Salt and pepper denoising filters for digital images: A technical review
Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device?s hardware or the camera?s faulty sensor. This leads to misinter...
Saved in:
| Published in | Serbian journal of electrical engineering Vol. 21; no. 3; pp. 429 - 466 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Faculty of Technical Sciences in Cacak
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1451-4869 2217-7183 2217-7183 |
| DOI | 10.2298/SJEE2403429K |
Cover
| Abstract | Noise in images refers to random variations in pixel intensities that alter
the original pixel intensities of the image. Among the various noises
present in the image, salt and pepper noise corrupts images due to a defect
in the device?s hardware or the camera?s faulty sensor. This leads to
misinterpretation of pixels and deterioration of image quality during
visualization of natural images and diagnosis of medical images. Up until
now, researchers have presented several cutting-edge filters to overcome and
lessen the impact of this noise. This article presents a comprehensive
investigation into three different domains of impulse denoising of digital
images. These domains are based on the spatial domain, the fuzzy logic
domain, and the deep learning-based category. In this study, many techniques
of image denoising were categorized and analyzed, along with their
respective motivations, principles of execution, and comparative analysis.
We carefully explain and implement a few significant approaches, considered
state-of-the-art in each subject, in MATLAB. When doing simulations, the
filters are analyzed and quantitatively evaluated using three metrics that
are frequently utilized. These parameters are the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM). Finally, we
provide a comparison of each study category to enhance our comprehension of
each domain. We conclude by outlining the challenges each domain poses and
providing a detailed explanation of the rationale for future research. |
|---|---|
| AbstractList | Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device’s hardware or the camera’s faulty sensor. This leads to misinterpretation of pixels and deterioration of image quality during visualization of natural images and diagnosis of medical images. Up until now, researchers have presented several cutting-edge filters to overcome and lessen the impact of this noise. This article presents a comprehensive investigation into three different domains of impulse denoising of digital images. These domains are based on the spatial domain, the fuzzy logic domain, and the deep learning-based category. In this study, many techniques of image denoising were categorized and analyzed, along with their respective motivations, principles of execution, and comparative analysis. We carefully explain and implement a few significant approaches, considered state-of-the-art in each subject, in MATLAB. When doing simulations, the filters are analyzed and quantitatively evaluated using three metrics that are frequently utilized. These parameters are the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). Finally, we provide a comparison of each study category to enhance our comprehension of each domain. We conclude by outlining the challenges each domain poses and providing a detailed explanation of the rationale for future research. Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device?s hardware or the camera?s faulty sensor. This leads to misinterpretation of pixels and deterioration of image quality during visualization of natural images and diagnosis of medical images. Up until now, researchers have presented several cutting-edge filters to overcome and lessen the impact of this noise. This article presents a comprehensive investigation into three different domains of impulse denoising of digital images. These domains are based on the spatial domain, the fuzzy logic domain, and the deep learning-based category. In this study, many techniques of image denoising were categorized and analyzed, along with their respective motivations, principles of execution, and comparative analysis. We carefully explain and implement a few significant approaches, considered state-of-the-art in each subject, in MATLAB. When doing simulations, the filters are analyzed and quantitatively evaluated using three metrics that are frequently utilized. These parameters are the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). Finally, we provide a comparison of each study category to enhance our comprehension of each domain. We conclude by outlining the challenges each domain poses and providing a detailed explanation of the rationale for future research. |
| Author | Kumar, Abhishek Kar, Asutosh Kumar, Sanjeev |
| Author_xml | – sequence: 1 givenname: Abhishek surname: Kumar fullname: Kumar, Abhishek organization: Department of Electronics and Communication Engineering, Sarala Birla University, Ranchi, Jharkhand, India – sequence: 2 givenname: Sanjeev surname: Kumar fullname: Kumar, Sanjeev organization: Department of Electronics and Communication Engineering, Sarala Birla University, Ranchi, Jharkhand, India – sequence: 3 givenname: Asutosh surname: Kar fullname: Kar, Asutosh organization: Department of Electronics and Communication Engineering, Dr. B R Ambedkar National Institute of Technology Jalandhar, Punjab, India |
| BookMark | eNplkU1OwzAQhS0EEqV0xwF8AALxTxybXVUVWqjEorCOHGcc3IYksgNVb4-hFUJiNiM9vfk08-YCnbZdCwhdkfSGUiVv14_zOeUp41Q9naARpSRPciLZKRoRnpGES6HO0SSETRpL5DTPxAgt1roZsG4r3EPfg8cVtJ0Lrq2xdc0APmDbRdXVbtANdu-6hnCHp3gA89Y6EzUPnw52l-jM6ibA5NjH6PV-_jJbJKvnh-VsukoMJWSblMKYLK0EWJFrnlshS0llSWnGVZalSlooiWI5SEVlZghTHCqZSlvaOEYFG6PlgVt1elP0Pm7k90WnXfEjdL4utB-caaAg0giQLB6fRwoTsrJaU6YBbKpsxSMrObA-2l7vd7ppfoEkLb5TLcIG4JjqNvqvD37juxA82H_2v09gX14SeYg |
| Cites_doi | 10.1117/1.JEI.32.1.013006 10.1109/TCYB.2022.3225525 10.1049/iet-ipr.2013.0146 10.1109/LSP.2002.805310 10.1016/j.aeue.2016.04.018 10.1109/TIP.2005.871129 10.1109/ACCESS.2024.3427143 10.1016/j.patrec.2016.06.026 10.1109/TPAMI.2016.2596743 10.1109/LSP.2010.2048646 10.1049/iet-ipr.2019.0566 10.1002/047084535X 10.1016/j.neucom.2014.12.087 10.1162/neco.1997.9.8.1735 10.1142/S0218488512400211 10.1109/ACCESS.2019.2938799 10.1109/TSP.2013.2267739 10.1109/TFUZZ.2018.2805289 10.1109/TPAMI.2015.2439281 10.1016/0020-0255(75)90036-5 10.1186/s42492-019-0016-7 10.1109/TCE.2006.1649674 10.1109/CJECE.2014.2309071 10.1016/j.jjimei.2020.100004 10.1109/TSMCB.2011.2148173 10.1109/TFUZZ.2008.924358 10.1016/j.sigpro.2021.108378 10.1007/s40747-021-00428-4 10.1109/LSP.2010.2049515 10.1109/CVPR.2018.00333 10.1109/LSP.2009.2038769 10.1109/LSP.2014.2333012 10.1109/MCI.2012.2200624 10.1109/TCE.2008.4711254 10.1016/j.inffus.2023.102151 10.1007/978-3-642-23783-6_41 10.1109/97.503279 10.1109/83.370679 10.1049/iet-ipr.2017.0199 10.1007/s42979-021-00535-6 10.1016/j.jvcir.2016.03.024 10.1016/j.inffus.2019.09.003 10.1016/j.procs.2015.06.069 10.1016/j.patrec.2004.05.025 10.1016/j.compeleceng.2017.05.035 10.1109/82.749102 10.1109/TFUZZ.2020.3030498 10.1016/j.jvcir.2019.05.005 10.1007/s10462-022-10305-2 10.1016/j.aeue.2014.09.018 10.1049/iet-ipr.2018.5776 10.1016/j.asoc.2023.110535 10.1007/s10044-020-00871-y 10.1007/s42979-021-00815-1 10.1016/j.scient.2013.01.001 10.1109/ECS.2014.6892524 10.1007/s11042-022-14248-2 10.1109/LSP.2009.2014293 10.1109/LSP.2006.884018 10.1007/s11042-011-0829-7 10.1016/S0165-1684(02)00502-9 10.1166/jctn.2019.7769 10.1109/31.83870 10.1109/83.902289 10.1007/s00034-024-02804-0 10.1080/17538947.2018.1447032 10.1109/LSP.2011.2122333 10.1109/LSP.2016.2607785 10.1109/LSP.2018.2850222 10.1016/j.jvcir.2015.10.011 10.4018/ijfsa.2012100101 10.1049/el:19970945 10.1109/TIP.2017.2662206 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.2298/SJEE2403429K |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2217-7183 |
| EndPage | 466 |
| ExternalDocumentID | oai_doaj_org_article_18c6e83451794e368dfaa23aeef09fd4 10.2298/sjee2403429k 10_2298_SJEE2403429K |
| GroupedDBID | 53S 5VS AAYXX ABDBF ACUHS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ I-F IPNFZ KQ8 MK~ OK1 P2P RIG TUS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c211k-b6cc50d6ef67a47f68b828b2254955098feb1937e89285c1394ed808fbf50d263 |
| IEDL.DBID | DOA |
| ISSN | 1451-4869 2217-7183 |
| IngestDate | Fri Oct 03 12:41:55 EDT 2025 Mon Sep 15 08:25:12 EDT 2025 Tue Jul 01 01:56:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c211k-b6cc50d6ef67a47f68b828b2254955098feb1937e89285c1394ed808fbf50d263 |
| OpenAccessLink | https://doaj.org/article/18c6e83451794e368dfaa23aeef09fd4 |
| PageCount | 38 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_18c6e83451794e368dfaa23aeef09fd4 unpaywall_primary_10_2298_sjee2403429k crossref_primary_10_2298_SJEE2403429K |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Serbian journal of electrical engineering |
| PublicationYear | 2024 |
| Publisher | Faculty of Technical Sciences in Cacak |
| Publisher_xml | – name: Faculty of Technical Sciences in Cacak |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref78 doi: 10.1117/1.JEI.32.1.013006 – ident: ref79 doi: 10.1109/TCYB.2022.3225525 – ident: ref27 doi: 10.1049/iet-ipr.2013.0146 – ident: ref18 doi: 10.1109/LSP.2002.805310 – ident: ref36 doi: 10.1016/j.aeue.2016.04.018 – ident: ref19 doi: 10.1109/TIP.2005.871129 – ident: ref80 doi: 10.1109/ACCESS.2024.3427143 – ident: ref38 doi: 10.1016/j.patrec.2016.06.026 – ident: ref65 doi: 10.1109/TPAMI.2016.2596743 – ident: ref24 doi: 10.1109/LSP.2010.2048646 – ident: ref41 doi: 10.1049/iet-ipr.2019.0566 – ident: ref68 doi: 10.1002/047084535X – ident: ref34 doi: 10.1016/j.neucom.2014.12.087 – ident: ref70 doi: 10.1162/neco.1997.9.8.1735 – ident: ref8 doi: 10.1142/S0218488512400211 – ident: ref59 doi: 10.1109/ACCESS.2019.2938799 – ident: ref28 doi: 10.1109/TSP.2013.2267739 – ident: ref76 – ident: ref50 doi: 10.1109/TFUZZ.2018.2805289 – ident: ref55 doi: 10.1109/TPAMI.2015.2439281 – ident: ref45 doi: 10.1016/0020-0255(75)90036-5 – ident: ref5 doi: 10.1186/s42492-019-0016-7 – ident: ref3 doi: 10.1109/TCE.2006.1649674 – ident: ref31 doi: 10.1109/CJECE.2014.2309071 – ident: ref73 doi: 10.1016/j.jjimei.2020.100004 – ident: ref48 doi: 10.1109/TSMCB.2011.2148173 – ident: ref47 doi: 10.1109/TFUZZ.2008.924358 – ident: ref63 doi: 10.1016/j.sigpro.2021.108378 – ident: ref9 doi: 10.1007/s40747-021-00428-4 – ident: ref23 doi: 10.1109/LSP.2010.2049515 – ident: ref72 doi: 10.1109/CVPR.2018.00333 – ident: ref43 doi: 10.1109/LSP.2009.2038769 – ident: ref30 doi: 10.1109/LSP.2014.2333012 – ident: ref49 doi: 10.1109/MCI.2012.2200624 – ident: ref75 – ident: ref21 doi: 10.1109/TCE.2008.4711254 – ident: ref2 doi: 10.1016/j.inffus.2023.102151 – ident: ref77 doi: 10.1007/978-3-642-23783-6_41 – ident: ref42 doi: 10.1109/97.503279 – ident: ref15 doi: 10.1109/83.370679 – ident: ref40 doi: 10.1049/iet-ipr.2017.0199 – ident: ref54 – ident: ref67 doi: 10.1007/s42979-021-00535-6 – ident: ref71 – ident: ref37 doi: 10.1016/j.jvcir.2016.03.024 – ident: ref4 doi: 10.1016/j.inffus.2019.09.003 – ident: ref33 doi: 10.1016/j.procs.2015.06.069 – ident: ref6 doi: 10.1016/j.patrec.2004.05.025 – ident: ref39 doi: 10.1016/j.compeleceng.2017.05.035 – ident: ref16 doi: 10.1109/82.749102 – ident: ref53 doi: 10.1109/TFUZZ.2020.3030498 – ident: ref61 doi: 10.1016/j.jvcir.2019.05.005 – ident: ref1 doi: 10.1007/s10462-022-10305-2 – ident: ref74 – ident: ref32 doi: 10.1016/j.aeue.2014.09.018 – ident: ref60 doi: 10.1049/iet-ipr.2018.5776 – ident: ref64 doi: 10.1016/j.asoc.2023.110535 – ident: ref62 doi: 10.1007/s10044-020-00871-y – ident: ref69 doi: 10.1007/s42979-021-00815-1 – ident: ref26 doi: 10.1016/j.scient.2013.01.001 – ident: ref29 doi: 10.1109/ECS.2014.6892524 – ident: ref51 doi: 10.1007/s11042-022-14248-2 – ident: ref22 doi: 10.1109/LSP.2009.2014293 – ident: ref20 doi: 10.1109/LSP.2006.884018 – ident: ref7 doi: 10.1007/s11042-011-0829-7 – ident: ref13 doi: 10.1016/S0165-1684(02)00502-9 – ident: ref11 doi: 10.1166/jctn.2019.7769 – ident: ref12 doi: 10.1109/31.83870 – ident: ref17 doi: 10.1109/83.902289 – ident: ref52 doi: 10.1007/s00034-024-02804-0 – ident: ref66 doi: 10.1080/17538947.2018.1447032 – ident: ref25 doi: 10.1109/LSP.2011.2122333 – ident: ref44 doi: 10.1109/LSP.2016.2607785 – ident: ref56 doi: 10.1109/LSP.2018.2850222 – ident: ref57 doi: 10.1016/j.jvcir.2015.10.011 – ident: ref46 doi: 10.4018/ijfsa.2012100101 – ident: ref14 doi: 10.1049/el:19970945 – ident: ref10 – ident: ref35 – ident: ref58 doi: 10.1109/TIP.2017.2662206 |
| SSID | ssj0000672756 |
| Score | 2.2521684 |
| Snippet | Noise in images refers to random variations in pixel intensities that alter
the original pixel intensities of the image. Among the various noises
present in... Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 429 |
| SubjectTerms | convolution neural networks fuzzy logic non-linear filter peak signal-to-noise ratio salt and pepper noise structural similarity index measure |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBb0T5kofCFkhjxzhsBRVVRSCkUgmmyI5tVFpCRFsh-PWckxQVOsAa2Yp1Z5_fs33vAGrccim0H3lSSekxnbhkZWY9GllVlzRUKi82cXPLW13Wfggf5qA2yYWZur8PgkicDp-NcZJxGDb787DAQ0TcFVjo3t41HvPEoRApkMgr1wWIrj0MtbR43z7T_cfOkwv0L8PiOM3kx7scDKZ2latVaE7GUzwm6Z-MR-ok-fwl1fjXgNdgpYSVpFHMg3WYM-kGLE-JDW5CqyMHIyJTTTKTZeaNYMR57bmjAmJ77s58SBDAEt17cnVESO8FI83wnDRIIfOKviRFnssWdK-a95ctr6yj4CVI7_qe4kkS-poby88kO7NcKORZKnDcEAlKJCwGbIQpRkSBCBPEhMxo4QurLHYLON2GSvqamh0gVHLlMyktRx4SqroKsauifoKoijHNq3A0sXGcFXIZMdIMZ5m40242S8tcV-HCOeC7jRO5zj-gKeNyzcR1kXAjKHMqYsxQLrSVMqDSGOtHVrMqHH-7b-Zv037Y_W_DPVgKELQURyz7UBm9jc0Bgo6ROizn3BfiQtGo priority: 102 providerName: Unpaywall |
| Title | Salt and pepper denoising filters for digital images: A technical review |
| URI | https://doi.org/10.2298/sjee2403429k https://doaj.org/article/18c6e83451794e368dfaa23aeef09fd4 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2217-7183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000672756 issn: 2217-7183 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2217-7183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000672756 issn: 2217-7183 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2217-7183 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000672756 issn: 2217-7183 databaseCode: ABDBF dateStart: 20101101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yD7qD-BPnj5GDeivr2jRLvXW6MSYOYQ7mqSRNInOzK_uB-N_70tRR8eDFY0tDyvfCy_e1ed9D6Ipqypl0Q4cLzh0iE1OsTLTjh1o0uR8IkTebeBzQ3oj0x8G41OrLnAmz9sAWuEaTJVQxnxgrKaJ8yqTm3PO5UtoNtcydQF0WlsRUkYONr3leWhSASGI0tKfePS9kjWG_0zE-dJCLH37sR7ltfxXtrNOMf37w2ay013T30V5BEnFkX-4Aban0EFVL1oFHqDfksxXmqcSZyjK1wJA_5hMj_LGemD_gSwx0FMvJq-kKgifvkDeWtzjC1rQVIoNt1coxGnU7z3c9p-iK4CQg1qaOoEkSuJIqTVuctDRlAlST8IzSA7kRMg3pF0iHYqHHggQYHlGSuUwLDcM86p-gSjpP1SnCPqfCJZxrCqoiEE0RwFDhuwlwJEIkraHrb2zizJpfxCAaDIZxGcMaahvgNs8Yy-r8BgQyLgIZ_xXIGrrZwP5rtuWbUsVs07P_mO0c7XpAT-zHlAtUWS3W6hLoxUrU0XbUvm936_mKgqvR4Cl6-QIQ6c4e |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBb0T5kofCFkhjxzhsBRVVRSCkUgmmyI5tVFpCRFsh-PWckxQVOsAa2Yp1Z5_fs33vAGrccim0H3lSSekxnbhkZWY9GllVlzRUKi82cXPLW13Wfggf5qA2yYWZur8PgkicDp-NcZJxGDb787DAQ0TcFVjo3t41HvPEoRApkMgr1wWIrj0MtbR43z7T_cfOkwv0L8PiOM3kx7scDKZ2latVaE7GUzwm6Z-MR-ok-fwl1fjXgNdgpYSVpFHMg3WYM-kGLE-JDW5CqyMHIyJTTTKTZeaNYMR57bmjAmJ77s58SBDAEt17cnVESO8FI83wnDRIIfOKviRFnssWdK-a95ctr6yj4CVI7_qe4kkS-poby88kO7NcKORZKnDcEAlKJCwGbIQpRkSBCBPEhMxo4QurLHYLON2GSvqamh0gVHLlMyktRx4SqroKsauifoKoijHNq3A0sXGcFXIZMdIMZ5m40242S8tcV-HCOeC7jRO5zj-gKeNyzcR1kXAjKHMqYsxQLrSVMqDSGOtHVrMqHH-7b-Zv037Y_W_DPVgKELQURyz7UBm9jc0Bgo6ROizn3BfiQtGo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salt+and+pepper+denoising+filters+for+digital+images%3A+A+technical+review&rft.jtitle=Serbian+journal+of+electrical+engineering&rft.au=Kumar+Abhishek&rft.au=Kumar+Sanjeev&rft.au=Kar+Asutosh&rft.date=2024-01-01&rft.pub=Faculty+of+Technical+Sciences+in+Cacak&rft.issn=1451-4869&rft.eissn=2217-7183&rft.volume=21&rft.issue=3&rft.spage=429&rft.epage=466&rft_id=info:doi/10.2298%2FSJEE2403429K&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_18c6e83451794e368dfaa23aeef09fd4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4869&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4869&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4869&client=summon |