Rationale for Translational Research on Targeted Alpha Therapy in Japan —Renaissance of Radiopharmaceuticals Utilizing Astatine-211 and Actinium-225

We wish to herewith report safety evaluations, microdosimetry, and clinical requirements for first-in-human (FIH) study for handling of targeted alpha therapy (TAT) drug products labelled by 211At and 225Ac. 1) The safety evaluation method is proposed including delayed toxicity using the histopathol...

Full description

Saved in:
Bibliographic Details
Published inRADIOISOTOPES Vol. 69; no. 10; pp. 329 - 340
Main Authors Yonekura, Yoshiharu, Fukase, Koichi, Hirabayashi, Yoko, Tatsumi, Mitsuaki, Hachisuka, Akiko, Yano, Tsuneo, Watabe, Tadashi, Fujii, Hirofumi, Kadonaga, Yuichiro, Sato, Tatsuhiko, Hasegawa, Koki, Kabayama, Kazuya
Format Journal Article
LanguageEnglish
Published Japan Radioisotope Association 15.10.2020
Subjects
Online AccessGet full text
ISSN0033-8303
1884-4111
DOI10.3769/radioisotopes.69.329

Cover

Abstract We wish to herewith report safety evaluations, microdosimetry, and clinical requirements for first-in-human (FIH) study for handling of targeted alpha therapy (TAT) drug products labelled by 211At and 225Ac. 1) The safety evaluation method is proposed including delayed toxicity using the histopathological examination. The biodistribution study using PET or SPECT corresponding to alpha nuclides is also proposed. 2) Two scales of microdosimetry are proposed for the TAT design; one is the organ-microstructure scales and the other is the cellular and subcellular scales. Recently, the stochastic microdosimetric kinetic model was developed by the cellular-scale particle transport simulation using PHITS. 3) The dose of TAT drug for FIH study can be considered in the amount of radioactivity and mass, and radioactivity would often be a more important determining factor than mass. 4) In Japan, Medical Device system for regulatory approval of the synthesizer itself has been adopted as well as Medical Drug system for delivery of radiopharmaceuticals. We propose to start an automatic synthesis device at an early stage and to establish manufacturing process, quality control and GMP evaluations. The need for radiation shielding based on the calculation by effective dose rate coefficients for alpha particles is also introduced. The argument is concluded that the operation in hot cell used at many PET centers is sufficient.
AbstractList We wish to herewith report safety evaluations, microdosimetry, and clinical requirements for first-in-human (FIH) study for handling of targeted alpha therapy (TAT) drug products labelled by 211At and 225Ac. 1) The safety evaluation method is proposed including delayed toxicity using the histopathological examination. The biodistribution study using PET or SPECT corresponding to alpha nuclides is also proposed. 2) Two scales of microdosimetry are proposed for the TAT design; one is the organ-microstructure scales and the other is the cellular and subcellular scales. Recently, the stochastic microdosimetric kinetic model was developed by the cellular-scale particle transport simulation using PHITS. 3) The dose of TAT drug for FIH study can be considered in the amount of radioactivity and mass, and radioactivity would often be a more important determining factor than mass. 4) In Japan, Medical Device system for regulatory approval of the synthesizer itself has been adopted as well as Medical Drug system for delivery of radiopharmaceuticals. We propose to start an automatic synthesis device at an early stage and to establish manufacturing process, quality control and GMP evaluations. The need for radiation shielding based on the calculation by effective dose rate coefficients for alpha particles is also introduced. The argument is concluded that the operation in hot cell used at many PET centers is sufficient.
Author Watabe, Tadashi
Fujii, Hirofumi
Sato, Tatsuhiko
Yonekura, Yoshiharu
Hasegawa, Koki
Kabayama, Kazuya
Fukase, Koichi
Tatsumi, Mitsuaki
Yano, Tsuneo
Kadonaga, Yuichiro
Hirabayashi, Yoko
Hachisuka, Akiko
Author_xml – sequence: 1
  fullname: Yonekura, Yoshiharu
  organization: Institute for Radiation Sciences, Osaka University
– sequence: 1
  fullname: Fukase, Koichi
  organization: Department of Chemistry, Graduate School of Science, Osaka University
– sequence: 1
  fullname: Hirabayashi, Yoko
  organization: Center for Biological Safety & Research, National Institute of Health Sciences
– sequence: 1
  fullname: Tatsumi, Mitsuaki
  organization: Department of Radiology, Osaka University Hospital
– sequence: 1
  fullname: Hachisuka, Akiko
  organization: Division of Biochemistry, National Institute of Health Sciences
– sequence: 1
  fullname: Yano, Tsuneo
  organization: QiSS-Targeted Alpha Therapy Research, Research Center for Nuclear Physics, Osaka University
– sequence: 1
  fullname: Watabe, Tadashi
  organization: Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University
– sequence: 1
  fullname: Fujii, Hirofumi
  organization: Division of Functional Imaging, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center
– sequence: 1
  fullname: Kadonaga, Yuichiro
  organization: Institute for Radiation Sciences, Osaka University
– sequence: 1
  fullname: Sato, Tatsuhiko
  organization: Nuclear Science and Engineering Center, Japan Atomic Energy Agency
– sequence: 1
  fullname: Hasegawa, Koki
  organization: Center for Instrumental Analysis, Kyoto Pharmaceutical University
– sequence: 1
  fullname: Kabayama, Kazuya
  organization: Department of Chemistry, Graduate School of Science, Osaka University
BookMark eNplUUtOAzEMjVCRaIEbsMgFpuQznZksK8QfCakq65HrOm3QNBklwwJWHAJxQE5CEAgJsbFl671n-3nCRj54YuxEiqmuK3MaYe2CS2EIPaVpZaZamT02lk1TFqWUcsTGQmhdNFroAzZJ6VEIVc1EPWbvCxhc8NARtyHyZQSfup8WX1AiiLjlwfMlxA0NtObzrt8CX24pQv_Mnec30IPnH69vC_LgUgKPxIPli6-tMjbuAOlpcAhd4g-D69yL8xs-T0Oe46lQUnLwWRhz6Z52hVKzI7ZvM5yOf_Ihe7g4X55dFXf3l9dn87sClRSmMNLWoGVljBZmhZUwSKgqnGkSDa5rrAVZhTCzRilYaWVNQw2WK4ISldX6kJXfuhhDSpFs20e3g_jcStF-edv-8bbNjextpt1-0x7zERv6JUHMZ3b0n5TVcqyMzH_4RWH2piWvPwHW6JK1
Cites_doi 10.2967/jnumed.116.178673
10.1007/s12149-018-1317-1
10.1088/0031-9155/57/10/3207
10.1093/rpd/ncw103
10.1088/0031-9155/57/13/4403
10.1074/jbc.273.37.23629
10.2174/1874471011666180416161908
10.1186/s41181-017-0025-9
10.1158/1078-0432.CCR-18-1650
10.2967/jnumed.118.222638
10.1080/00223131.2017.1419890
10.1021/bc060345s
10.1038/s41598-017-18871-0
10.1056/NEJMoa1213755
ContentType Journal Article
Copyright 2020 Japan Radioisotope Association
Copyright_xml – notice: 2020 Japan Radioisotope Association
DBID AAYXX
CITATION
DOI 10.3769/radioisotopes.69.329
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1884-4111
EndPage 340
ExternalDocumentID 10_3769_radioisotopes_69_329
article_radioisotopes_69_10_69_691003_article_char_en
GroupedDBID .55
123
ABWPA
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
F5P
HH5
JSF
JSH
OK1
RJT
RZJ
X7M
AAYXX
CITATION
ID FETCH-LOGICAL-c2109-91f7a31699309bc609cec26c53e08cd7c70ef2ca5f922ab32f98e8c4bea4c2f33
ISSN 0033-8303
IngestDate Tue Jul 01 00:38:27 EDT 2025
Wed Sep 03 06:26:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2109-91f7a31699309bc609cec26c53e08cd7c70ef2ca5f922ab32f98e8c4bea4c2f33
OpenAccessLink https://www.jstage.jst.go.jp/article/radioisotopes/69/10/69_691003/_article/-char/en
PageCount 12
ParticipantIDs crossref_primary_10_3769_radioisotopes_69_329
jstage_primary_article_radioisotopes_69_10_69_691003_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020/10/15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020/10/15
  day: 15
PublicationDecade 2020
PublicationTitle RADIOISOTOPES
PublicationYear 2020
Publisher Japan Radioisotope Association
Publisher_xml – name: Japan Radioisotope Association
References 4) Yano, T., Hasegawa, K., Sato, T., Tatsumi, M., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 4—, —First-in-Human Clinical Requirements—, Pharma. Med. Device Regula. Sci., 51, 364–377 (2020
6) Hosono, M., Ikebuchi, H., Nakamura, Y., Kinuya, S., et al., Introduction of the targeted alpha therapy (with Radium-223) into clinical practice in Japan: Learnings and implementation, Ann. Nucl. Med., 33, 211–221 (2019
11) Henderson Robertson, A. K., Ramogida, C. F., Schaffer, P. and Radchenko, V., Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences, Curr. Radiopharm., 11, 156–172 (2018
12) Goddu, S. M., Howell, R. W., Bouchet, L. G., Bolch, W. E., et al., MIRD Cellular S values: Self-Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments. Reston, VA: Society of Nuclear Medicine and Molecular Imaging, (1997
2) Yano, T., Hasegawa, K., Sato, T., Hirabayashi, Y., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 2—, Pharma. Med. Device Regula. Sci., 50, 118–130 (2019
7) Kratochwil, C., Bruchertseifer, F., Giesel, F. L., Morgenstern, A., et al., 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer, J. Nucl. Med., 57, 1941–1944 (2016
8) Watabe, T., Kaneda-Nakashima, K., Liu, Y., Shirakami, Y., et al., Enhancement of 211At Uptake via the Sodium Iodide Symporter by the Addition of Ascorbic Acid in Targeted alpha-Therapy of Thyroid Cancer, J. Nucl. Med., 60, 1301–1307 (2019
24) Todde, S., Kolenc, P., Elsinga, P. P., Koziorowski, J., et al., Guidance on validation and qualification of processes and operations involving radiopharmaceuticals, Eur. J. Nucl. Med. Mol. Imaging, Radiopharm. Chem, 2, 8 (2017
1) Yano, T., Hasegawa, K., Hachisuka, A., Hirabayashi, Y., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 1—, Pharma. Med. Device Regula. Sci., 49, 676–684 (2018
16) Akabani, G., Kennel, S. J. and Zalutsky, M. R., Microdosimetric analysis of alpha-particle-emitting targeted radiotherapeutics using histological images, J. Nucl. Med., 44, 792–805 (2003
19) Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., et al., Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98), J. Biol. Chem., 273, 23629–23632 (1998
9) U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), Oncology Therapeutic Radiopharmaceuticals: Nonclinical Studies and Labeling Recommendations Guidance for Industry-Pharmacology/Toxicology, August 2019, https://www.fda.gov/media/129547/download (accessed 2020-3-10
13) Hobbs, R. F., Song, H., Watchman, C. J., Sgouros, G., et al., A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy, Phys. Med. Biol., 57, 3207–3222 (2012
14) Hobbs, R. F., Song, H., Huso, D. L., Sgouros, G., et al., A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry, Phys. Med. Biol., 57, 4403–4424 (2012
3) Yano, T., Hasegawa, K., Kadonaga, Y., Fukase, K., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 3—, Pharma. Med. Device Regula. Sci., 50, 750–764 (2019
17) Sato, T., Masunaga, S., Kumada, H. and Hamada, N., Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution, Sci. Rep., 8, 988 (2018
21) Poty, S., Carter, L. M., Mandleywala, K., Lewis, J., et al., Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma, Clin. Cancer Res., 25, 868–880 (2019
15) Goddu, S. M., Howell, R. W. and Rao, D. V., Cellular dosimetry: Absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments, J. Nucl. Med., 35, 303–316 (1994
5) Parker, C., Nilsson, S., Heinrich, D., O’Sullivan, J. M., et al., Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer, N. Engl. J. Med., 369, 213–223 (2013
22) Poty, S., Mandleywala, K., Carter, L. and Lewis, J., Leveraging 225Ac-pretargeted radioimmunotherapy for application in pancreatic ductal adenocarcinoma therapy, J. Nucl. Med., 59(supplement 1), 540 (2018
18) Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., et al., Features of Particle and Heavy Ion Transport Code System PHITS Version 3.02, J. Nucl. Sci. Technol., 55, 684–690 (2018
20) Wilbur, D. S., Chyan, M. K., Hamlin, D. K., Vessella, R. L., et al., Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination, Bioconjug. Chem., 18, 1226–1240 (2007
10) European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP), Draft Guideline on the non-clinical requirements for radiopharmaceuticals—First version, November 22, 2018, https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-non-clinical-requirements-radiopharmaceuticals-first-version_en.pdf (accessed 2020-3-10
23) Bellamy, M. B., Veinot, K. G., Hiller, M. M., Manger, R., et al., Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water, Radiat. Prot. Dosimetry, 174, 275–286 (2017
11
22
12
23
13
24
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 14) Hobbs, R. F., Song, H., Huso, D. L., Sgouros, G., et al., A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry, Phys. Med. Biol., 57, 4403–4424 (2012)
– reference: 20) Wilbur, D. S., Chyan, M. K., Hamlin, D. K., Vessella, R. L., et al., Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination, Bioconjug. Chem., 18, 1226–1240 (2007)
– reference: 23) Bellamy, M. B., Veinot, K. G., Hiller, M. M., Manger, R., et al., Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water, Radiat. Prot. Dosimetry, 174, 275–286 (2017)
– reference: 6) Hosono, M., Ikebuchi, H., Nakamura, Y., Kinuya, S., et al., Introduction of the targeted alpha therapy (with Radium-223) into clinical practice in Japan: Learnings and implementation, Ann. Nucl. Med., 33, 211–221 (2019)
– reference: 15) Goddu, S. M., Howell, R. W. and Rao, D. V., Cellular dosimetry: Absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments, J. Nucl. Med., 35, 303–316 (1994)
– reference: 7) Kratochwil, C., Bruchertseifer, F., Giesel, F. L., Morgenstern, A., et al., 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer, J. Nucl. Med., 57, 1941–1944 (2016)
– reference: 17) Sato, T., Masunaga, S., Kumada, H. and Hamada, N., Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution, Sci. Rep., 8, 988 (2018)
– reference: 5) Parker, C., Nilsson, S., Heinrich, D., O’Sullivan, J. M., et al., Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer, N. Engl. J. Med., 369, 213–223 (2013)
– reference: 21) Poty, S., Carter, L. M., Mandleywala, K., Lewis, J., et al., Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma, Clin. Cancer Res., 25, 868–880 (2019)
– reference: 2) Yano, T., Hasegawa, K., Sato, T., Hirabayashi, Y., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 2—, Pharma. Med. Device Regula. Sci., 50, 118–130 (2019)
– reference: 12) Goddu, S. M., Howell, R. W., Bouchet, L. G., Bolch, W. E., et al., MIRD Cellular S values: Self-Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments. Reston, VA: Society of Nuclear Medicine and Molecular Imaging, (1997)
– reference: 1) Yano, T., Hasegawa, K., Hachisuka, A., Hirabayashi, Y., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 1—, Pharma. Med. Device Regula. Sci., 49, 676–684 (2018)
– reference: 4) Yano, T., Hasegawa, K., Sato, T., Tatsumi, M., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 4—, —First-in-Human Clinical Requirements—, Pharma. Med. Device Regula. Sci., 51, 364–377 (2020)
– reference: 8) Watabe, T., Kaneda-Nakashima, K., Liu, Y., Shirakami, Y., et al., Enhancement of 211At Uptake via the Sodium Iodide Symporter by the Addition of Ascorbic Acid in Targeted alpha-Therapy of Thyroid Cancer, J. Nucl. Med., 60, 1301–1307 (2019)
– reference: 18) Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., et al., Features of Particle and Heavy Ion Transport Code System PHITS Version 3.02, J. Nucl. Sci. Technol., 55, 684–690 (2018)
– reference: 11) Henderson Robertson, A. K., Ramogida, C. F., Schaffer, P. and Radchenko, V., Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences, Curr. Radiopharm., 11, 156–172 (2018)
– reference: 16) Akabani, G., Kennel, S. J. and Zalutsky, M. R., Microdosimetric analysis of alpha-particle-emitting targeted radiotherapeutics using histological images, J. Nucl. Med., 44, 792–805 (2003)
– reference: 3) Yano, T., Hasegawa, K., Kadonaga, Y., Fukase, K., et al., Discussion on Translational Research of Drug Product for Targeted Alpha Therapy—Part 3—, Pharma. Med. Device Regula. Sci., 50, 750–764 (2019)
– reference: 9) U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), Oncology Therapeutic Radiopharmaceuticals: Nonclinical Studies and Labeling Recommendations Guidance for Industry-Pharmacology/Toxicology, August 2019, https://www.fda.gov/media/129547/download (accessed 2020-3-10)
– reference: 10) European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP), Draft Guideline on the non-clinical requirements for radiopharmaceuticals—First version, November 22, 2018, https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-non-clinical-requirements-radiopharmaceuticals-first-version_en.pdf (accessed 2020-3-10)
– reference: 13) Hobbs, R. F., Song, H., Watchman, C. J., Sgouros, G., et al., A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy, Phys. Med. Biol., 57, 3207–3222 (2012)
– reference: 19) Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., et al., Expression Cloning and Characterization of a Transporter for Large Neutral Amino Acids Activated by the Heavy Chain of 4F2 Antigen (CD98), J. Biol. Chem., 273, 23629–23632 (1998)
– reference: 24) Todde, S., Kolenc, P., Elsinga, P. P., Koziorowski, J., et al., Guidance on validation and qualification of processes and operations involving radiopharmaceuticals, Eur. J. Nucl. Med. Mol. Imaging, Radiopharm. Chem, 2, 8 (2017)
– reference: 22) Poty, S., Mandleywala, K., Carter, L. and Lewis, J., Leveraging 225Ac-pretargeted radioimmunotherapy for application in pancreatic ductal adenocarcinoma therapy, J. Nucl. Med., 59(supplement 1), 540 (2018)
– ident: 2
– ident: 3
– ident: 7
  doi: 10.2967/jnumed.116.178673
– ident: 6
  doi: 10.1007/s12149-018-1317-1
– ident: 13
  doi: 10.1088/0031-9155/57/10/3207
– ident: 4
– ident: 23
  doi: 10.1093/rpd/ncw103
– ident: 1
– ident: 14
  doi: 10.1088/0031-9155/57/13/4403
– ident: 12
– ident: 19
  doi: 10.1074/jbc.273.37.23629
– ident: 11
  doi: 10.2174/1874471011666180416161908
– ident: 10
– ident: 16
– ident: 24
  doi: 10.1186/s41181-017-0025-9
– ident: 15
– ident: 21
  doi: 10.1158/1078-0432.CCR-18-1650
– ident: 8
  doi: 10.2967/jnumed.118.222638
– ident: 18
  doi: 10.1080/00223131.2017.1419890
– ident: 20
  doi: 10.1021/bc060345s
– ident: 17
  doi: 10.1038/s41598-017-18871-0
– ident: 9
– ident: 5
  doi: 10.1056/NEJMoa1213755
– ident: 22
SSID ssj0026507
Score 2.1256602
Snippet We wish to herewith report safety evaluations, microdosimetry, and clinical requirements for first-in-human (FIH) study for handling of targeted alpha therapy...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 329
SubjectTerms First-in-human clinical study
microdosimetry
quality control and GMP
safety evaluation
targeted alpha therapy (TAT)
Title Rationale for Translational Research on Targeted Alpha Therapy in Japan —Renaissance of Radiopharmaceuticals Utilizing Astatine-211 and Actinium-225
URI https://www.jstage.jst.go.jp/article/radioisotopes/69/10/69_691003/_article/-char/en
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX RADIOISOTOPES, 2020/10/15, Vol.69(10), pp.329-340
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1884-4111
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0026507
  issn: 0033-8303
  databaseCode: HH5
  dateStart: 19520101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWghAXxFOUl3zgVnlx_Uic44qHqkpwqHalclo5XoeGtsmqyQqpJ34E4l_xJ_gljB_JZssKUS5WZNmTx3yZGY9nxgi9knxRgOK2xAhaECF1RnJtU0IXrna6kpRZH23xMTmYicNjeTwa_RxELa3afGwut-aV_A9XoQ_46rJkr8HZnih0wDXwF1rgMLT_xOOj6MkLhbu92jnrnHtdSJ3bDZj6cG8wLScus9ZFWbhKAs7VcQi6EtgfIx7Eka00cMKnEbgqJXpR1suTode72Zu15Vl5Gbwpbh-_sgSWd34TYgLCsypX54SFNOPO6vV0yqZu6-U6ZPGT9qd-702bVWXrtSRs7Gf9NSSq1adl7wHSbRit22Z1Up72E3zHeRlSAOBSxznRkwHLVhcYIofSmXOiOA0CzwaBrJQgohPIUWKHw106ZNKB_OXRfRJUOQ-VoK5qCZCprsjqxfDdx0k27icPi3JfUZZ9CCMsnhyd-QaVOXQAlRvoJkuThHk9sS79CMZwKOEaXzNkcjoqr7c9y4aldOsLsLQLNPS2z_QeuhsXLXgSEHgfjWz1AN3-EMMyHqIfPRAxABFvABF3QMR1hTsgYg9EHIGIywp7IOJf374PIIjrAm-DIO4hiIcQxABBPITgIzR7_2765oDEAz-IYfs0A8VbpJrvJ2Az0yw3Cc2MNSwxkluqzCI1KbUFM1oWGWM656zIlFVG5FYLwwrOH6Odqq7sE4SlYpnQoK40LLmVlCpluUpkAdYYywWnu4h0H3e-DHVd5n9j6S56GzjQj45__Z-jgQy0CdjhlPejXA4liKyn17ztM3Rn_ac8Rzvtxcq-ACu4zV96bP0GOyC95g
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rationale+for+Translational+Research+on+Targeted+Alpha+Therapy+in+Japan+%E2%80%94Renaissance+of+Radiopharmaceuticals+Utilizing+Astatine-211+and+Actinium-225&rft.jtitle=Radioisotopes&rft.au=Yano%2C+Tsuneo&rft.au=Hasegawa%2C+Koki&rft.au=Sato%2C+Tatsuhiko&rft.au=Tatsumi%2C+Mitsuaki&rft.date=2020-10-15&rft.issn=0033-8303&rft.eissn=1884-4111&rft.volume=69&rft.issue=10&rft.spage=329&rft.epage=340&rft_id=info:doi/10.3769%2Fradioisotopes.69.329&rft.externalDBID=n%2Fa&rft.externalDocID=10_3769_radioisotopes_69_329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8303&client=summon