Handling concept drift in data-oriented power grid operations
Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the data. In digitalizing the power grid, more accurate state recognition from the measurement data is expected to promote a low-cost and stable pow...
        Saved in:
      
    
          | Published in | Measurement: Energy Vol. 7; p. 100052 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.09.2025
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2950-3450 2950-3450  | 
| DOI | 10.1016/j.meaene.2025.100052 | 
Cover
| Abstract | Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the data. In digitalizing the power grid, more accurate state recognition from the measurement data is expected to promote a low-cost and stable power supply. Acquiring measurement data from the power grid, clustering, and anomaly detection to recognize the current state could lead to better decision-making for power grid operations. While measurement data serves as the starting point, the interpretation of data trends changes due to the influence of the surrounding environment and aging in the real world. This change in data trends, known as concept drift, poses a challenge to efficient data-oriented power grid operations with accurate state recognition using data clustering models. This is because the data clustering model, especially for complex systems like a power grid, is also built data-oriented, and data trends affect the model. To address this combined challenge of concept drift and its impact on the data clustering model, we propose Re-DBSCAN, a stream data clustering model capable of handling uncertain distributions, to detect concept drift and sequentially update its model for data streams from the power grid. The evaluation uses the WECC179 power grid model to simulate power oscillations and their trend changes with the basic concept drift types: abrupt, incremental, and gradual. Compared to other stream data clustering methods that lack a concept drift detection mechanism, the proposed Re-DBSCAN showed less degradation in purity, indicating higher clustering accuracy. The results suggest that by handling concept drift by detecting data trend changes and sequentially adapting the clustering model, Re-DBSCAN can more accurately cluster measurement data containing concept drift based on its trend changes. | 
    
|---|---|
| AbstractList | Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the data. In digitalizing the power grid, more accurate state recognition from the measurement data is expected to promote a low-cost and stable power supply. Acquiring measurement data from the power grid, clustering, and anomaly detection to recognize the current state could lead to better decision-making for power grid operations. While measurement data serves as the starting point, the interpretation of data trends changes due to the influence of the surrounding environment and aging in the real world. This change in data trends, known as concept drift, poses a challenge to efficient data-oriented power grid operations with accurate state recognition using data clustering models. This is because the data clustering model, especially for complex systems like a power grid, is also built data-oriented, and data trends affect the model. To address this combined challenge of concept drift and its impact on the data clustering model, we propose Re-DBSCAN, a stream data clustering model capable of handling uncertain distributions, to detect concept drift and sequentially update its model for data streams from the power grid. The evaluation uses the WECC179 power grid model to simulate power oscillations and their trend changes with the basic concept drift types: abrupt, incremental, and gradual. Compared to other stream data clustering methods that lack a concept drift detection mechanism, the proposed Re-DBSCAN showed less degradation in purity, indicating higher clustering accuracy. The results suggest that by handling concept drift by detecting data trend changes and sequentially adapting the clustering model, Re-DBSCAN can more accurately cluster measurement data containing concept drift based on its trend changes. | 
    
| ArticleNumber | 100052 | 
    
| Author | Ishikawa, Hiroshi Miyata, Yasushi  | 
    
| Author_xml | – sequence: 1 givenname: Yasushi orcidid: 0000-0002-9882-7852 surname: Miyata fullname: Miyata, Yasushi email: yasushi.miyata.bz@hitachi.com organization: Research & Development Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, kokubunji, 185-0014, Tokyo, Japan – sequence: 2 givenname: Hiroshi surname: Ishikawa fullname: Ishikawa, Hiroshi email: ishikawa-hiroshi@tmu.ac.jp organization: Department of Computer Science, Tokyo Metropolitan University, 6-6, Asahigaoka, Hino, 191-0065, Tokyo, Japan  | 
    
| BookMark | eNqNkMtKAzEUhoNUsNa-gYt5gamZXOayUBBRWyi40XU4TU5KyjQZMqOlb2_qiLgSySLhJ_93ON8lmfjgkZDrgi4KWpQ3u8UeAT0uGGUyRZRKdkamrJE050LSya_3BZn3_S594ZwVTFRTcrsEb1rnt5kOXmM3ZCY6O2TOZwYGyEN06Ac0WRcOGLNtdCYLHUYYXPD9FTm30PY4_75n5O3p8fVhma9fnlcP9-tcpzEsZ6bUvOQc6qKCZiOFFLqkTQVSGmENVDXVG7vhvJZUlI1oUshR60JwWlmKfEZWI9cE2Kkuuj3Eowrg1FcQ4lZBHJxuURlaM86rKhFBcGR1Giq1rWydjkaaWHJkvfsOjgdo2x9gQdVJqdqpUak6KVWj0tQTY0_H0PcR7X9rd2MNk58Ph1H1OinVaFxEPaQF3N-AT-Jbkm0 | 
    
| Cites_doi | 10.1007/s10462-020-09874-x 10.1137/1.9781611972771.42 10.1145/2723372.2737792 10.1137/1.9781611972764.29 10.1007/s10994-019-05835-w 10.1145/361002.361007 10.1109/ICDM.2003.1250911 10.1145/3638777 10.1109/IJCNN52387.2021.9533334 10.1016/j.procs.2017.11.440 10.1016/j.jksuci.2021.11.006 10.1016/j.scitotenv.2022.159700 10.1007/s42452-019-1433-0 10.1016/j.neucom.2019.11.111 10.1016/B978-012722442-8/50016-1 10.1016/j.rser.2016.08.002 10.1109/JIOT.2023.3265964 10.1007/978-3-642-21222-2_19 10.1016/j.eswa.2023.119946  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 The Authors | 
    
| Copyright_xml | – notice: 2025 The Authors | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.meaene.2025.100052 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2950-3450 | 
    
| ExternalDocumentID | oai_doaj_org_article_d08233770cba43e28a815cf7f8f8fce0 10.1016/j.meaene.2025.100052 10_1016_j_meaene_2025_100052 S2950345025000193  | 
    
| GroupedDBID | 0R~ 6I. AAFTH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP FDB GROUPED_DOAJ M41 ROL AAYXX CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c2122-2d6c3633a817a9b5454c6097a55d4fda780cbfb33850469494fd3ecc14307f0e3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2950-3450 | 
    
| IngestDate | Fri Oct 03 12:36:39 EDT 2025 Tue Sep 09 05:44:57 EDT 2025 Wed Oct 01 05:39:00 EDT 2025 Sat Oct 04 17:01:25 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Concept drift Purity DBSCAN State recognition 68P01 Power grid Stream data clustering  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2122-2d6c3633a817a9b5454c6097a55d4fda780cbfb33850469494fd3ecc14307f0e3 | 
    
| ORCID | 0000-0002-9882-7852 | 
    
| OpenAccessLink | https://doaj.org/article/d08233770cba43e28a815cf7f8f8fce0 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d08233770cba43e28a815cf7f8f8fce0 unpaywall_primary_10_1016_j_meaene_2025_100052 crossref_primary_10_1016_j_meaene_2025_100052 elsevier_sciencedirect_doi_10_1016_j_meaene_2025_100052  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2025 2025-09-00 2025-09-01  | 
    
| PublicationDateYYYYMMDD | 2025-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Measurement: Energy | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, in: Proc. of ACM Conference on Knowledge Discovery and Data Mining, Oregon, USA, 1996, pp. 226–231. F. Cao, M. Estert, W. Qian, A. Zhou, Density-Based Clustering over an Evolving Data Stream with Noise, in: Proc. of SIAM Conference on Data Mining, Maryland, USA, 2006, pp. 325–377. Miyata, Ishikawa (b9) 2020 A. Bifet, R. Gavalda, Learning from Time-Changing Data with Adaptive Windowing, in: Proc. of SIAM Conference on Data Mining, Minneapolis, Minnesota, USA, 2007, pp. 443–448. Rhodes (b2) 2016 Bayindir, Colak, Fulli, Demirtas (b3) 2016; 66 Hinder, Vaquet, Hammer (b28) 2024; 7 Janardan, Mehta (b8) 2017; 122 Szechtman, Pilotto, Ping, Salgado, de Carvalho, Long, Alvarado, DeMarco, Cañizares (b31) 1994 Li, Yu, Zhang, Luo, Xie (b15) 2024; 18 D. Arthur, S. Vassilvitskii, K-means++: The Advantages of Careful Seeding, in: Proc. of ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, USA, 2007, pp. 1027–1035. Pérez-Martínez, Hernandez-Gil, San Miguel, Ruiz, Arredondo (b1) 2023; 857 Karimian, Beigy (b16) 2023; 224 Leskovec, Rajaraman, Ullman (b17) 2014 Zhao, Cai, Zhou (b26) 2020; 109 Barros, de L. Cabral, Gonçalves, Santos (b22) 2017; vol. 90 J. Gan, Y. Tao, DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation, in: Proc. of ACM Conference on Management of Data, Victoria, Australia, 2015, pp. 519–530. C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A Framework for Clustering Evolving Data Streams, in: Proc. of Conference on Very Large Data Bases, VLDB ’03, Berlin, Germany, 2003, pp. 81–92. Zubaroğlu, Atalay (b5) 2021; 54 Deepa, Ravanthy, Student (b10) 2012; 1 J.Z. Kolter, M.A. Maloof, Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift, in: Proc. of International Conference on Data Mining, Melbourne, FL, 2003, pp. 123–130. Banik, Saha, Banik, Hossain (b4) 2023 Agrahari, Singh (b14) 2022; 34 Bifet, Holmes, Kirkby, Pfahringer (b32) 2010; 11 N. Ailon, R. Jaiswal, C. Monteleoni, Streaming k-means approximation, in: Proc. of the 22nd International Conference on Neural Inf. Processing Syst., Vancouver, British Columbia, Canada, 2009, pp. 10–18. Bentley (b30) 1975; 18 D. Brzeziński, J.S. J., Accuracy Updated Ensemble for Data Streams with Concept Drift, in: Proc. of International Conference on Hybrid Artificial Intelligence Syst., Wroclaw, Poland, 2011, pp. 155–163. Xu, Ding, Peng, Zhao, Li (b27) 2023; 10 Y. Okawa, K. Kobayashi, Concept Drift Detection via Boundary Shrinking, in: 2021 International Joint Conference on Neural Networks, IJCNN, 2021, pp. 1–8 . J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, in: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. Wares, Isaacs, Elyan (b20) 2019; 1 M. Ester, H.P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental Clustering for Mining in a Data Warehousing Environment, in: Proc. of Conference on Very Large Data Bases, California, USA, 1998, pp. 323–333. Christoph, Moritz, Frank-Michael (b23) 2020; 416 Janardan (10.1016/j.meaene.2025.100052_b8) 2017; 122 Leskovec (10.1016/j.meaene.2025.100052_b17) 2014 10.1016/j.meaene.2025.100052_b13 10.1016/j.meaene.2025.100052_b12 10.1016/j.meaene.2025.100052_b11 Hinder (10.1016/j.meaene.2025.100052_b28) 2024; 7 10.1016/j.meaene.2025.100052_b33 Li (10.1016/j.meaene.2025.100052_b15) 2024; 18 Agrahari (10.1016/j.meaene.2025.100052_b14) 2022; 34 10.1016/j.meaene.2025.100052_b19 Szechtman (10.1016/j.meaene.2025.100052_b31) 1994 10.1016/j.meaene.2025.100052_b18 Zubaroğlu (10.1016/j.meaene.2025.100052_b5) 2021; 54 Rhodes (10.1016/j.meaene.2025.100052_b2) 2016 Wares (10.1016/j.meaene.2025.100052_b20) 2019; 1 Bentley (10.1016/j.meaene.2025.100052_b30) 1975; 18 Xu (10.1016/j.meaene.2025.100052_b27) 2023; 10 Christoph (10.1016/j.meaene.2025.100052_b23) 2020; 416 10.1016/j.meaene.2025.100052_b25 Pérez-Martínez (10.1016/j.meaene.2025.100052_b1) 2023; 857 10.1016/j.meaene.2025.100052_b24 Zhao (10.1016/j.meaene.2025.100052_b26) 2020; 109 10.1016/j.meaene.2025.100052_b21 Bifet (10.1016/j.meaene.2025.100052_b32) 2010; 11 Miyata (10.1016/j.meaene.2025.100052_b9) 2020 Deepa (10.1016/j.meaene.2025.100052_b10) 2012; 1 Bayindir (10.1016/j.meaene.2025.100052_b3) 2016; 66 10.1016/j.meaene.2025.100052_b29 Barros (10.1016/j.meaene.2025.100052_b22) 2017; vol. 90 Banik (10.1016/j.meaene.2025.100052_b4) 2023 Karimian (10.1016/j.meaene.2025.100052_b16) 2023; 224 10.1016/j.meaene.2025.100052_b6 10.1016/j.meaene.2025.100052_b7  | 
    
| References_xml | – volume: 18 year: 2024 ident: b15 article-title: Concept drift adaptation by exploiting drift type publication-title: ACM Trans. Knowl. Discov. Data – volume: 416 start-page: 340 year: 2020 end-page: 351 ident: b23 article-title: Reactive soft prototype computing for concept drift streams publication-title: Neurocomputing – volume: 34 start-page: 9523 year: 2022 end-page: 9540 ident: b14 article-title: Concept drift detection in data stream mining : A literature review publication-title: J. King Saud Univ. - Comput. Inf. Sci. – reference: N. Ailon, R. Jaiswal, C. Monteleoni, Streaming k-means approximation, in: Proc. of the 22nd International Conference on Neural Inf. Processing Syst., Vancouver, British Columbia, Canada, 2009, pp. 10–18. – volume: 1 start-page: 147 year: 2012 end-page: 152 ident: b10 article-title: Validation of document clustering based on purity and entropy measures publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – reference: M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, in: Proc. of ACM Conference on Knowledge Discovery and Data Mining, Oregon, USA, 1996, pp. 226–231. – volume: 54 start-page: 1201 year: 2021 end-page: 1236 ident: b5 article-title: Data stream clustering: a review publication-title: Artif. Intell. Rev. – volume: 1 start-page: 1412 year: 2019 ident: b20 article-title: Data stream mining: Methods and challenges for handling concept drift publication-title: SN Appl. Sci. – volume: 857 year: 2023 ident: b1 article-title: Analysing associations between digitalization and the accomplishment of the sustainable development goals publication-title: Sci. Total Environ. – reference: D. Arthur, S. Vassilvitskii, K-means++: The Advantages of Careful Seeding, in: Proc. of ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, USA, 2007, pp. 1027–1035. – reference: F. Cao, M. Estert, W. Qian, A. Zhou, Density-Based Clustering over an Evolving Data Stream with Noise, in: Proc. of SIAM Conference on Data Mining, Maryland, USA, 2006, pp. 325–377. – volume: 122 start-page: 804 year: 2017 end-page: 811 ident: b8 article-title: Concept drift in streaming data classification: Algorithms, platforms and issues publication-title: Procedia Comput. Sci. – start-page: 97 year: 2016 end-page: 104 ident: b2 publication-title: The 2015 Paris Climate Change Conference: COP21 – volume: 66 start-page: 499 year: 2016 end-page: 516 ident: b3 article-title: Smart grid technologies and applications publication-title: Renew. Sustain. Energy Rev. – reference: D. Brzeziński, J.S. J., Accuracy Updated Ensemble for Data Streams with Concept Drift, in: Proc. of International Conference on Hybrid Artificial Intelligence Syst., Wroclaw, Poland, 2011, pp. 155–163. – volume: 18 start-page: 509 year: 1975 end-page: 517 ident: b30 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. the ACM – volume: 11 start-page: 1601 year: 2010 end-page: 1604 ident: b32 article-title: MOA: Massive online analysis publication-title: J. Mach. Learn. Res. – start-page: 0331 year: 2023 end-page: 0337 ident: b4 article-title: Anomaly detection techniques in smart grid systems: A review publication-title: 2023 IEEE World AI IoT Congress (AIIoT) – reference: J.Z. Kolter, M.A. Maloof, Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift, in: Proc. of International Conference on Data Mining, Melbourne, FL, 2003, pp. 123–130. – reference: J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, in: Proc. of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. – volume: 109 start-page: 533 year: 2020 end-page: –568 ident: b26 article-title: Handling concept drift via model reuse publication-title: Mach. Learn. – volume: 10 start-page: 15931 year: 2023 end-page: 15942 ident: b27 article-title: ADTCD: An adaptive anomaly detection approach toward concept drift in IoT publication-title: IEEE Internet Things J. – reference: A. Bifet, R. Gavalda, Learning from Time-Changing Data with Adaptive Windowing, in: Proc. of SIAM Conference on Data Mining, Minneapolis, Minnesota, USA, 2007, pp. 443–448. – reference: J. Gan, Y. Tao, DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation, in: Proc. of ACM Conference on Management of Data, Victoria, Australia, 2015, pp. 519–530. – start-page: 104 year: 2020 end-page: 110 ident: b9 article-title: Concept drift detection on data stream for revising DBSCAN cluster publication-title: Proc. of the 10th International Conference on Web Intelligence, Mining and Semantics – volume: 224 year: 2023 ident: b16 article-title: Concept drift handling: A domain adaptation perspective publication-title: Expert Syst. Appl. – reference: . – year: 1994 ident: b31 article-title: DC Multi-infeed Study – reference: C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A Framework for Clustering Evolving Data Streams, in: Proc. of Conference on Very Large Data Bases, VLDB ’03, Berlin, Germany, 2003, pp. 81–92. – volume: 7 year: 2024 ident: b28 article-title: One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift publication-title: Front. Artif. Intell. – year: 2014 ident: b17 article-title: Mining of Massive Datasets – reference: M. Ester, H.P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental Clustering for Mining in a Data Warehousing Environment, in: Proc. of Conference on Very Large Data Bases, California, USA, 1998, pp. 323–333. – volume: vol. 90 start-page: 344 year: 2017 end-page: 355 ident: b22 article-title: RDDM: Reactive drift detection method – reference: Y. Okawa, K. Kobayashi, Concept Drift Detection via Boundary Shrinking, in: 2021 International Joint Conference on Neural Networks, IJCNN, 2021, pp. 1–8, – ident: 10.1016/j.meaene.2025.100052_b7 – ident: 10.1016/j.meaene.2025.100052_b18 – volume: 54 start-page: 1201 issue: 2 year: 2021 ident: 10.1016/j.meaene.2025.100052_b5 article-title: Data stream clustering: a review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09874-x – start-page: 0331 year: 2023 ident: 10.1016/j.meaene.2025.100052_b4 article-title: Anomaly detection techniques in smart grid systems: A review – year: 1994 ident: 10.1016/j.meaene.2025.100052_b31 – ident: 10.1016/j.meaene.2025.100052_b21 doi: 10.1137/1.9781611972771.42 – volume: 11 start-page: 1601 year: 2010 ident: 10.1016/j.meaene.2025.100052_b32 article-title: MOA: Massive online analysis publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.meaene.2025.100052_b33 doi: 10.1145/2723372.2737792 – ident: 10.1016/j.meaene.2025.100052_b12 doi: 10.1137/1.9781611972764.29 – volume: vol. 90 start-page: 344 year: 2017 ident: 10.1016/j.meaene.2025.100052_b22 article-title: RDDM: Reactive drift detection method – volume: 109 start-page: 533 issue: 3 year: 2020 ident: 10.1016/j.meaene.2025.100052_b26 article-title: Handling concept drift via model reuse publication-title: Mach. Learn. doi: 10.1007/s10994-019-05835-w – start-page: 104 year: 2020 ident: 10.1016/j.meaene.2025.100052_b9 article-title: Concept drift detection on data stream for revising DBSCAN cluster – volume: 18 start-page: 509 issue: 9 year: 1975 ident: 10.1016/j.meaene.2025.100052_b30 article-title: Multidimensional binary search trees used for associative searching publication-title: Commun. the ACM doi: 10.1145/361002.361007 – ident: 10.1016/j.meaene.2025.100052_b25 doi: 10.1109/ICDM.2003.1250911 – volume: 18 issue: 4 year: 2024 ident: 10.1016/j.meaene.2025.100052_b15 article-title: Concept drift adaptation by exploiting drift type publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3638777 – ident: 10.1016/j.meaene.2025.100052_b29 doi: 10.1109/IJCNN52387.2021.9533334 – volume: 1 start-page: 147 issue: 3 year: 2012 ident: 10.1016/j.meaene.2025.100052_b10 article-title: Validation of document clustering based on purity and entropy measures publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – volume: 122 start-page: 804 year: 2017 ident: 10.1016/j.meaene.2025.100052_b8 article-title: Concept drift in streaming data classification: Algorithms, platforms and issues publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.440 – year: 2014 ident: 10.1016/j.meaene.2025.100052_b17 – volume: 34 start-page: 9523 issue: 10, Part B year: 2022 ident: 10.1016/j.meaene.2025.100052_b14 article-title: Concept drift detection in data stream mining : A literature review publication-title: J. King Saud Univ. - Comput. Inf. Sci. doi: 10.1016/j.jksuci.2021.11.006 – ident: 10.1016/j.meaene.2025.100052_b19 – volume: 857 year: 2023 ident: 10.1016/j.meaene.2025.100052_b1 article-title: Analysing associations between digitalization and the accomplishment of the sustainable development goals publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159700 – volume: 1 start-page: 1412 issue: 11 year: 2019 ident: 10.1016/j.meaene.2025.100052_b20 article-title: Data stream mining: Methods and challenges for handling concept drift publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1433-0 – volume: 416 start-page: 340 year: 2020 ident: 10.1016/j.meaene.2025.100052_b23 article-title: Reactive soft prototype computing for concept drift streams publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.111 – ident: 10.1016/j.meaene.2025.100052_b13 doi: 10.1016/B978-012722442-8/50016-1 – volume: 7 year: 2024 ident: 10.1016/j.meaene.2025.100052_b28 article-title: One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift publication-title: Front. Artif. Intell. – ident: 10.1016/j.meaene.2025.100052_b11 – volume: 66 start-page: 499 year: 2016 ident: 10.1016/j.meaene.2025.100052_b3 article-title: Smart grid technologies and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.08.002 – volume: 10 start-page: 15931 issue: 18 year: 2023 ident: 10.1016/j.meaene.2025.100052_b27 article-title: ADTCD: An adaptive anomaly detection approach toward concept drift in IoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3265964 – start-page: 97 year: 2016 ident: 10.1016/j.meaene.2025.100052_b2 – ident: 10.1016/j.meaene.2025.100052_b24 doi: 10.1007/978-3-642-21222-2_19 – ident: 10.1016/j.meaene.2025.100052_b6 – volume: 224 year: 2023 ident: 10.1016/j.meaene.2025.100052_b16 article-title: Concept drift handling: A domain adaptation perspective publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119946  | 
    
| SSID | ssj0003321247 | 
    
| Score | 2.3045137 | 
    
| Snippet | Data-oriented business transformation, also known as “digitalization”, can improve business tasks by providing better insights into the subject through the... | 
    
| SourceID | doaj unpaywall crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Index Database Publisher  | 
    
| StartPage | 100052 | 
    
| SubjectTerms | Concept drift DBSCAN Power grid Purity State recognition Stream data clustering  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5Ke_DkAxUrKnvw6JY0-0qOVSxFaPFgoZ7CviLRmpaaIvrrnW2SYgWxktuSTWZndne-YV4IXUaxAUXqFOk6awgThhEda0O61trIBKrymA5HYjBmdxM-aaCrOhdmw3-_isN6dQpOPVhyIfcu_YDDhdsSHJB3E7XGo_veo-8fF3O4ThgP6uy4X6ZuaJ9Vkf4NJbSzzOfq411Np9-UTH8PDWvyytiSl86y0B3z-aNy47b076PdCm3iXrk9DlDD5YcIbpvc-ix0bMqcRWwXWVrgLMc-XpTMfOljAKJ47juo4adFZvFs7sqt8naExv3bh5sBqbooEANqKSShFYYKSlXUlSrWgJiYEUEsFeeWpVbJKDA61WCqcm8rsxgGKQgWgFQg08DRY9TMZ7k7QVhTB_AjMlyqkLkwjgxYh0JqFQudGibaiNTcTeZlsYykjiJ7TkpGJJ4RScmINrr2Ili_60tdrwaAg0l1chLrfYFUSqBSMerCCBbCTSrTCB7jgjaStQCTCjWUaAA-lf3x-85a3lvRe_rfCWeoWSyW7hxwS6Evqu36BQ5O6UY priority: 102 providerName: Unpaywall  | 
    
| Title | Handling concept drift in data-oriented power grid operations | 
    
| URI | https://dx.doi.org/10.1016/j.meaene.2025.100052 https://doi.org/10.1016/j.meaene.2025.100052 https://doaj.org/article/d08233770cba43e28a815cf7f8f8fce0  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2950-3450 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321247 issn: 2950-3450 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yD3oRRcX5MXLwGu2atEmOUxwiODw4mKeSr0pldmVuiP-9L007ttM8SG-hpC-_V957P_I-ELoW0oAjdYr0nTWEpYYRLbUhfWutMJFqbkyfR-njmD1NksnaqC-fExbaAwfgbq2_CqKcR0YrRl0slOgnJue5gMe4mq1HQq6RKW-DKQWTzHhbK1cndH06BeYDKGGc-NyAKIk3fFHdsn_DJe0ty0r9fKvpdM3lDA_RQRMr4kGQ8QjtuPIYga0ora8hxyZUHGI7L_IFLkrssz3JzDcuhjASV37-GX6fFxbPKhcU_XWCxsOH1_tH0sxAIAZOEJPYpoamlMKpuZIa4h1m0khylSSW5VZxAcDkGohm4pkuk7BIQS0QBkU8jxw9RZ1yVrozhDV1EDwIk3AVMxdLYYDbpVwrmercsLSLSItGVoVWF1mbA_aRBfQyj14W0OuiOw_Z6l3fqLpeAPVljfqyberrIt4CnjU-P_hy2KrY8vmblX7-JO_5f8h7gfb9liHL7BJ1FvOlu4KwZKF79R_YQ7vj0cvg7ReK5uDe | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5Ke_DkAxUrKnvw6JY0-0qOVSxFaPFgoZ7CviLRmpaaIvrrnW2SYgWxktuSTWZndne-YV4IXUaxAUXqFOk6awgThhEda0O61trIBKrymA5HYjBmdxM-aaCrOhdmw3-_isN6dQpOPVhyIfcu_YDDhdsSHJB3E7XGo_veo-8fF3O4ThgP6uy4X6ZuaJ9Vkf4NJbSzzOfq411Np9-UTH8PDWvyytiSl86y0B3z-aNy47b076PdCm3iXrk9DlDD5YcIbpvc-ix0bMqcRWwXWVrgLMc-XpTMfOljAKJ47juo4adFZvFs7sqt8naExv3bh5sBqbooEANqKSShFYYKSlXUlSrWgJiYEUEsFeeWpVbJKDA61WCqcm8rsxgGKQgWgFQg08DRY9TMZ7k7QVhTB_AjMlyqkLkwjgxYh0JqFQudGibaiNTcTeZlsYykjiJ7TkpGJJ4RScmINrr2Ili_60tdrwaAg0l1chLrfYFUSqBSMerCCBbCTSrTCB7jgjaStQCTCjWUaAA-lf3x-85a3lvRe_rfCWeoWSyW7hxwS6Evqu36BQ5O6UY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+concept+drift+in+data-oriented+power+grid+operations&rft.jtitle=Measurement%3A+Energy&rft.au=Miyata%2C+Yasushi&rft.au=Ishikawa%2C+Hiroshi&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=2950-3450&rft.eissn=2950-3450&rft.volume=7&rft_id=info:doi/10.1016%2Fj.meaene.2025.100052&rft.externalDocID=S2950345025000193 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2950-3450&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2950-3450&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2950-3450&client=summon |