GBG++: A Fast and Stable Granular Ball Generation Method for Classification
Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficien...
Saved in:
| Published in | IEEE transactions on emerging topics in computational intelligence Vol. 8; no. 2; pp. 2022 - 2036 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2471-285X 2471-285X |
| DOI | 10.1109/TETCI.2024.3359091 |
Cover
| Abstract | Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means or <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-nearest neighbors algorithm (GB<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 24 public benchmark datasets. |
|---|---|
| AbstractList | Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on [Formula Omitted]-means or [Formula Omitted]-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based [Formula Omitted]-nearest neighbors algorithm (GB[Formula Omitted]NN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 24 public benchmark datasets. Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes two stages: granular ball generation (GBG) and multi-granularity learning based on the granular ball (GB). However, the stability and efficiency of existing GBG methods need to be further improved due to their strong dependence on <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-means or <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-division. In addition, GB-based classifiers only unilaterally consider the GB's geometric characteristics to construct classification rules, but the GB's quality is ignored. Therefore, in this paper, based on the attention mechanism, a fast and stable GBG (GBG++) method is proposed first. Specifically, the proposed GBG++ method only needs to calculate the distances from the data-driven center to the undivided samples when splitting each GB instead of randomly selecting the center and calculating the distances between it and all samples. Moreover, an outlier detection method is introduced to identify local outliers. Consequently, the GBG++ method can significantly improve effectiveness, robustness, and efficiency while being absolutely stable. Second, considering the influence of the sample size within the GB on the GB's quality, based on the GBG++ method, an improved GB-based <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-nearest neighbors algorithm (GB<inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN++) is presented, which can reduce misclassification at the class boundary. Finally, the experimental results indicate that the proposed method outperforms several existing GB-based classifiers and classical machine learning classifiers on 24 public benchmark datasets. |
| Author | Zhang, Qinghua Wang, Guoyin Ding, Weiping Xie, Qin Wu, Chengying Zhao, Fan Xia, Shuyin |
| Author_xml | – sequence: 1 givenname: Qin orcidid: 0009-0004-8614-3711 surname: Xie fullname: Xie, Qin email: 619773142@qq.com organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 2 givenname: Qinghua orcidid: 0000-0002-6154-4656 surname: Zhang fullname: Zhang, Qinghua email: zhangqh@cqupt.edu.cn organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 3 givenname: Shuyin orcidid: 0000-0001-5993-9563 surname: Xia fullname: Xia, Shuyin email: xiasy@cqupt.edu.cn organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 4 givenname: Fan orcidid: 0009-0008-4437-844X surname: Zhao fullname: Zhao, Fan email: 837062256@qq.com organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 5 givenname: Chengying orcidid: 0000-0002-8316-6107 surname: Wu fullname: Wu, Chengying email: 381047936@qq.com organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 6 givenname: Guoyin orcidid: 0000-0002-8521-5232 surname: Wang fullname: Wang, Guoyin email: wanggy@cqupt.edu.cn organization: Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China – sequence: 7 givenname: Weiping orcidid: 0000-0002-3180-7347 surname: Ding fullname: Ding, Weiping email: dwp9988@hotmail.com organization: School of Information Science and Technology, Nantong University, Nantong, China |
| BookMark | eNp9kE1PwkAQhjcGExH5A8bDJh5Jcb_pegMilYjxICbeNtPtNpbUFneXg__eAh6IB08zybzPzOS5RL2mbRxC15SMKSX6bv2wni_HjDAx5lxqoukZ6jMxoQlL5XvvpL9AwxA2hBCmJeVS9NFTNstGo3s8xQsIEUNT4NcIee1w5qHZ1eDxDOoaZ65xHmLVNvjZxY-2wGXr8byGEKqysofJFTovoQ5u-FsH6G3RvfaYrF6y5Xy6SiyjNCalS621Qipq80nh0hJKZa3jYKXSQloBSugilYrlxAJTOSvTCdUgRQ5cTxwfoNvj3q1vv3YuRLNpd77pThqmteRUKqW6VHpMWd-G4F1pbBUPf0YPVW0oMXt75mDP7O2ZX3sdyv6gW199gv_-H7o5QpVz7gQQnAgp-Q8Y9Xv- |
| CODEN | ITETCU |
| CitedBy_id | crossref_primary_10_1016_j_fss_2025_109382 crossref_primary_10_1016_j_eswa_2024_126030 crossref_primary_10_1016_j_ins_2024_121861 crossref_primary_10_1007_s10489_024_05904_1 crossref_primary_10_1109_TFUZZ_2024_3397697 crossref_primary_10_1109_TCYB_2025_3534195 crossref_primary_10_1016_j_neucom_2024_128539 |
| Cites_doi | 10.1109/TNN.2009.2027319 10.1109/TNNLS.2017.2727526 10.1109/34.955110 10.1186/1471-2105-7-173 10.1109/TIP.2017.2654163 10.1109/TETCI.2022.3201620 10.1016/j.ins.2019.03.061 10.1126/science.7134969 10.1016/S0925-2312(00)00342-8 10.1109/TIP.2006.881945 10.1109/ICPR.1996.547202 10.1145/3136625 10.1109/TPAMI.1986.4767859 10.1016/j.ins.2019.01.010 10.1109/tnnls.2022.3203381 10.1016/j.eswa.2016.03.045 10.1109/TKDE.2018.2873791 10.1109/TCYB.2019.2902603 10.1016/j.jksuci.2022.02.025 10.1109/TNNLS.2021.3054063 10.1007/3-540-39205-x_2 10.5555/1248547.1248548 10.1109/TFUZZ.2020.3029285 10.1109/TSMC.2019.2908518 10.1109/TNNLS.2021.3105984 10.1016/j.ipm.2017.02.008 10.1126/science.1242072 10.1109/TETCI.2022.3189408 10.1109/TFUZZ.2020.3009764 10.1137/1109020 10.1016/j.knosys.2014.12.017 10.1142/9789814261302_0022 10.1177/0165551516677911 10.1109/TNNLS.2017.2740224 10.5555/3045118.3045336 10.1109/5.726791 10.1007/BF01001956 10.1109/tpami.2020.3008694 10.1109/TETCI.2022.3171311 10.1016/S0019-9958(65)90241-X 10.1109/TETCI.2020.3041019 10.1016/j.patcog.2017.02.011 10.1109/ISBI48211.2021.9434062 10.1016/j.ins.2009.09.021 10.1109/T-C.1975.224297 10.1109/TNNLS.2020.3019893 10.1109/TETCI.2021.3100597 10.1109/TPAMI.2010.231 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TETCI.2024.3359091 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2471-285X |
| EndPage | 2036 |
| ExternalDocumentID | 10_1109_TETCI_2024_3359091 10430455 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Graduate Scientific Research Innovation Project of Chongqing grantid: CYB22244 – fundername: Foundation for Innovative Research Groups of Natural Science Foundation of Chongqing grantid: cstc2019jcyj-cxttX0002 – fundername: Key Cooperation Project of Chongqing Municipal Education Commission grantid: under Grant HZ2021008 – fundername: National Natural Science Foundation of China grantid: 62276038 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2021YFF0704101 |
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c211t-fe8ccc4561cb7de8faf6cce3ac56945c4a649d8562b0ca26b2f8719a54ba397e3 |
| IEDL.DBID | RIE |
| ISSN | 2471-285X |
| IngestDate | Sun Jun 29 16:39:19 EDT 2025 Wed Oct 01 03:58:03 EDT 2025 Thu Apr 24 22:59:22 EDT 2025 Wed Aug 27 02:17:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c211t-fe8ccc4561cb7de8faf6cce3ac56945c4a649d8562b0ca26b2f8719a54ba397e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-4437-844X 0000-0002-8316-6107 0000-0001-5993-9563 0000-0002-3180-7347 0000-0002-6154-4656 0009-0004-8614-3711 0000-0002-8521-5232 |
| PQID | 2995315666 |
| PQPubID | 4437216 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TETCI_2024_3359091 proquest_journals_2995315666 ieee_primary_10430455 crossref_primary_10_1109_TETCI_2024_3359091 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence |
| PublicationTitleAbbrev | TETCI |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref53 ref52 Blake (ref3) 2022 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref41 Xiao (ref42) 2017 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 Guoyin (ref11) 2020; 1 ref31 ref30 ref33 ref32 ref39 ref38 Ba (ref1) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Hsu (ref13) 2003 ref29 Bahdanau (ref2) 2014 |
| References_xml | – year: 2014 ident: ref1 article-title: Multiple object recognition with visual attention – ident: ref25 doi: 10.1109/TNN.2009.2027319 – ident: ref53 doi: 10.1109/TNNLS.2017.2727526 – year: 2022 ident: ref3 article-title: UCI repository of machine learning databases – ident: ref18 doi: 10.1109/34.955110 – ident: ref33 doi: 10.1186/1471-2105-7-173 – year: 2017 ident: ref42 article-title: Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms – ident: ref54 doi: 10.1109/TIP.2017.2654163 – ident: ref31 doi: 10.1109/TETCI.2022.3201620 – ident: ref48 doi: 10.1016/j.ins.2019.03.061 – ident: ref6 doi: 10.1126/science.7134969 – ident: ref27 doi: 10.1016/S0925-2312(00)00342-8 – ident: ref5 doi: 10.1109/TIP.2006.881945 – ident: ref12 doi: 10.1109/ICPR.1996.547202 – ident: ref16 doi: 10.1145/3136625 – ident: ref14 doi: 10.1109/TPAMI.1986.4767859 – ident: ref38 doi: 10.1016/j.ins.2019.01.010 – year: 2014 ident: ref2 article-title: Neural machine translation by jointly learning to align and translate – ident: ref37 doi: 10.1109/tnnls.2022.3203381 – ident: ref22 doi: 10.1016/j.eswa.2016.03.045 – volume: 1 start-page: 75 issue: 2 year: 2020 ident: ref11 article-title: Multi-granularity cognitive computinga new model for Big Data intelligent computing publication-title: Front. Data Domputing – ident: ref40 doi: 10.1109/TKDE.2018.2873791 – ident: ref24 doi: 10.1109/TCYB.2019.2902603 – ident: ref21 doi: 10.1016/j.jksuci.2022.02.025 – ident: ref50 doi: 10.1109/TNNLS.2021.3054063 – ident: ref49 doi: 10.1007/3-540-39205-x_2 – ident: ref7 doi: 10.5555/1248547.1248548 – ident: ref34 doi: 10.1109/TFUZZ.2020.3029285 – ident: ref51 doi: 10.1109/TSMC.2019.2908518 – year: 2003 ident: ref13 article-title: A practical guide to support vector classification – ident: ref41 doi: 10.1109/TNNLS.2021.3105984 – ident: ref23 doi: 10.1016/j.ipm.2017.02.008 – ident: ref29 doi: 10.1126/science.1242072 – ident: ref35 doi: 10.1109/TETCI.2022.3189408 – ident: ref36 doi: 10.1109/TFUZZ.2020.3009764 – ident: ref19 doi: 10.1137/1109020 – ident: ref30 doi: 10.1016/j.knosys.2014.12.017 – ident: ref47 doi: 10.1142/9789814261302_0022 – ident: ref20 doi: 10.1177/0165551516677911 – ident: ref52 doi: 10.1109/TNNLS.2017.2740224 – ident: ref43 doi: 10.5555/3045118.3045336 – ident: ref15 doi: 10.1109/5.726791 – ident: ref26 doi: 10.1007/BF01001956 – ident: ref39 doi: 10.1109/tpami.2020.3008694 – ident: ref17 doi: 10.1109/TETCI.2022.3171311 – ident: ref46 doi: 10.1016/S0019-9958(65)90241-X – ident: ref28 doi: 10.1109/TETCI.2020.3041019 – ident: ref8 doi: 10.1016/j.patcog.2017.02.011 – ident: ref44 doi: 10.1109/ISBI48211.2021.9434062 – ident: ref45 doi: 10.1016/j.ins.2009.09.021 – ident: ref9 doi: 10.1109/T-C.1975.224297 – ident: ref10 doi: 10.1109/TNNLS.2020.3019893 – ident: ref32 doi: 10.1109/TETCI.2021.3100597 – ident: ref4 doi: 10.1109/TPAMI.2010.231 |
| SSID | ssj0002951354 |
| Score | 2.4515524 |
| Snippet | Granular ball computing (GBC), as an efficient, robust, and scalable learning method, has become a popular research topic of granular computing. GBC includes... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2022 |
| SubjectTerms | Algorithms Anomaly detection Classification Classifiers Computation Computational intelligence Computer architecture Data analysis granular ball computing Granular computing label noise Machine learning Machine learning algorithms Mathematical analysis multi-granularity learning Outliers (statistics) Support vector machines Training |
| Title | GBG++: A Fast and Stable Granular Ball Generation Method for Classification |
| URI | https://ieeexplore.ieee.org/document/10430455 https://www.proquest.com/docview/2995315666 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYoEwsPUUShIA9sVUISPxKztYi2gNqplbpFtuMsRCmi6cKv5-wkFQ-BWKJIsSP7zuf7zr4HQjcGIHzE48zLk8h4VIXMUxk8CAhlLHXOY2qjkWdzPl3SpxVbNcHqLhbGGOOcz4xvX91dfrbWW3tUBhJO7cUe66BOnPA6WGt3oBIBViCMtoExgbhdPCzuH8EEjKhPCBOBCL8oH1dN5ccW7PTK-AjN2xHV7iQv_rZSvn7_lqzx30M-RocNwsTDekmcoD1TnqLnyWgyGNzhIR7LTYVlmWGAmaoweALKyrqi4pEsClxnobbMwjNXWxoDqMWucqb1KXJfumg5hjlPvaaOgqfBvKu83CRaa4uUtIozk-Qy51obIjXjgjJNJaciSwAJqUDLiKsoBzNKSEaVBLhiyBnaL9elOUeYCmJIJkH15YYmQSbAxFUg1ySUwtYf7aGwJXCqmyTjttZFkTpjIxCpY0pqmZI2TOmhwa7Pa51i48_WXUvlTy1rAvdQv2Vk2ojhJgVdC3sMIFZ-8Uu3S3Rg_27vh8Kwj_art625AphRqWu3vD4AfTLMqg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwEEUUCnhgqxLS2E5iNorogz6mVuoW2Y6zEKWIpgu_nrOTVDwEYokixVbsO5_vO_seCN1qgPB-ECZOGvnaobLLHJnAg4BQhkKlQUhNNPJ0FgwX9HnJllWwuo2F0Vpb5zPtmld7l5-s1MYclYGEU3Oxx3bRHqOUsjJca3uk4gNaIIzWoTEev5s_zR9HYAT61CWEcY93v6gfW0_lxyZsNUv_CM3qMZUOJS_uppCuev-WrvHfgz5GhxXGxA_lojhBOzo_ReNBb9Dp3OMH3BfrAos8wQA0ZabxANSVcUbFPZFluMxDbdiFp7a6NAZYi23tTONVZL800aIPcx46VSUFR4GBVzipjpRSBispGSY6SkUaKKWJUCzglCkqAsqTCLCQ9JTwA-mnYEhxwagUAFg0OUONfJXrc4QpJ5okApRfqmnkJRyMXAmSTbqCmwqkLdStCRyrKs24qXaRxdbc8HhsmRIbpsQVU1qos-3zWibZ-LN101D5U8uSwC3UrhkZV4K4jkHbwi4DmDW4-KXbDdofzqeTeDKajS_RgflT6ZnTRo3ibaOvAHQU8toutQ9iNM_2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GBG%2B%2B%3A+A+Fast+and+Stable+Granular+Ball+Generation+Method+for+Classification&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Xie%2C+Qin&rft.au=Zhang%2C+Qinghua&rft.au=Xia%2C+Shuyin&rft.au=Zhao%2C+Fan&rft.date=2024-04-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=8&rft.issue=2&rft.spage=2022&rft.epage=2036&rft_id=info:doi/10.1109%2FTETCI.2024.3359091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2024_3359091 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |