GBG++: A Fast and Stable Granular Ball Generation Method for Classification

Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficien...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence Vol. 8; no. 2; pp. 2022 - 2036
Main Authors Xie, Qin, Zhang, Qinghua, Xia, Shuyin, Zhao, Fan, Wu, Chengying, Wang, Guoyin, Ding, Weiping
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2471-285X
2471-285X
DOI10.1109/TETCI.2024.3359091

Cover

Abstract Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means or <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-nearest neighbors algorithm (GB<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 24 public benchmark datasets.
AbstractList Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on [Formula Omitted]-means or [Formula Omitted]-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based [Formula Omitted]-nearest neighbors algorithm (GB[Formula Omitted]NN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 24 public benchmark datasets.
Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means or <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-nearest neighbors algorithm (GB<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 24 public benchmark datasets.
Author Zhang, Qinghua
Wang, Guoyin
Ding, Weiping
Xie, Qin
Wu, Chengying
Zhao, Fan
Xia, Shuyin
Author_xml – sequence: 1
  givenname: Qin
  orcidid: 0009-0004-8614-3711
  surname: Xie
  fullname: Xie, Qin
  email: 619773142@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 2
  givenname: Qinghua
  orcidid: 0000-0002-6154-4656
  surname: Zhang
  fullname: Zhang, Qinghua
  email: zhangqh@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 3
  givenname: Shuyin
  orcidid: 0000-0001-5993-9563
  surname: Xia
  fullname: Xia, Shuyin
  email: xiasy@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 4
  givenname: Fan
  orcidid: 0009-0008-4437-844X
  surname: Zhao
  fullname: Zhao, Fan
  email: 837062256@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 5
  givenname: Chengying
  orcidid: 0000-0002-8316-6107
  surname: Wu
  fullname: Wu, Chengying
  email: 381047936@qq.com
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 6
  givenname: Guoyin
  orcidid: 0000-0002-8521-5232
  surname: Wang
  fullname: Wang, Guoyin
  email: wanggy@cqupt.edu.cn
  organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
– sequence: 7
  givenname: Weiping
  orcidid: 0000-0002-3180-7347
  surname: Ding
  fullname: Ding, Weiping
  email: dwp9988@hotmail.com
  organization: School of Information Science and Technology, Nantong University, Nantong, China
BookMark eNp9kE1PwkAQhjcGExH5A8bDJh5Jcb_pegMilYjxICbeNtPtNpbUFneXg__eAh6IB08zybzPzOS5RL2mbRxC15SMKSX6bv2wni_HjDAx5lxqoukZ6jMxoQlL5XvvpL9AwxA2hBCmJeVS9NFTNstGo3s8xQsIEUNT4NcIee1w5qHZ1eDxDOoaZ65xHmLVNvjZxY-2wGXr8byGEKqysofJFTovoQ5u-FsH6G3RvfaYrF6y5Xy6SiyjNCalS621Qipq80nh0hJKZa3jYKXSQloBSugilYrlxAJTOSvTCdUgRQ5cTxwfoNvj3q1vv3YuRLNpd77pThqmteRUKqW6VHpMWd-G4F1pbBUPf0YPVW0oMXt75mDP7O2ZX3sdyv6gW199gv_-H7o5QpVz7gQQnAgp-Q8Y9Xv-
CODEN ITETCU
CitedBy_id crossref_primary_10_1016_j_fss_2025_109382
crossref_primary_10_1016_j_eswa_2024_126030
crossref_primary_10_1016_j_ins_2024_121861
crossref_primary_10_1007_s10489_024_05904_1
crossref_primary_10_1109_TFUZZ_2024_3397697
crossref_primary_10_1109_TCYB_2025_3534195
crossref_primary_10_1016_j_neucom_2024_128539
Cites_doi 10.1109/TNN.2009.2027319
10.1109/TNNLS.2017.2727526
10.1109/34.955110
10.1186/1471-2105-7-173
10.1109/TIP.2017.2654163
10.1109/TETCI.2022.3201620
10.1016/j.ins.2019.03.061
10.1126/science.7134969
10.1016/S0925-2312(00)00342-8
10.1109/TIP.2006.881945
10.1109/ICPR.1996.547202
10.1145/3136625
10.1109/TPAMI.1986.4767859
10.1016/j.ins.2019.01.010
10.1109/tnnls.2022.3203381
10.1016/j.eswa.2016.03.045
10.1109/TKDE.2018.2873791
10.1109/TCYB.2019.2902603
10.1016/j.jksuci.2022.02.025
10.1109/TNNLS.2021.3054063
10.1007/3-540-39205-x_2
10.5555/1248547.1248548
10.1109/TFUZZ.2020.3029285
10.1109/TSMC.2019.2908518
10.1109/TNNLS.2021.3105984
10.1016/j.ipm.2017.02.008
10.1126/science.1242072
10.1109/TETCI.2022.3189408
10.1109/TFUZZ.2020.3009764
10.1137/1109020
10.1016/j.knosys.2014.12.017
10.1142/9789814261302_0022
10.1177/0165551516677911
10.1109/TNNLS.2017.2740224
10.5555/3045118.3045336
10.1109/5.726791
10.1007/BF01001956
10.1109/tpami.2020.3008694
10.1109/TETCI.2022.3171311
10.1016/S0019-9958(65)90241-X
10.1109/TETCI.2020.3041019
10.1016/j.patcog.2017.02.011
10.1109/ISBI48211.2021.9434062
10.1016/j.ins.2009.09.021
10.1109/T-C.1975.224297
10.1109/TNNLS.2020.3019893
10.1109/TETCI.2021.3100597
10.1109/TPAMI.2010.231
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2024.3359091
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 2036
ExternalDocumentID 10_1109_TETCI_2024_3359091
10430455
Genre orig-research
GrantInformation_xml – fundername: Graduate Scientific Research Innovation Project of Chongqing
  grantid: CYB22244
– fundername: Foundation for Innovative Research Groups of Natural Science Foundation of Chongqing
  grantid: cstc2019jcyj-cxttX0002
– fundername: Key Cooperation Project of Chongqing Municipal Education Commission
  grantid: under Grant HZ2021008
– fundername: National Natural Science Foundation of China
  grantid: 62276038
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0704101
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c211t-fe8ccc4561cb7de8faf6cce3ac56945c4a649d8562b0ca26b2f8719a54ba397e3
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Sun Jun 29 16:39:19 EDT 2025
Wed Oct 01 03:58:03 EDT 2025
Thu Apr 24 22:59:22 EDT 2025
Wed Aug 27 02:17:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c211t-fe8ccc4561cb7de8faf6cce3ac56945c4a649d8562b0ca26b2f8719a54ba397e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-4437-844X
0000-0002-8316-6107
0000-0001-5993-9563
0000-0002-3180-7347
0000-0002-6154-4656
0009-0004-8614-3711
0000-0002-8521-5232
PQID 2995315666
PQPubID 4437216
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TETCI_2024_3359091
proquest_journals_2995315666
ieee_primary_10430455
crossref_primary_10_1109_TETCI_2024_3359091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref53
ref52
Blake (ref3) 2022
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
Xiao (ref42) 2017
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Guoyin (ref11) 2020; 1
ref31
ref30
ref33
ref32
ref39
ref38
Ba (ref1) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Hsu (ref13) 2003
ref29
Bahdanau (ref2) 2014
References_xml – year: 2014
  ident: ref1
  article-title: Multiple object recognition with visual attention
– ident: ref25
  doi: 10.1109/TNN.2009.2027319
– ident: ref53
  doi: 10.1109/TNNLS.2017.2727526
– year: 2022
  ident: ref3
  article-title: UCI repository of machine learning databases
– ident: ref18
  doi: 10.1109/34.955110
– ident: ref33
  doi: 10.1186/1471-2105-7-173
– year: 2017
  ident: ref42
  article-title: Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms
– ident: ref54
  doi: 10.1109/TIP.2017.2654163
– ident: ref31
  doi: 10.1109/TETCI.2022.3201620
– ident: ref48
  doi: 10.1016/j.ins.2019.03.061
– ident: ref6
  doi: 10.1126/science.7134969
– ident: ref27
  doi: 10.1016/S0925-2312(00)00342-8
– ident: ref5
  doi: 10.1109/TIP.2006.881945
– ident: ref12
  doi: 10.1109/ICPR.1996.547202
– ident: ref16
  doi: 10.1145/3136625
– ident: ref14
  doi: 10.1109/TPAMI.1986.4767859
– ident: ref38
  doi: 10.1016/j.ins.2019.01.010
– year: 2014
  ident: ref2
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref37
  doi: 10.1109/tnnls.2022.3203381
– ident: ref22
  doi: 10.1016/j.eswa.2016.03.045
– volume: 1
  start-page: 75
  issue: 2
  year: 2020
  ident: ref11
  article-title: Multi-granularity cognitive computinga new model for Big Data intelligent computing
  publication-title: Front. Data Domputing
– ident: ref40
  doi: 10.1109/TKDE.2018.2873791
– ident: ref24
  doi: 10.1109/TCYB.2019.2902603
– ident: ref21
  doi: 10.1016/j.jksuci.2022.02.025
– ident: ref50
  doi: 10.1109/TNNLS.2021.3054063
– ident: ref49
  doi: 10.1007/3-540-39205-x_2
– ident: ref7
  doi: 10.5555/1248547.1248548
– ident: ref34
  doi: 10.1109/TFUZZ.2020.3029285
– ident: ref51
  doi: 10.1109/TSMC.2019.2908518
– year: 2003
  ident: ref13
  article-title: A practical guide to support vector classification
– ident: ref41
  doi: 10.1109/TNNLS.2021.3105984
– ident: ref23
  doi: 10.1016/j.ipm.2017.02.008
– ident: ref29
  doi: 10.1126/science.1242072
– ident: ref35
  doi: 10.1109/TETCI.2022.3189408
– ident: ref36
  doi: 10.1109/TFUZZ.2020.3009764
– ident: ref19
  doi: 10.1137/1109020
– ident: ref30
  doi: 10.1016/j.knosys.2014.12.017
– ident: ref47
  doi: 10.1142/9789814261302_0022
– ident: ref20
  doi: 10.1177/0165551516677911
– ident: ref52
  doi: 10.1109/TNNLS.2017.2740224
– ident: ref43
  doi: 10.5555/3045118.3045336
– ident: ref15
  doi: 10.1109/5.726791
– ident: ref26
  doi: 10.1007/BF01001956
– ident: ref39
  doi: 10.1109/tpami.2020.3008694
– ident: ref17
  doi: 10.1109/TETCI.2022.3171311
– ident: ref46
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref28
  doi: 10.1109/TETCI.2020.3041019
– ident: ref8
  doi: 10.1016/j.patcog.2017.02.011
– ident: ref44
  doi: 10.1109/ISBI48211.2021.9434062
– ident: ref45
  doi: 10.1016/j.ins.2009.09.021
– ident: ref9
  doi: 10.1109/T-C.1975.224297
– ident: ref10
  doi: 10.1109/TNNLS.2020.3019893
– ident: ref32
  doi: 10.1109/TETCI.2021.3100597
– ident: ref4
  doi: 10.1109/TPAMI.2010.231
SSID ssj0002951354
Score 2.4515524
Snippet Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2022
SubjectTerms Algorithms
Anomaly detection
Classification
Classifiers
Computation
Computational intelligence
Computer architecture
Data analysis
granular ball computing
Granular computing
label noise
Machine learning
Machine learning algorithms
Mathematical analysis
multi-granularity learning
Outliers (statistics)
Support vector machines
Training
Title GBG++: A Fast and Stable Granular Ball Generation Method for Classification
URI https://ieeexplore.ieee.org/document/10430455
https://www.proquest.com/docview/2995315666
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYoEwsPUUShIA9sVUISPxKztYi2gNqplbpFtuMsRCmi6cKv5-wkFQ-BWKJIsSP7zuf7zr4HQjcGIHzE48zLk8h4VIXMUxk8CAhlLHXOY2qjkWdzPl3SpxVbNcHqLhbGGOOcz4xvX91dfrbWW3tUBhJO7cUe66BOnPA6WGt3oBIBViCMtoExgbhdPCzuH8EEjKhPCBOBCL8oH1dN5ccW7PTK-AjN2xHV7iQv_rZSvn7_lqzx30M-RocNwsTDekmcoD1TnqLnyWgyGNzhIR7LTYVlmWGAmaoweALKyrqi4pEsClxnobbMwjNXWxoDqMWucqb1KXJfumg5hjlPvaaOgqfBvKu83CRaa4uUtIozk-Qy51obIjXjgjJNJaciSwAJqUDLiKsoBzNKSEaVBLhiyBnaL9elOUeYCmJIJkH15YYmQSbAxFUg1ySUwtYf7aGwJXCqmyTjttZFkTpjIxCpY0pqmZI2TOmhwa7Pa51i48_WXUvlTy1rAvdQv2Vk2ojhJgVdC3sMIFZ-8Uu3S3Rg_27vh8Kwj_art625AphRqWu3vD4AfTLMqg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwEEUUCnhgqxLS2E5iNorogz6mVuoW2Y6zEKWIpgu_nrOTVDwEYokixVbsO5_vO_seCN1qgPB-ECZOGvnaobLLHJnAg4BQhkKlQUhNNPJ0FgwX9HnJllWwuo2F0Vpb5zPtmld7l5-s1MYclYGEU3Oxx3bRHqOUsjJca3uk4gNaIIzWoTEev5s_zR9HYAT61CWEcY93v6gfW0_lxyZsNUv_CM3qMZUOJS_uppCuev-WrvHfgz5GhxXGxA_lojhBOzo_ReNBb9Dp3OMH3BfrAos8wQA0ZabxANSVcUbFPZFluMxDbdiFp7a6NAZYi23tTONVZL800aIPcx46VSUFR4GBVzipjpRSBispGSY6SkUaKKWJUCzglCkqAsqTCLCQ9JTwA-mnYEhxwagUAFg0OUONfJXrc4QpJ5okApRfqmnkJRyMXAmSTbqCmwqkLdStCRyrKs24qXaRxdbc8HhsmRIbpsQVU1qos-3zWibZ-LN101D5U8uSwC3UrhkZV4K4jkHbwi4DmDW4-KXbDdofzqeTeDKajS_RgflT6ZnTRo3ibaOvAHQU8toutQ9iNM_2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GBG%2B%2B%3A+A+Fast+and+Stable+Granular+Ball+Generation+Method+for+Classification&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Xie%2C+Qin&rft.au=Zhang%2C+Qinghua&rft.au=Xia%2C+Shuyin&rft.au=Zhao%2C+Fan&rft.date=2024-04-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=8&rft.issue=2&rft.spage=2022&rft.epage=2036&rft_id=info:doi/10.1109%2FTETCI.2024.3359091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2024_3359091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon