahmed Hassen – sequence: 2 givenname: Mohamed Reda surname: Abonazel fullname: Abonazel, Mohamed Reda – sequence: 3 givenname: Elsayed G. surname: Ahmed fullname: Ahmed, Elsayed G. |
| BookMark | eNqNkF1LwzAUhoNMcM79Ay_yA1ZNmqY1uxtzU2HD4Qd4V06bxEWyZjQZc__ethMvvBCvzss5PAfe5xz1KlcphC4puaKCMnHtnSmjmFEScZKRiAqRnqD-z6LXZRoRkrydoaH3H4QQmnGekriP_JMrdj7gJZ75YDYQjKuwdjVeOeN9k1dQKYtvIQBeOtnEvQlrPDefSuKZ1qoMfoyXKqydHOGJfXd1c9-M8LPZ7Gz3boShkniy3VpTdosLdKrBejX8ngP0Op-9TO-jxePdw3SyiMqYxmmkk6afEIm6YcCBUp7FoJhSTApZsDJOheQpaAkFU1ISonnGgDAGlMmkIJQNED_-3VVbOOzB2nxbNx3rQ05J3snLW3l56ypvXeWtvIZLjlxZO-9rpf-LjX9hpQld4VCDsX_DX7I7iXE |
| CitedBy_id | crossref_primary_10_1080_00949655_2024_2449102 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.19139/soic-2310-5070-1996 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2310-5070 |
| EndPage | 1305 |
| ExternalDocumentID | 10.19139/soic-2310-5070-1996 10_19139_soic_2310_5070_1996 |
| GroupedDBID | 5VS 8FE 8FG AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARAPS BENPR BGLVJ BPHCQ BVBZV CITATION HCIFZ M1O OK1 P62 PQQKQ PROAC ABUWG ADTOC AFFHD CCPQU CNYFK DWQXO IPNFZ PHGZM PHGZT PQGLB PRQQA RIG UNPAY |
| ID | FETCH-LOGICAL-c2126-f4191994e83a5a11572ae3ee3d9db3c269d56afdab3edd00f573a033a13d4b013 |
| IEDL.DBID | UNPAY |
| ISSN | 2311-004X 2310-5070 |
| IngestDate | Wed Oct 29 12:17:59 EDT 2025 Tue Jul 01 02:21:38 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2126-f4191994e83a5a11572ae3ee3d9db3c269d56afdab3edd00f573a033a13d4b013 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.19139/soic-2310-5070-1996 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_19139_soic_2310_5070_1996 crossref_primary_10_19139_soic_2310_5070_1996 crossref_citationtrail_10_19139_soic_2310_5070_1996 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Statistics, optimization & information computing |
| PublicationYear | 2024 |
| SSID | ssj0001755602 ssib044761686 ssib027513134 |
| Score | 2.3101287 |
| Snippet | The fixed effects Poisson (FEP) model is one of the most important for the count data when the data containperiods and cross-sectional units. The maximum... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 1292 |
| Title | Robust M Estimation for Poisson Panel Data Model with Fixed Effects: Method, Algorithm, Simulation, and Application |
| URI | https://doi.org/10.19139/soic-2310-5070-1996 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2310-5070 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib027513134 issn: 2311-004X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2310-5070 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044761686 issn: 2311-004X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2310-5070 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001755602 issn: 2310-5070 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VcgAO7IhdPnCsSxpnabhV0IKQgiqgUjlFXqaoIk0QScXy9dhNWhYJATdL8UTOjB2_8XjeAByhCITPpEObTVdSpyFtKhr6Z-gHQtq-Zyk2CbSHV95Fz7nsu_0K1Ka5MJ_j94ax8jhLh5IaEEI1crHMvQhvDuY9VyPvKsz3rrqtu0n9uLJD0dYesuX0y0y5n17zZSdaGCeP_PWZx_Gn7aWzAuF0YMWtkof6OBd1-faNs_GvI1-F5RJnklYxMdaggsk6LIUzktZsA7LrVIyznISkrdd5kcJINIYl3VRbQ7e7PMGYnPGcE1MyLSbm0JZ0hi-oSMF6nJ2QcFKCukZa8X36pJ-PauRmOCqLgtUITxRpfQTJN6HXad-eXtCyBgOVelPz6MDRHxMEDjYZd7lh5rE5MkSmAiWYtL1AuR4fKC4YKmVZA9dn3GKMN5hyzBnrFlSTNMFtIOghDmxscInaKfVRCA1uuAkw8EB7Ne4OsKk9IlkSlJs6GXFkHBWj0sioNDIqjYxKI6PSHaAzqceCoOOX_vWZqf8ksPtfgT1YtDXyKS6i7UM1fxrjgUYuuTiEuWbn_LCctu9OLORZ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3oi3cuC4jK7pY-U2AdOE1GkCJo1TlYeHJkqLaCcev55k7cZAQsAtUuMqtZPmcxx_BjhBEQifSYc2m66kTkPaVDT0z9APhLR9z1JsEmgPu16n71wN3MEC1Ka5MPPxe8NYeZqlI0kNCKEauVjmXoS3CFXP1ci7AtV-t9e6m9SPKzsUbe0hW86gzJT76TVfdqKlcfLE3154HM9tL-01CKcDK26VPNTHuajL92-cjX8d-TqsljiTtIqJsQELmGzCSjgjac22ILtOxTjLSUgu9TovUhiJxrCkl2pr6HaPJxiTC55zYkqmxcQc2pL26BUVKViPszMSTkpQ10grvk-f9fPHGrkZPZZFwWqEJ4q0PoPk29BvX96ed2hZg4FKval5dOjojwkCB5uMu9ww89gcGSJTgRJM2l6gXI8PFRcMlbKsoeszbjHGG0w55ox1BypJmuAuEPQQhzY2uETtlPoohAY33AQYeKC9GncP2NQekSwJyk2djDgyjopRaWRUGhmVRkalkVHpHtCZ1FNB0PFL__rM1H8S2P-vwAEs2xr5FBfRDqGSP4_xSCOXXByXE_YD-dXjcw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+M+Estimation+for+Poisson+Panel+Data+Model+with+Fixed+Effects%3A+Method%2C+Algorithm%2C+Simulation%2C+and+Application&rft.jtitle=Statistics%2C+optimization+%26+information+computing&rft.au=Youssef%2C+Ahmed+Hassen&rft.au=Abonazel%2C+Mohamed+Reda&rft.au=Ahmed%2C+Elsayed+G.&rft.date=2024-09-01&rft.issn=2311-004X&rft.eissn=2310-5070&rft.volume=12&rft.issue=5&rft.spage=1292&rft.epage=1305&rft_id=info:doi/10.19139%2Fsoic-2310-5070-1996&rft.externalDBID=n%2Fa&rft.externalDocID=10_19139_soic_2310_5070_1996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-004X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-004X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-004X&client=summon |