Handling concept drift in data-oriented power grid operations

Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the data. In digitalizing the power grid, more accurate state recognition from the measurement data is expected to promote a low-cost and stable pow...

Full description

Saved in:
Bibliographic Details
Published inMeasurement: Energy Vol. 7; p. 100052
Main Authors Miyata, Yasushi, Ishikawa, Hiroshi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2950-3450
2950-3450
DOI10.1016/j.meaene.2025.100052

Cover

Abstract Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the data. In digitalizing the power grid, more accurate state recognition from the measurement data is expected to promote a low-cost and stable power supply. Acquiring measurement data from the power grid, clustering, and anomaly detection to recognize the current state could lead to better decision-making for power grid operations. While measurement data serves as the starting point, the interpretation of data trends changes due to the influence of the surrounding environment and aging in the real world. This change in data trends, known as concept drift, poses a challenge to efficient data-oriented power grid operations with accurate state recognition using data clustering models. This is because the data clustering model, especially for complex systems like a power grid, is also built data-oriented, and data trends affect the model. To address this combined challenge of concept drift and its impact on the data clustering model, we propose Re-DBSCAN, a stream data clustering model capable of handling uncertain distributions, to detect concept drift and sequentially update its model for data streams from the power grid. The evaluation uses the WECC179 power grid model to simulate power oscillations and their trend changes with the basic concept drift types: abrupt, incremental, and gradual. Compared to other stream data clustering methods that lack a concept drift detection mechanism, the proposed Re-DBSCAN showed less degradation in purity, indicating higher clustering accuracy. The results suggest that by handling concept drift by detecting data trend changes and sequentially adapting the clustering model, Re-DBSCAN can more accurately cluster measurement data containing concept drift based on its trend changes.
AbstractList Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the data. In digitalizing the power grid, more accurate state recognition from the measurement data is expected to promote a low-cost and stable power supply. Acquiring measurement data from the power grid, clustering, and anomaly detection to recognize the current state could lead to better decision-making for power grid operations. While measurement data serves as the starting point, the interpretation of data trends changes due to the influence of the surrounding environment and aging in the real world. This change in data trends, known as concept drift, poses a challenge to efficient data-oriented power grid operations with accurate state recognition using data clustering models. This is because the data clustering model, especially for complex systems like a power grid, is also built data-oriented, and data trends affect the model. To address this combined challenge of concept drift and its impact on the data clustering model, we propose Re-DBSCAN, a stream data clustering model capable of handling uncertain distributions, to detect concept drift and sequentially update its model for data streams from the power grid. The evaluation uses the WECC179 power grid model to simulate power oscillations and their trend changes with the basic concept drift types: abrupt, incremental, and gradual. Compared to other stream data clustering methods that lack a concept drift detection mechanism, the proposed Re-DBSCAN showed less degradation in purity, indicating higher clustering accuracy. The results suggest that by handling concept drift by detecting data trend changes and sequentially adapting the clustering model, Re-DBSCAN can more accurately cluster measurement data containing concept drift based on its trend changes.
ArticleNumber 100052
Author Ishikawa, Hiroshi
Miyata, Yasushi
Author_xml – sequence: 1
  givenname: Yasushi
  orcidid: 0000-0002-9882-7852
  surname: Miyata
  fullname: Miyata, Yasushi
  email: yasushi.miyata.bz@hitachi.com
  organization: Research & Development Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, kokubunji, 185-0014, Tokyo, Japan
– sequence: 2
  givenname: Hiroshi
  surname: Ishikawa
  fullname: Ishikawa, Hiroshi
  email: ishikawa-hiroshi@tmu.ac.jp
  organization: Department of Computer Science, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino, 191-0065, Tokyo, Japan
BookMark eNqNkMtKAzEUhoNUsNa-gYt5gamZXOayUBBRWyi40XU4TU5KyjQZMqOlb2_qiLgSySLhJ_93ON8lmfjgkZDrgi4KWpQ3u8UeAT0uGGUyRZRKdkamrJE050LSya_3BZn3_S594ZwVTFRTcrsEb1rnt5kOXmM3ZCY6O2TOZwYGyEN06Ac0WRcOGLNtdCYLHUYYXPD9FTm30PY4_75n5O3p8fVhma9fnlcP9-tcpzEsZ6bUvOQc6qKCZiOFFLqkTQVSGmENVDXVG7vhvJZUlI1oUshR60JwWlmKfEZWI9cE2Kkuuj3Eowrg1FcQ4lZBHJxuURlaM86rKhFBcGR1Giq1rWydjkaaWHJkvfsOjgdo2x9gQdVJqdqpUak6KVWj0tQTY0_H0PcR7X9rd2MNk58Ph1H1OinVaFxEPaQF3N-AT-Jbkm0
Cites_doi 10.1007/s10462-020-09874-x
10.1137/1.9781611972771.42
10.1145/2723372.2737792
10.1137/1.9781611972764.29
10.1007/s10994-019-05835-w
10.1145/361002.361007
10.1109/ICDM.2003.1250911
10.1145/3638777
10.1109/IJCNN52387.2021.9533334
10.1016/j.procs.2017.11.440
10.1016/j.jksuci.2021.11.006
10.1016/j.scitotenv.2022.159700
10.1007/s42452-019-1433-0
10.1016/j.neucom.2019.11.111
10.1016/B978-012722442-8/50016-1
10.1016/j.rser.2016.08.002
10.1109/JIOT.2023.3265964
10.1007/978-3-642-21222-2_19
10.1016/j.eswa.2023.119946
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.meaene.2025.100052
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2950-3450
ExternalDocumentID oai_doaj_org_article_d08233770cba43e28a815cf7f8f8fce0
10.1016/j.meaene.2025.100052
10_1016_j_meaene_2025_100052
S2950345025000193
GroupedDBID 0R~
6I.
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
FDB
GROUPED_DOAJ
M41
ROL
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2122-2d6c3633a817a9b5454c6097a55d4fda780cbfb33850469494fd3ecc14307f0e3
IEDL.DBID DOA
ISSN 2950-3450
IngestDate Fri Oct 03 12:36:39 EDT 2025
Tue Sep 09 05:44:57 EDT 2025
Wed Oct 01 05:39:00 EDT 2025
Sat Oct 04 17:01:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Concept drift
Purity
DBSCAN
State recognition
68P01
Power grid
Stream data clustering
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2122-2d6c3633a817a9b5454c6097a55d4fda780cbfb33850469494fd3ecc14307f0e3
ORCID 0000-0002-9882-7852
OpenAccessLink https://doaj.org/article/d08233770cba43e28a815cf7f8f8fce0
ParticipantIDs doaj_primary_oai_doaj_org_article_d08233770cba43e28a815cf7f8f8fce0
unpaywall_primary_10_1016_j_meaene_2025_100052
crossref_primary_10_1016_j_meaene_2025_100052
elsevier_sciencedirect_doi_10_1016_j_meaene_2025_100052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Measurement: Energy
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, in: Proc. of ACM Conference on Knowledge Discovery and Data Mining, Oregon, USA, 1996, pp. 226–231.
F. Cao, M. Estert, W. Qian, A. Zhou, Density-Based Clustering over an Evolving Data Stream with Noise, in: Proc. of SIAM Conference on Data Mining, Maryland, USA, 2006, pp. 325–377.
Miyata, Ishikawa (b9) 2020
A. Bifet, R. Gavalda, Learning from Time-Changing Data with Adaptive Windowing, in: Proc. of SIAM Conference on Data Mining, Minneapolis, Minnesota, USA, 2007, pp. 443–448.
Rhodes (b2) 2016
Bayindir, Colak, Fulli, Demirtas (b3) 2016; 66
Hinder, Vaquet, Hammer (b28) 2024; 7
Janardan, Mehta (b8) 2017; 122
Szechtman, Pilotto, Ping, Salgado, de Carvalho, Long, Alvarado, DeMarco, Cañizares (b31) 1994
Li, Yu, Zhang, Luo, Xie (b15) 2024; 18
D. Arthur, S. Vassilvitskii, K-means++: The Advantages of Careful Seeding, in: Proc. of ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, USA, 2007, pp. 1027–1035.
Pérez-Martínez, Hernandez-Gil, San Miguel, Ruiz, Arredondo (b1) 2023; 857
Karimian, Beigy (b16) 2023; 224
Leskovec, Rajaraman, Ullman (b17) 2014
Zhao, Cai, Zhou (b26) 2020; 109
Barros, de L. Cabral, Gonçalves, Santos (b22) 2017; vol. 90
J. Gan, Y. Tao, DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation, in: Proc. of ACM Conference on Management of Data, Victoria, Australia, 2015, pp. 519–530.
C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A Framework for Clustering Evolving Data Streams, in: Proc. of Conference on Very Large Data Bases, VLDB ’03, Berlin, Germany, 2003, pp. 81–92.
Zubaroğlu, Atalay (b5) 2021; 54
Deepa, Ravanthy, Student (b10) 2012; 1
J.Z. Kolter, M.A. Maloof, Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift, in: Proc. of International Conference on Data Mining, Melbourne, FL, 2003, pp. 123–130.
Banik, Saha, Banik, Hossain (b4) 2023
Agrahari, Singh (b14) 2022; 34
Bifet, Holmes, Kirkby, Pfahringer (b32) 2010; 11
N. Ailon, R. Jaiswal, C. Monteleoni, Streaming k-means approximation, in: Proc. of the 22nd International Conference on Neural Inf. Processing Syst., Vancouver, British Columbia, Canada, 2009, pp. 10–18.
Bentley (b30) 1975; 18
D. Brzeziński, J.S. J., Accuracy Updated Ensemble for Data Streams with Concept Drift, in: Proc. of International Conference on Hybrid Artificial Intelligence Syst., Wroclaw, Poland, 2011, pp. 155–163.
Xu, Ding, Peng, Zhao, Li (b27) 2023; 10
Y. Okawa, K. Kobayashi, Concept Drift Detection via Boundary Shrinking, in: 2021 International Joint Conference on Neural Networks, IJCNN, 2021, pp. 1–8
.
J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, in: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
Wares, Isaacs, Elyan (b20) 2019; 1
M. Ester, H.P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental Clustering for Mining in a Data Warehousing Environment, in: Proc. of Conference on Very Large Data Bases, California, USA, 1998, pp. 323–333.
Christoph, Moritz, Frank-Michael (b23) 2020; 416
Janardan (10.1016/j.meaene.2025.100052_b8) 2017; 122
Leskovec (10.1016/j.meaene.2025.100052_b17) 2014
10.1016/j.meaene.2025.100052_b13
10.1016/j.meaene.2025.100052_b12
10.1016/j.meaene.2025.100052_b11
Hinder (10.1016/j.meaene.2025.100052_b28) 2024; 7
10.1016/j.meaene.2025.100052_b33
Li (10.1016/j.meaene.2025.100052_b15) 2024; 18
Agrahari (10.1016/j.meaene.2025.100052_b14) 2022; 34
10.1016/j.meaene.2025.100052_b19
Szechtman (10.1016/j.meaene.2025.100052_b31) 1994
10.1016/j.meaene.2025.100052_b18
Zubaroğlu (10.1016/j.meaene.2025.100052_b5) 2021; 54
Rhodes (10.1016/j.meaene.2025.100052_b2) 2016
Wares (10.1016/j.meaene.2025.100052_b20) 2019; 1
Bentley (10.1016/j.meaene.2025.100052_b30) 1975; 18
Xu (10.1016/j.meaene.2025.100052_b27) 2023; 10
Christoph (10.1016/j.meaene.2025.100052_b23) 2020; 416
10.1016/j.meaene.2025.100052_b25
Pérez-Martínez (10.1016/j.meaene.2025.100052_b1) 2023; 857
10.1016/j.meaene.2025.100052_b24
Zhao (10.1016/j.meaene.2025.100052_b26) 2020; 109
10.1016/j.meaene.2025.100052_b21
Bifet (10.1016/j.meaene.2025.100052_b32) 2010; 11
Miyata (10.1016/j.meaene.2025.100052_b9) 2020
Deepa (10.1016/j.meaene.2025.100052_b10) 2012; 1
Bayindir (10.1016/j.meaene.2025.100052_b3) 2016; 66
10.1016/j.meaene.2025.100052_b29
Barros (10.1016/j.meaene.2025.100052_b22) 2017; vol. 90
Banik (10.1016/j.meaene.2025.100052_b4) 2023
Karimian (10.1016/j.meaene.2025.100052_b16) 2023; 224
10.1016/j.meaene.2025.100052_b6
10.1016/j.meaene.2025.100052_b7
References_xml – volume: 18
  year: 2024
  ident: b15
  article-title: Concept drift adaptation by exploiting drift type
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 416
  start-page: 340
  year: 2020
  end-page: 351
  ident: b23
  article-title: Reactive soft prototype computing for concept drift streams
  publication-title: Neurocomputing
– volume: 34
  start-page: 9523
  year: 2022
  end-page: 9540
  ident: b14
  article-title: Concept drift detection in data stream mining : A literature review
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– reference: N. Ailon, R. Jaiswal, C. Monteleoni, Streaming k-means approximation, in: Proc. of the 22nd International Conference on Neural Inf. Processing Syst., Vancouver, British Columbia, Canada, 2009, pp. 10–18.
– volume: 1
  start-page: 147
  year: 2012
  end-page: 152
  ident: b10
  article-title: Validation of document clustering based on purity and entropy measures
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– reference: M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, in: Proc. of ACM Conference on Knowledge Discovery and Data Mining, Oregon, USA, 1996, pp. 226–231.
– volume: 54
  start-page: 1201
  year: 2021
  end-page: 1236
  ident: b5
  article-title: Data stream clustering: a review
  publication-title: Artif. Intell. Rev.
– volume: 1
  start-page: 1412
  year: 2019
  ident: b20
  article-title: Data stream mining: Methods and challenges for handling concept drift
  publication-title: SN Appl. Sci.
– volume: 857
  year: 2023
  ident: b1
  article-title: Analysing associations between digitalization and the accomplishment of the sustainable development goals
  publication-title: Sci. Total Environ.
– reference: D. Arthur, S. Vassilvitskii, K-means++: The Advantages of Careful Seeding, in: Proc. of ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, USA, 2007, pp. 1027–1035.
– reference: F. Cao, M. Estert, W. Qian, A. Zhou, Density-Based Clustering over an Evolving Data Stream with Noise, in: Proc. of SIAM Conference on Data Mining, Maryland, USA, 2006, pp. 325–377.
– volume: 122
  start-page: 804
  year: 2017
  end-page: 811
  ident: b8
  article-title: Concept drift in streaming data classification: Algorithms, platforms and issues
  publication-title: Procedia Comput. Sci.
– start-page: 97
  year: 2016
  end-page: 104
  ident: b2
  publication-title: The 2015 Paris Climate Change Conference: COP21
– volume: 66
  start-page: 499
  year: 2016
  end-page: 516
  ident: b3
  article-title: Smart grid technologies and applications
  publication-title: Renew. Sustain. Energy Rev.
– reference: D. Brzeziński, J.S. J., Accuracy Updated Ensemble for Data Streams with Concept Drift, in: Proc. of International Conference on Hybrid Artificial Intelligence Syst., Wroclaw, Poland, 2011, pp. 155–163.
– volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  ident: b30
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. the ACM
– volume: 11
  start-page: 1601
  year: 2010
  end-page: 1604
  ident: b32
  article-title: MOA: Massive online analysis
  publication-title: J. Mach. Learn. Res.
– start-page: 0331
  year: 2023
  end-page: 0337
  ident: b4
  article-title: Anomaly detection techniques in smart grid systems: A review
  publication-title: 2023 IEEE World AI IoT Congress (AIIoT)
– reference: J.Z. Kolter, M.A. Maloof, Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift, in: Proc. of International Conference on Data Mining, Melbourne, FL, 2003, pp. 123–130.
– reference: J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, in: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
– volume: 109
  start-page: 533
  year: 2020
  end-page: –568
  ident: b26
  article-title: Handling concept drift via model reuse
  publication-title: Mach. Learn.
– volume: 10
  start-page: 15931
  year: 2023
  end-page: 15942
  ident: b27
  article-title: ADTCD: An adaptive anomaly detection approach toward concept drift in IoT
  publication-title: IEEE Internet Things J.
– reference: A. Bifet, R. Gavalda, Learning from Time-Changing Data with Adaptive Windowing, in: Proc. of SIAM Conference on Data Mining, Minneapolis, Minnesota, USA, 2007, pp. 443–448.
– reference: J. Gan, Y. Tao, DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation, in: Proc. of ACM Conference on Management of Data, Victoria, Australia, 2015, pp. 519–530.
– start-page: 104
  year: 2020
  end-page: 110
  ident: b9
  article-title: Concept drift detection on data stream for revising DBSCAN cluster
  publication-title: Proc. of the 10th International Conference on Web Intelligence, Mining and Semantics
– volume: 224
  year: 2023
  ident: b16
  article-title: Concept drift handling: A domain adaptation perspective
  publication-title: Expert Syst. Appl.
– reference: .
– year: 1994
  ident: b31
  article-title: DC Multi-infeed Study
– reference: C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A Framework for Clustering Evolving Data Streams, in: Proc. of Conference on Very Large Data Bases, VLDB ’03, Berlin, Germany, 2003, pp. 81–92.
– volume: 7
  year: 2024
  ident: b28
  article-title: One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift
  publication-title: Front. Artif. Intell.
– year: 2014
  ident: b17
  article-title: Mining of Massive Datasets
– reference: M. Ester, H.P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental Clustering for Mining in a Data Warehousing Environment, in: Proc. of Conference on Very Large Data Bases, California, USA, 1998, pp. 323–333.
– volume: vol. 90
  start-page: 344
  year: 2017
  end-page: 355
  ident: b22
  article-title: RDDM: Reactive drift detection method
– reference: Y. Okawa, K. Kobayashi, Concept Drift Detection via Boundary Shrinking, in: 2021 International Joint Conference on Neural Networks, IJCNN, 2021, pp. 1–8,
– ident: 10.1016/j.meaene.2025.100052_b7
– ident: 10.1016/j.meaene.2025.100052_b18
– volume: 54
  start-page: 1201
  issue: 2
  year: 2021
  ident: 10.1016/j.meaene.2025.100052_b5
  article-title: Data stream clustering: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09874-x
– start-page: 0331
  year: 2023
  ident: 10.1016/j.meaene.2025.100052_b4
  article-title: Anomaly detection techniques in smart grid systems: A review
– year: 1994
  ident: 10.1016/j.meaene.2025.100052_b31
– ident: 10.1016/j.meaene.2025.100052_b21
  doi: 10.1137/1.9781611972771.42
– volume: 11
  start-page: 1601
  year: 2010
  ident: 10.1016/j.meaene.2025.100052_b32
  article-title: MOA: Massive online analysis
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.meaene.2025.100052_b33
  doi: 10.1145/2723372.2737792
– ident: 10.1016/j.meaene.2025.100052_b12
  doi: 10.1137/1.9781611972764.29
– volume: vol. 90
  start-page: 344
  year: 2017
  ident: 10.1016/j.meaene.2025.100052_b22
  article-title: RDDM: Reactive drift detection method
– volume: 109
  start-page: 533
  issue: 3
  year: 2020
  ident: 10.1016/j.meaene.2025.100052_b26
  article-title: Handling concept drift via model reuse
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05835-w
– start-page: 104
  year: 2020
  ident: 10.1016/j.meaene.2025.100052_b9
  article-title: Concept drift detection on data stream for revising DBSCAN cluster
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  ident: 10.1016/j.meaene.2025.100052_b30
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. the ACM
  doi: 10.1145/361002.361007
– ident: 10.1016/j.meaene.2025.100052_b25
  doi: 10.1109/ICDM.2003.1250911
– volume: 18
  issue: 4
  year: 2024
  ident: 10.1016/j.meaene.2025.100052_b15
  article-title: Concept drift adaptation by exploiting drift type
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3638777
– ident: 10.1016/j.meaene.2025.100052_b29
  doi: 10.1109/IJCNN52387.2021.9533334
– volume: 1
  start-page: 147
  issue: 3
  year: 2012
  ident: 10.1016/j.meaene.2025.100052_b10
  article-title: Validation of document clustering based on purity and entropy measures
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– volume: 122
  start-page: 804
  year: 2017
  ident: 10.1016/j.meaene.2025.100052_b8
  article-title: Concept drift in streaming data classification: Algorithms, platforms and issues
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.440
– year: 2014
  ident: 10.1016/j.meaene.2025.100052_b17
– volume: 34
  start-page: 9523
  issue: 10, Part B
  year: 2022
  ident: 10.1016/j.meaene.2025.100052_b14
  article-title: Concept drift detection in data stream mining : A literature review
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2021.11.006
– ident: 10.1016/j.meaene.2025.100052_b19
– volume: 857
  year: 2023
  ident: 10.1016/j.meaene.2025.100052_b1
  article-title: Analysing associations between digitalization and the accomplishment of the sustainable development goals
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159700
– volume: 1
  start-page: 1412
  issue: 11
  year: 2019
  ident: 10.1016/j.meaene.2025.100052_b20
  article-title: Data stream mining: Methods and challenges for handling concept drift
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1433-0
– volume: 416
  start-page: 340
  year: 2020
  ident: 10.1016/j.meaene.2025.100052_b23
  article-title: Reactive soft prototype computing for concept drift streams
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.111
– ident: 10.1016/j.meaene.2025.100052_b13
  doi: 10.1016/B978-012722442-8/50016-1
– volume: 7
  year: 2024
  ident: 10.1016/j.meaene.2025.100052_b28
  article-title: One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift
  publication-title: Front. Artif. Intell.
– ident: 10.1016/j.meaene.2025.100052_b11
– volume: 66
  start-page: 499
  year: 2016
  ident: 10.1016/j.meaene.2025.100052_b3
  article-title: Smart grid technologies and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.08.002
– volume: 10
  start-page: 15931
  issue: 18
  year: 2023
  ident: 10.1016/j.meaene.2025.100052_b27
  article-title: ADTCD: An adaptive anomaly detection approach toward concept drift in IoT
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3265964
– start-page: 97
  year: 2016
  ident: 10.1016/j.meaene.2025.100052_b2
– ident: 10.1016/j.meaene.2025.100052_b24
  doi: 10.1007/978-3-642-21222-2_19
– ident: 10.1016/j.meaene.2025.100052_b6
– volume: 224
  year: 2023
  ident: 10.1016/j.meaene.2025.100052_b16
  article-title: Concept drift handling: A domain adaptation perspective
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119946
SSID ssj0003321247
Score 2.3045137
Snippet Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 100052
SubjectTerms Concept drift
DBSCAN
Power grid
Purity
State recognition
Stream data clustering
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5Ke_DkAxUrKnvw6JY0-0qOVSxFaPFgoZ7CviLRmpaaIvrrnW2SYgWxktuSTWZndne-YV4IXUaxAUXqFOk6awgThhEda0O61trIBKrymA5HYjBmdxM-aaCrOhdmw3-_isN6dQpOPVhyIfcu_YDDhdsSHJB3E7XGo_veo-8fF3O4ThgP6uy4X6ZuaJ9Vkf4NJbSzzOfq411Np9-UTH8PDWvyytiSl86y0B3z-aNy47b076PdCm3iXrk9DlDD5YcIbpvc-ix0bMqcRWwXWVrgLMc-XpTMfOljAKJ47juo4adFZvFs7sqt8naExv3bh5sBqbooEANqKSShFYYKSlXUlSrWgJiYEUEsFeeWpVbJKDA61WCqcm8rsxgGKQgWgFQg08DRY9TMZ7k7QVhTB_AjMlyqkLkwjgxYh0JqFQudGibaiNTcTeZlsYykjiJ7TkpGJJ4RScmINrr2Ili_60tdrwaAg0l1chLrfYFUSqBSMerCCBbCTSrTCB7jgjaStQCTCjWUaAA-lf3x-85a3lvRe_rfCWeoWSyW7hxwS6Evqu36BQ5O6UY
  priority: 102
  providerName: Unpaywall
Title Handling concept drift in data-oriented power grid operations
URI https://dx.doi.org/10.1016/j.meaene.2025.100052
https://doi.org/10.1016/j.meaene.2025.100052
https://doaj.org/article/d08233770cba43e28a815cf7f8f8fce0
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2950-3450
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321247
  issn: 2950-3450
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yD3oRRcX5MXLwGu2atEmOUxwiODw4mKeSr0pldmVuiP-9L007ttM8SG-hpC-_V957P_I-ELoW0oAjdYr0nTWEpYYRLbUhfWutMJFqbkyfR-njmD1NksnaqC-fExbaAwfgbq2_CqKcR0YrRl0slOgnJue5gMe4mq1HQq6RKW-DKQWTzHhbK1cndH06BeYDKGGc-NyAKIk3fFHdsn_DJe0ty0r9fKvpdM3lDA_RQRMr4kGQ8QjtuPIYga0ora8hxyZUHGI7L_IFLkrssz3JzDcuhjASV37-GX6fFxbPKhcU_XWCxsOH1_tH0sxAIAZOEJPYpoamlMKpuZIa4h1m0khylSSW5VZxAcDkGohm4pkuk7BIQS0QBkU8jxw9RZ1yVrozhDV1EDwIk3AVMxdLYYDbpVwrmercsLSLSItGVoVWF1mbA_aRBfQyj14W0OuiOw_Z6l3fqLpeAPVljfqyberrIt4CnjU-P_hy2KrY8vmblX7-JO_5f8h7gfb9liHL7BJ1FvOlu4KwZKF79R_YQ7vj0cvg7ReK5uDe
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5Ke_DkAxUrKnvw6JY0-0qOVSxFaPFgoZ7CviLRmpaaIvrrnW2SYgWxktuSTWZndne-YV4IXUaxAUXqFOk6awgThhEda0O61trIBKrymA5HYjBmdxM-aaCrOhdmw3-_isN6dQpOPVhyIfcu_YDDhdsSHJB3E7XGo_veo-8fF3O4ThgP6uy4X6ZuaJ9Vkf4NJbSzzOfq411Np9-UTH8PDWvyytiSl86y0B3z-aNy47b076PdCm3iXrk9DlDD5YcIbpvc-ix0bMqcRWwXWVrgLMc-XpTMfOljAKJ47juo4adFZvFs7sqt8naExv3bh5sBqbooEANqKSShFYYKSlXUlSrWgJiYEUEsFeeWpVbJKDA61WCqcm8rsxgGKQgWgFQg08DRY9TMZ7k7QVhTB_AjMlyqkLkwjgxYh0JqFQudGibaiNTcTeZlsYykjiJ7TkpGJJ4RScmINrr2Ili_60tdrwaAg0l1chLrfYFUSqBSMerCCBbCTSrTCB7jgjaStQCTCjWUaAA-lf3x-85a3lvRe_rfCWeoWSyW7hxwS6Evqu36BQ5O6UY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+concept+drift+in+data-oriented+power+grid+operations&rft.jtitle=Measurement%3A+Energy&rft.au=Miyata%2C+Yasushi&rft.au=Ishikawa%2C+Hiroshi&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=2950-3450&rft.eissn=2950-3450&rft.volume=7&rft_id=info:doi/10.1016%2Fj.meaene.2025.100052&rft.externalDocID=S2950345025000193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2950-3450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2950-3450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2950-3450&client=summon