Salt and pepper denoising filters for digital images: A technical review

Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device?s hardware or the camera?s faulty sensor. This leads to misinter...

Full description

Saved in:
Bibliographic Details
Published inSerbian journal of electrical engineering Vol. 21; no. 3; pp. 429 - 466
Main Authors Kumar, Abhishek, Kumar, Sanjeev, Kar, Asutosh
Format Journal Article
LanguageEnglish
Published Faculty of Technical Sciences in Cacak 01.01.2024
Subjects
Online AccessGet full text
ISSN1451-4869
2217-7183
2217-7183
DOI10.2298/SJEE2403429K

Cover

Abstract Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device?s hardware or the camera?s faulty sensor. This leads to misinterpretation of pixels and deterioration of image quality during visualization of natural images and diagnosis of medical images. Up until now, researchers have presented several cutting-edge filters to overcome and lessen the impact of this noise. This article presents a comprehensive investigation into three different domains of impulse denoising of digital images. These domains are based on the spatial domain, the fuzzy logic domain, and the deep learning-based category. In this study, many techniques of image denoising were categorized and analyzed, along with their respective motivations, principles of execution, and comparative analysis. We carefully explain and implement a few significant approaches, considered state-of-the-art in each subject, in MATLAB. When doing simulations, the filters are analyzed and quantitatively evaluated using three metrics that are frequently utilized. These parameters are the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). Finally, we provide a comparison of each study category to enhance our comprehension of each domain. We conclude by outlining the challenges each domain poses and providing a detailed explanation of the rationale for future research.
AbstractList Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device’s hardware or the camera’s faulty sensor. This leads to misinterpretation of pixels and deterioration of image quality during visualization of natural images and diagnosis of medical images. Up until now, researchers have presented several cutting-edge filters to overcome and lessen the impact of this noise. This article presents a comprehensive investigation into three different domains of impulse denoising of digital images. These domains are based on the spatial domain, the fuzzy logic domain, and the deep learning-based category. In this study, many techniques of image denoising were categorized and analyzed, along with their respective motivations, principles of execution, and comparative analysis. We carefully explain and implement a few significant approaches, considered state-of-the-art in each subject, in MATLAB. When doing simulations, the filters are analyzed and quantitatively evaluated using three metrics that are frequently utilized. These parameters are the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). Finally, we provide a comparison of each study category to enhance our comprehension of each domain. We conclude by outlining the challenges each domain poses and providing a detailed explanation of the rationale for future research.
Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in the image, salt and pepper noise corrupts images due to a defect in the device?s hardware or the camera?s faulty sensor. This leads to misinterpretation of pixels and deterioration of image quality during visualization of natural images and diagnosis of medical images. Up until now, researchers have presented several cutting-edge filters to overcome and lessen the impact of this noise. This article presents a comprehensive investigation into three different domains of impulse denoising of digital images. These domains are based on the spatial domain, the fuzzy logic domain, and the deep learning-based category. In this study, many techniques of image denoising were categorized and analyzed, along with their respective motivations, principles of execution, and comparative analysis. We carefully explain and implement a few significant approaches, considered state-of-the-art in each subject, in MATLAB. When doing simulations, the filters are analyzed and quantitatively evaluated using three metrics that are frequently utilized. These parameters are the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). Finally, we provide a comparison of each study category to enhance our comprehension of each domain. We conclude by outlining the challenges each domain poses and providing a detailed explanation of the rationale for future research.
Author Kumar, Abhishek
Kar, Asutosh
Kumar, Sanjeev
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Kumar
  fullname: Kumar, Abhishek
  organization: Department of Electronics and Communication Engineering, Sarala Birla University, Ranchi, Jharkhand, India
– sequence: 2
  givenname: Sanjeev
  surname: Kumar
  fullname: Kumar, Sanjeev
  organization: Department of Electronics and Communication Engineering, Sarala Birla University, Ranchi, Jharkhand, India
– sequence: 3
  givenname: Asutosh
  surname: Kar
  fullname: Kar, Asutosh
  organization: Department of Electronics and Communication Engineering, Dr. B R Ambedkar National Institute of Technology Jalandhar, Punjab, India
BookMark eNplkU1OwzAQhS0EEqV0xwF8AALxTxybXVUVWqjEorCOHGcc3IYksgNVb4-hFUJiNiM9vfk08-YCnbZdCwhdkfSGUiVv14_zOeUp41Q9naARpSRPciLZKRoRnpGES6HO0SSETRpL5DTPxAgt1roZsG4r3EPfg8cVtJ0Lrq2xdc0APmDbRdXVbtANdu-6hnCHp3gA89Y6EzUPnw52l-jM6ibA5NjH6PV-_jJbJKvnh-VsukoMJWSblMKYLK0EWJFrnlshS0llSWnGVZalSlooiWI5SEVlZghTHCqZSlvaOEYFG6PlgVt1elP0Pm7k90WnXfEjdL4utB-caaAg0giQLB6fRwoTsrJaU6YBbKpsxSMrObA-2l7vd7ppfoEkLb5TLcIG4JjqNvqvD37juxA82H_2v09gX14SeYg
Cites_doi 10.1117/1.JEI.32.1.013006
10.1109/TCYB.2022.3225525
10.1049/iet-ipr.2013.0146
10.1109/LSP.2002.805310
10.1016/j.aeue.2016.04.018
10.1109/TIP.2005.871129
10.1109/ACCESS.2024.3427143
10.1016/j.patrec.2016.06.026
10.1109/TPAMI.2016.2596743
10.1109/LSP.2010.2048646
10.1049/iet-ipr.2019.0566
10.1002/047084535X
10.1016/j.neucom.2014.12.087
10.1162/neco.1997.9.8.1735
10.1142/S0218488512400211
10.1109/ACCESS.2019.2938799
10.1109/TSP.2013.2267739
10.1109/TFUZZ.2018.2805289
10.1109/TPAMI.2015.2439281
10.1016/0020-0255(75)90036-5
10.1186/s42492-019-0016-7
10.1109/TCE.2006.1649674
10.1109/CJECE.2014.2309071
10.1016/j.jjimei.2020.100004
10.1109/TSMCB.2011.2148173
10.1109/TFUZZ.2008.924358
10.1016/j.sigpro.2021.108378
10.1007/s40747-021-00428-4
10.1109/LSP.2010.2049515
10.1109/CVPR.2018.00333
10.1109/LSP.2009.2038769
10.1109/LSP.2014.2333012
10.1109/MCI.2012.2200624
10.1109/TCE.2008.4711254
10.1016/j.inffus.2023.102151
10.1007/978-3-642-23783-6_41
10.1109/97.503279
10.1109/83.370679
10.1049/iet-ipr.2017.0199
10.1007/s42979-021-00535-6
10.1016/j.jvcir.2016.03.024
10.1016/j.inffus.2019.09.003
10.1016/j.procs.2015.06.069
10.1016/j.patrec.2004.05.025
10.1016/j.compeleceng.2017.05.035
10.1109/82.749102
10.1109/TFUZZ.2020.3030498
10.1016/j.jvcir.2019.05.005
10.1007/s10462-022-10305-2
10.1016/j.aeue.2014.09.018
10.1049/iet-ipr.2018.5776
10.1016/j.asoc.2023.110535
10.1007/s10044-020-00871-y
10.1007/s42979-021-00815-1
10.1016/j.scient.2013.01.001
10.1109/ECS.2014.6892524
10.1007/s11042-022-14248-2
10.1109/LSP.2009.2014293
10.1109/LSP.2006.884018
10.1007/s11042-011-0829-7
10.1016/S0165-1684(02)00502-9
10.1166/jctn.2019.7769
10.1109/31.83870
10.1109/83.902289
10.1007/s00034-024-02804-0
10.1080/17538947.2018.1447032
10.1109/LSP.2011.2122333
10.1109/LSP.2016.2607785
10.1109/LSP.2018.2850222
10.1016/j.jvcir.2015.10.011
10.4018/ijfsa.2012100101
10.1049/el:19970945
10.1109/TIP.2017.2662206
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.2298/SJEE2403429K
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2217-7183
EndPage 466
ExternalDocumentID oai_doaj_org_article_18c6e83451794e368dfaa23aeef09fd4
10.2298/sjee2403429k
10_2298_SJEE2403429K
GroupedDBID 53S
5VS
AAYXX
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
I-F
IPNFZ
KQ8
MK~
OK1
P2P
RIG
TUS
ADTOC
UNPAY
ID FETCH-LOGICAL-c211k-b6cc50d6ef67a47f68b828b2254955098feb1937e89285c1394ed808fbf50d263
IEDL.DBID DOA
ISSN 1451-4869
2217-7183
IngestDate Fri Oct 03 12:41:55 EDT 2025
Mon Sep 15 08:25:12 EDT 2025
Tue Jul 01 01:56:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c211k-b6cc50d6ef67a47f68b828b2254955098feb1937e89285c1394ed808fbf50d263
OpenAccessLink https://doaj.org/article/18c6e83451794e368dfaa23aeef09fd4
PageCount 38
ParticipantIDs doaj_primary_oai_doaj_org_article_18c6e83451794e368dfaa23aeef09fd4
unpaywall_primary_10_2298_sjee2403429k
crossref_primary_10_2298_SJEE2403429K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Serbian journal of electrical engineering
PublicationYear 2024
Publisher Faculty of Technical Sciences in Cacak
Publisher_xml – name: Faculty of Technical Sciences in Cacak
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref78
  doi: 10.1117/1.JEI.32.1.013006
– ident: ref79
  doi: 10.1109/TCYB.2022.3225525
– ident: ref27
  doi: 10.1049/iet-ipr.2013.0146
– ident: ref18
  doi: 10.1109/LSP.2002.805310
– ident: ref36
  doi: 10.1016/j.aeue.2016.04.018
– ident: ref19
  doi: 10.1109/TIP.2005.871129
– ident: ref80
  doi: 10.1109/ACCESS.2024.3427143
– ident: ref38
  doi: 10.1016/j.patrec.2016.06.026
– ident: ref65
  doi: 10.1109/TPAMI.2016.2596743
– ident: ref24
  doi: 10.1109/LSP.2010.2048646
– ident: ref41
  doi: 10.1049/iet-ipr.2019.0566
– ident: ref68
  doi: 10.1002/047084535X
– ident: ref34
  doi: 10.1016/j.neucom.2014.12.087
– ident: ref70
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref8
  doi: 10.1142/S0218488512400211
– ident: ref59
  doi: 10.1109/ACCESS.2019.2938799
– ident: ref28
  doi: 10.1109/TSP.2013.2267739
– ident: ref76
– ident: ref50
  doi: 10.1109/TFUZZ.2018.2805289
– ident: ref55
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref45
  doi: 10.1016/0020-0255(75)90036-5
– ident: ref5
  doi: 10.1186/s42492-019-0016-7
– ident: ref3
  doi: 10.1109/TCE.2006.1649674
– ident: ref31
  doi: 10.1109/CJECE.2014.2309071
– ident: ref73
  doi: 10.1016/j.jjimei.2020.100004
– ident: ref48
  doi: 10.1109/TSMCB.2011.2148173
– ident: ref47
  doi: 10.1109/TFUZZ.2008.924358
– ident: ref63
  doi: 10.1016/j.sigpro.2021.108378
– ident: ref9
  doi: 10.1007/s40747-021-00428-4
– ident: ref23
  doi: 10.1109/LSP.2010.2049515
– ident: ref72
  doi: 10.1109/CVPR.2018.00333
– ident: ref43
  doi: 10.1109/LSP.2009.2038769
– ident: ref30
  doi: 10.1109/LSP.2014.2333012
– ident: ref49
  doi: 10.1109/MCI.2012.2200624
– ident: ref75
– ident: ref21
  doi: 10.1109/TCE.2008.4711254
– ident: ref2
  doi: 10.1016/j.inffus.2023.102151
– ident: ref77
  doi: 10.1007/978-3-642-23783-6_41
– ident: ref42
  doi: 10.1109/97.503279
– ident: ref15
  doi: 10.1109/83.370679
– ident: ref40
  doi: 10.1049/iet-ipr.2017.0199
– ident: ref54
– ident: ref67
  doi: 10.1007/s42979-021-00535-6
– ident: ref71
– ident: ref37
  doi: 10.1016/j.jvcir.2016.03.024
– ident: ref4
  doi: 10.1016/j.inffus.2019.09.003
– ident: ref33
  doi: 10.1016/j.procs.2015.06.069
– ident: ref6
  doi: 10.1016/j.patrec.2004.05.025
– ident: ref39
  doi: 10.1016/j.compeleceng.2017.05.035
– ident: ref16
  doi: 10.1109/82.749102
– ident: ref53
  doi: 10.1109/TFUZZ.2020.3030498
– ident: ref61
  doi: 10.1016/j.jvcir.2019.05.005
– ident: ref1
  doi: 10.1007/s10462-022-10305-2
– ident: ref74
– ident: ref32
  doi: 10.1016/j.aeue.2014.09.018
– ident: ref60
  doi: 10.1049/iet-ipr.2018.5776
– ident: ref64
  doi: 10.1016/j.asoc.2023.110535
– ident: ref62
  doi: 10.1007/s10044-020-00871-y
– ident: ref69
  doi: 10.1007/s42979-021-00815-1
– ident: ref26
  doi: 10.1016/j.scient.2013.01.001
– ident: ref29
  doi: 10.1109/ECS.2014.6892524
– ident: ref51
  doi: 10.1007/s11042-022-14248-2
– ident: ref22
  doi: 10.1109/LSP.2009.2014293
– ident: ref20
  doi: 10.1109/LSP.2006.884018
– ident: ref7
  doi: 10.1007/s11042-011-0829-7
– ident: ref13
  doi: 10.1016/S0165-1684(02)00502-9
– ident: ref11
  doi: 10.1166/jctn.2019.7769
– ident: ref12
  doi: 10.1109/31.83870
– ident: ref17
  doi: 10.1109/83.902289
– ident: ref52
  doi: 10.1007/s00034-024-02804-0
– ident: ref66
  doi: 10.1080/17538947.2018.1447032
– ident: ref25
  doi: 10.1109/LSP.2011.2122333
– ident: ref44
  doi: 10.1109/LSP.2016.2607785
– ident: ref56
  doi: 10.1109/LSP.2018.2850222
– ident: ref57
  doi: 10.1016/j.jvcir.2015.10.011
– ident: ref46
  doi: 10.4018/ijfsa.2012100101
– ident: ref14
  doi: 10.1049/el:19970945
– ident: ref10
– ident: ref35
– ident: ref58
  doi: 10.1109/TIP.2017.2662206
SSID ssj0000672756
Score 2.2521684
Snippet Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in...
Noise in images refers to random variations in pixel intensities that alter the original pixel intensities of the image. Among the various noises present in...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 429
SubjectTerms convolution neural networks
fuzzy logic
non-linear filter
peak signal-to-noise ratio
salt and pepper noise
structural similarity index measure
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBb0T5kofCFkhjxzhsBRVVRSCkUgmmyI5tVFpCRFsh-PWckxQVOsAa2Yp1Z5_fs33vAGrccim0H3lSSekxnbhkZWY9GllVlzRUKi82cXPLW13Wfggf5qA2yYWZur8PgkicDp-NcZJxGDb787DAQ0TcFVjo3t41HvPEoRApkMgr1wWIrj0MtbR43z7T_cfOkwv0L8PiOM3kx7scDKZ2latVaE7GUzwm6Z-MR-ok-fwl1fjXgNdgpYSVpFHMg3WYM-kGLE-JDW5CqyMHIyJTTTKTZeaNYMR57bmjAmJ77s58SBDAEt17cnVESO8FI83wnDRIIfOKviRFnssWdK-a95ctr6yj4CVI7_qe4kkS-poby88kO7NcKORZKnDcEAlKJCwGbIQpRkSBCBPEhMxo4QurLHYLON2GSvqamh0gVHLlMyktRx4SqroKsauifoKoijHNq3A0sXGcFXIZMdIMZ5m40242S8tcV-HCOeC7jRO5zj-gKeNyzcR1kXAjKHMqYsxQLrSVMqDSGOtHVrMqHH-7b-Zv037Y_W_DPVgKELQURyz7UBm9jc0Bgo6ROizn3BfiQtGo
  priority: 102
  providerName: Unpaywall
Title Salt and pepper denoising filters for digital images: A technical review
URI https://doi.org/10.2298/sjee2403429k
https://doaj.org/article/18c6e83451794e368dfaa23aeef09fd4
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2217-7183
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000672756
  issn: 2217-7183
  databaseCode: ABDBF
  dateStart: 20101101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yD7qD-BPnj5GDeivr2jRLvXW6MSYOYQ7mqSRNInOzK_uB-N_70tRR8eDFY0tDyvfCy_e1ed9D6Ipqypl0Q4cLzh0iE1OsTLTjh1o0uR8IkTebeBzQ3oj0x8G41OrLnAmz9sAWuEaTJVQxnxgrKaJ8yqTm3PO5UtoNtcydQF0WlsRUkYONr3leWhSASGI0tKfePS9kjWG_0zE-dJCLH37sR7ltfxXtrNOMf37w2ay013T30V5BEnFkX-4Aban0EFVL1oFHqDfksxXmqcSZyjK1wJA_5hMj_LGemD_gSwx0FMvJq-kKgifvkDeWtzjC1rQVIoNt1coxGnU7z3c9p-iK4CQg1qaOoEkSuJIqTVuctDRlAlST8IzSA7kRMg3pF0iHYqHHggQYHlGSuUwLDcM86p-gSjpP1SnCPqfCJZxrCqoiEE0RwFDhuwlwJEIkraHrb2zizJpfxCAaDIZxGcMaahvgNs8Yy-r8BgQyLgIZ_xXIGrrZwP5rtuWbUsVs07P_mO0c7XpAT-zHlAtUWS3W6hLoxUrU0XbUvm936_mKgqvR4Cl6-QIQ6c4e
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBb0T5kofCFkhjxzhsBRVVRSCkUgmmyI5tVFpCRFsh-PWckxQVOsAa2Yp1Z5_fs33vAGrccim0H3lSSekxnbhkZWY9GllVlzRUKi82cXPLW13Wfggf5qA2yYWZur8PgkicDp-NcZJxGDb787DAQ0TcFVjo3t41HvPEoRApkMgr1wWIrj0MtbR43z7T_cfOkwv0L8PiOM3kx7scDKZ2latVaE7GUzwm6Z-MR-ok-fwl1fjXgNdgpYSVpFHMg3WYM-kGLE-JDW5CqyMHIyJTTTKTZeaNYMR57bmjAmJ77s58SBDAEt17cnVESO8FI83wnDRIIfOKviRFnssWdK-a95ctr6yj4CVI7_qe4kkS-poby88kO7NcKORZKnDcEAlKJCwGbIQpRkSBCBPEhMxo4QurLHYLON2GSvqamh0gVHLlMyktRx4SqroKsauifoKoijHNq3A0sXGcFXIZMdIMZ5m40242S8tcV-HCOeC7jRO5zj-gKeNyzcR1kXAjKHMqYsxQLrSVMqDSGOtHVrMqHH-7b-Zv037Y_W_DPVgKELQURyz7UBm9jc0Bgo6ROizn3BfiQtGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salt+and+pepper+denoising+filters+for+digital+images%3A+A+technical+review&rft.jtitle=Serbian+journal+of+electrical+engineering&rft.au=Kumar+Abhishek&rft.au=Kumar+Sanjeev&rft.au=Kar+Asutosh&rft.date=2024-01-01&rft.pub=Faculty+of+Technical+Sciences+in+Cacak&rft.issn=1451-4869&rft.eissn=2217-7183&rft.volume=21&rft.issue=3&rft.spage=429&rft.epage=466&rft_id=info:doi/10.2298%2FSJEE2403429K&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_18c6e83451794e368dfaa23aeef09fd4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4869&client=summon