Automatic lung cancer detection from CT image using optimized Robust Deformed Convolutional Neural Network with TriHorn-Net
Lung cancer is a leading cause of death for both men and women, requires accurate and early detection to improve treatment outcomes. The inability of traditional approach to handle intricate nodule formations, subpar segmentation methods, and low-quality CT images results in inaccurate predictions....
Saved in:
| Published in | Expert systems with applications Vol. 276; p. 127124 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 |
| DOI | 10.1016/j.eswa.2025.127124 |
Cover
| Abstract | Lung cancer is a leading cause of death for both men and women, requires accurate and early detection to improve treatment outcomes. The inability of traditional approach to handle intricate nodule formations, subpar segmentation methods, and low-quality CT images results in inaccurate predictions. To overcome these complications, Automatic Lung Cancer Detection from CT image using optimized Robust Deformed Convolutional Neural Network with TriHorn-Net (RDCNN-TriHorn-Net-WHOA-ALCD) is proposed. The input CT images, sourced from the Chest CT-Scan Images Dataset and Formatted and Augmented Chest CT-Scan images dataset, undergo preprocessing via Sub Aperture Keystone Transform Matched Filtering (SAKTMF) to reduce noise and improve image quality. Automatically Weighted Binary Multi-View Clustering (AW-BMVC) is used to segment the affected regions, and the Second-Order Synchroextracting Wavelet Transform (SOSWT) is used to extract spectral features. Classification is conducted using Robust Deformed Convolutional Neural Network (RDCNN) models across three strategies. In Strategy 1, RDCNN-TriHorn-Net with Wader Hunt Optimization Algorithm (WHOA) outperformed other models in detecting lung cancer. In Strategy 2 showed RDCNN-ResNeXt-50 with Adaptive Elite Ant Lion Optimization Algorithm (AEALOA) yielded better results, while Strategy 3 highlighted RDCNN-CoAtNet with Dipper Throated Optimization Algorithm (DTOA). The RDCNN-TriHorn-Net-WHOA-ALCD method achieved superior classification of lung CT images, like Large Cell Carcinoma (LCC), Adenocarcinoma, Normal, and Squamous Cell Carcinoma (SCC) in the Chest CT-Scan images dataset, as well as normal and Squamous in the Formatted and Augmented Chest CT-Scan images dataset. The proposed RDCNN-TriHorn-Net-WHOA-ALCD technique is implemented in Python. The effectiveness of the RDCNN-TriHorn-Net-WHOA-ALCD approach attains 13.67%, 27.55% and 14.67 dice similarity coefficient and 22.23%, 24.11% and 25.56% logarithmic loss compared with existing techniques respectively. |
|---|---|
| AbstractList | Lung cancer is a leading cause of death for both men and women, requires accurate and early detection to improve treatment outcomes. The inability of traditional approach to handle intricate nodule formations, subpar segmentation methods, and low-quality CT images results in inaccurate predictions. To overcome these complications, Automatic Lung Cancer Detection from CT image using optimized Robust Deformed Convolutional Neural Network with TriHorn-Net (RDCNN-TriHorn-Net-WHOA-ALCD) is proposed. The input CT images, sourced from the Chest CT-Scan Images Dataset and Formatted and Augmented Chest CT-Scan images dataset, undergo preprocessing via Sub Aperture Keystone Transform Matched Filtering (SAKTMF) to reduce noise and improve image quality. Automatically Weighted Binary Multi-View Clustering (AW-BMVC) is used to segment the affected regions, and the Second-Order Synchroextracting Wavelet Transform (SOSWT) is used to extract spectral features. Classification is conducted using Robust Deformed Convolutional Neural Network (RDCNN) models across three strategies. In Strategy 1, RDCNN-TriHorn-Net with Wader Hunt Optimization Algorithm (WHOA) outperformed other models in detecting lung cancer. In Strategy 2 showed RDCNN-ResNeXt-50 with Adaptive Elite Ant Lion Optimization Algorithm (AEALOA) yielded better results, while Strategy 3 highlighted RDCNN-CoAtNet with Dipper Throated Optimization Algorithm (DTOA). The RDCNN-TriHorn-Net-WHOA-ALCD method achieved superior classification of lung CT images, like Large Cell Carcinoma (LCC), Adenocarcinoma, Normal, and Squamous Cell Carcinoma (SCC) in the Chest CT-Scan images dataset, as well as normal and Squamous in the Formatted and Augmented Chest CT-Scan images dataset. The proposed RDCNN-TriHorn-Net-WHOA-ALCD technique is implemented in Python. The effectiveness of the RDCNN-TriHorn-Net-WHOA-ALCD approach attains 13.67%, 27.55% and 14.67 dice similarity coefficient and 22.23%, 24.11% and 25.56% logarithmic loss compared with existing techniques respectively. |
| ArticleNumber | 127124 |
| Author | Lokanath Reddy, C Prasad, M.V.D. |
| Author_xml | – sequence: 1 givenname: C surname: Lokanath Reddy fullname: Lokanath Reddy, C email: chilakalalokanathreddy@gmail.com organization: Research Scholar, Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India – sequence: 2 givenname: M.V.D. surname: Prasad fullname: Prasad, M.V.D. email: mvd_ece@kluniversity.in organization: Associate Professor, Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India |
| BookMark | eNp9kE1OwzAQRr0oEi1wAVa-QILtpHEssanCT5EqkFBZW449KS5JXNlOK-DypJQ1q08zmjeaeTM06V0PCF1TklJCi5ttCuGgUkbYPKWMU5ZP0JSIOU9yyvNzNAthSwjlhPAp-l4M0XUqWo3bod9grXoNHhuIoKN1PW6863C1xrZTG8BDsOOQ20Xb2S8w-NXVQ4j4Dhrnu7GuXL937XAkVYufYfC_EQ_Of-CDje947e3S-T4Zm5forFFtgKu_vEBvD_frapmsXh6fqsUq0YyImABQI5qmbErKC503GakLbWo9F6CVYNwophnlmc4VKWqhhci0MEpDKWpSFjy7QOy0V3sXgodG7vz4jv-UlMijMrmVR2XyqEyelI3Q7QmC8bK9BS-DtjDKMdaPaqRx9j_8BwqPfEE |
| Cites_doi | 10.1186/s43055-024-01223-0 10.1109/ACCESS.2021.3068896 10.1016/j.bspc.2023.105373 10.1007/s42979-024-03120-9 10.36548/jscp.2021.4.007 10.1186/s40644-024-00683-x 10.1049/cit2.12110 10.1016/j.patcog.2022.109281 10.1016/j.sigpro.2021.108123 10.1016/j.bspc.2023.105327 10.1109/ACCESS.2024.3449230 10.1080/03772063.2023.2233465 10.1186/s12880-024-01232-5 10.1109/JBHI.2024.3425434 10.1007/s00500-023-09480-3 10.1186/s12880-024-01238-z 10.1371/journal.pone.0297390 10.1007/s00521-024-09425-3 10.1016/j.cmpb.2023.107879 10.1109/JSTARS.2023.3245295 10.1007/s11042-023-17349-8 10.1109/ACCESS.2023.3298955 10.1002/ima.22858 10.1016/j.fraope.2024.100085 10.1007/s00500-023-08845-y 10.1016/j.measen.2024.101052 10.1016/j.eswa.2023.119922 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.127124 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_127124 S0957417425007468 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c209t-ee1d9ff8f8176c4f30b6cdbc59eca927da2c2173c4a06b9c993c9dace89b08673 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Wed Oct 01 06:05:04 EDT 2025 Sat Jun 21 16:53:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SS CNN SOSWT DTOA DF DNN Wader Hunt Optimization Algorithm CSViT-IMFO MS SAKTMF WHOA AW-BMVC Robust Deformed Convolutional Neural Network Second-Order Synchroextracting Wavelet Transform MAE CT SNN RDCNN TP TN FP FN AEALOA TL TriHorn-Net Sub Aperture Keystone Transform Matched Filtering Automatically Weighted Binary Multi-View Clustering |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c209t-ee1d9ff8f8176c4f30b6cdbc59eca927da2c2173c4a06b9c993c9dace89b08673 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_127124 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127124 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Suganthy, Krishnamoorthy, Nagarajaiah, DayaSagar (b0135) 2024 Nissar, Mir (b0080) 2024; 55 Wankhade, Vigneshwari (b0165) 2023; 3 Saha, Ganie, Pramanik, Yadav, Mallik, Zhao (b0105) 2024; 24 Yoo, Park, Choi, Kim, Goo, Yoon (b0170) 2024; 19 Murthy, Prasad (b0075) 2023; 86 Nagarathna, Kusuma (bib186) 2022; 3 https://www.kaggle.com/datasets/benjaminmaizes/formatted-and-augmented-chest-ct-scan-images/data. Chen, Wang, Hu, Feng, Zhou, Zheng (b0030) 2021; 9 https://www.kaggle.com/datasets/addislissan/chest-ct-scan-images-dataset. Zhang, Xiao, Tian, Chun-Wei Lin, Zhang (b0185) 2023; 8 Panneer, Jaganathan (b0085) 2024; 6 Shakeel, Burhanuddin, Desa (b0115) 2022 Shao, Ge, Gao, Niu, Shi, Shao, Jiang, Li, Wang (b0120) 2024; 24 Rezaei, Rastgoo, Athitsos (b0100) 2023; 223 Ashwini, Arunkumar, Prabu, Singh, Singh (b0015) 2024; 28 Nagarathna, Kusuma (bib187) 2021; 1 BR, S.R.R., Sen, S., Bhatt, R., Dhanetwal, M.L., Sharma, M. & Naaz, R., (2024). Stacked neural nets for increased accuracy on classification on lung cancer. Barbouchi, El Hamdi, Elouedi, Aïcha, Echi, Slim (b0020) 2023; 33 p.101052. Han, Zhou, Yu (b0040) 2021; 186 Venkatesh, ChinnaBabu, Kiran, Nagaraju, Kumar (b0155) 2024; 83 Wani, Kumar, Bedi (b0160) 2024; 243 An, Wang, Cai, Zhao, Dooper, Litjens, Gao (b0010) 2024 Venkatesan, Pasupathy, Gobinathan (b0150) 2024; 88 Houfar, Samai, Dornaika, Benlamoudi, Bensid, Taleb-Ahmed (b0045) 2023; 137 Priyadarshini, Alagarsamy, Sangeetha, Thangaraju (b0095) 2024; 70 Lin, Guo, Lien, Tsai, Liu, Lai, Hsu, Chang, Tseng (b0070) 2024; 24 Prasad, Chakravarty, Mahto (b0090) 2024; 28 Abdelhamid, El-Kenawy, Ibrahim, Eid, Khafaga, Alhussan, Mirjalili, Khodadadi, Lim, Shams (b0005) 2023; 11 Imran, Haq, Elbasi, Topcu, Shao (b0060) 2024 Tripathi, Augustin, Sukumaran, Dheer, Kim (b0140) 2022; 2 Kumar, Mehta, Reddy, Singh (b0065) 2024; 5 Sangeetha, Mathivanan, Karthikeyan, Rajadurai, Shivahare, Mallik, Qin (b0110) 2024; 6 Chung, Park, Kim (b0035) 2024 Zhan, Zhao, Qin, Huang, Fang, Zhao (b0175) 2023; 16 Shashikala, Chandran, Rajathi (b0125) 2024; 8 Subash, Kalaivani (b0130) 2024; 36 Zhang, Wang, Fan, Lu, Chen, Jiang, Yu (b0180) 2024; 17 Nagarathna, Chinnaswamy (bib188) 2014; 3 Vasantrao, Gupta (b0145) 2023; 15 Abdelhamid (10.1016/j.eswa.2025.127124_b0005) 2023; 11 Vasantrao (10.1016/j.eswa.2025.127124_b0145) 2023; 15 Zhan (10.1016/j.eswa.2025.127124_b0175) 2023; 16 Murthy (10.1016/j.eswa.2025.127124_b0075) 2023; 86 Imran (10.1016/j.eswa.2025.127124_b0060) 2024 10.1016/j.eswa.2025.127124_b0050 Subash (10.1016/j.eswa.2025.127124_b0130) 2024; 36 10.1016/j.eswa.2025.127124_b0055 Shashikala (10.1016/j.eswa.2025.127124_b0125) 2024; 8 Ashwini (10.1016/j.eswa.2025.127124_b0015) 2024; 28 Venkatesh (10.1016/j.eswa.2025.127124_b0155) 2024; 83 Sangeetha (10.1016/j.eswa.2025.127124_b0110) 2024; 6 Houfar (10.1016/j.eswa.2025.127124_b0045) 2023; 137 Nissar (10.1016/j.eswa.2025.127124_b0080) 2024; 55 Tripathi (10.1016/j.eswa.2025.127124_b0140) 2022; 2 Chung (10.1016/j.eswa.2025.127124_b0035) 2024 Kumar (10.1016/j.eswa.2025.127124_b0065) 2024; 5 Zhang (10.1016/j.eswa.2025.127124_b0180) 2024; 17 Panneer (10.1016/j.eswa.2025.127124_b0085) 2024; 6 Zhang (10.1016/j.eswa.2025.127124_b0185) 2023; 8 Suganthy (10.1016/j.eswa.2025.127124_b0135) 2024 Venkatesan (10.1016/j.eswa.2025.127124_b0150) 2024; 88 Priyadarshini (10.1016/j.eswa.2025.127124_b0095) 2024; 70 Lin (10.1016/j.eswa.2025.127124_b0070) 2024; 24 Shakeel (10.1016/j.eswa.2025.127124_b0115) 2022 Wani (10.1016/j.eswa.2025.127124_b0160) 2024; 243 An (10.1016/j.eswa.2025.127124_b0010) 2024 Nagarathna (10.1016/j.eswa.2025.127124_bib186) 2022; 3 Saha (10.1016/j.eswa.2025.127124_b0105) 2024; 24 Wankhade (10.1016/j.eswa.2025.127124_b0165) 2023; 3 Nagarathna (10.1016/j.eswa.2025.127124_bib188) 2014; 3 Barbouchi (10.1016/j.eswa.2025.127124_b0020) 2023; 33 Rezaei (10.1016/j.eswa.2025.127124_b0100) 2023; 223 Yoo (10.1016/j.eswa.2025.127124_b0170) 2024; 19 Nagarathna (10.1016/j.eswa.2025.127124_bib187) 2021; 1 Prasad (10.1016/j.eswa.2025.127124_b0090) 2024; 28 Shao (10.1016/j.eswa.2025.127124_b0120) 2024; 24 10.1016/j.eswa.2025.127124_b0025 Han (10.1016/j.eswa.2025.127124_b0040) 2021; 186 Chen (10.1016/j.eswa.2025.127124_b0030) 2021; 9 |
| References_xml | – volume: 24 start-page: 120 year: 2024 ident: b0105 article-title: VER-Net: A hybrid transfer learning model for lung cancer detection using CT scan images – volume: 28 start-page: 6219 year: 2024 end-page: 6233 ident: b0015 article-title: Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network – volume: 3 year: 2014 ident: bib188 article-title: The technique to detect and avoid the denial of service attacks in wireless sensor networks publication-title: International Journal of Research in Engineering and Technology (IJRET) – start-page: 1 year: 2022 end-page: 14 ident: b0115 article-title: Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier – volume: 55 start-page: 50 year: 2024 ident: b0080 article-title: Proficiency evaluation of shape and WPT radiomics based on machine learning for CT lung cancer prognosis – volume: 6 year: 2024 ident: b0110 article-title: An enhanced multimodal fusion deep learning neural network for lung cancer classification – reference: BR, S.R.R., Sen, S., Bhatt, R., Dhanetwal, M.L., Sharma, M. & Naaz, R., (2024). Stacked neural nets for increased accuracy on classification on lung cancer. – year: 2024 ident: b0035 article-title: Automated CT quantification of interstitial lung abnormality in patients with resectable stage I non‐small cell lung cancer: Prognostic significance. publication-title: . – volume: 9 start-page: 50301 year: 2021 end-page: 50320 ident: b0030 article-title: LDNNET: Towards robust classification of lung nodule and cancer using lung dense neural network – volume: 3 start-page: 322 year: 2022 end-page: 335 ident: bib186 article-title: Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN publication-title: Journal of Soft Computing Paradigm – start-page: 1 year: 2024 end-page: 9 ident: b0135 article-title: Lung Cancer Classification based on Auxiliary Classifier (WGAN) Optimised with HOA from CT Images – volume: 83 start-page: 43931 year: 2024 end-page: 43952 ident: b0155 article-title: A hybrid model for lung cancer prediction using patch processing and deeplearning on CT images – year: 2024 ident: b0060 article-title: Transformer Based Hierarchical Model for Non-Small Cell Lung Cancer Detection and Classification – volume: 19 year: 2024 ident: b0170 article-title: Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT – reference: , p.101052. – volume: 11 start-page: 79750 year: 2023 end-page: 79776 ident: b0005 article-title: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms – volume: 33 start-page: 1383 year: 2023 end-page: 1395 ident: b0020 article-title: A transformer‐based deep neural network for detection and classification of lung cancer via PET/CT images – reference: https://www.kaggle.com/datasets/benjaminmaizes/formatted-and-augmented-chest-ct-scan-images/data. – volume: 8 year: 2024 ident: b0125 article-title: Cross-spectral vision transformer for lung nodule detection with improved moth flame algorithm using deep learning – volume: 24 start-page: 40 year: 2024 ident: b0070 article-title: Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: A secondary analysis of lung nodule datasets – reference: https://www.kaggle.com/datasets/addislissan/chest-ct-scan-images-dataset. – volume: 36 start-page: 8141 year: 2024 end-page: 8161 ident: b0130 article-title: Dual-stage classification for lung cancer detection and staging using hybrid deep learning techniques – volume: 186 year: 2021 ident: b0040 article-title: Second-order synchroextracting wavelet transform for nonstationary signal analysis of rotating machinery – volume: 2 year: 2022 ident: b0140 article-title: HematoNet: Expert level classification of bone marrow cytology morphology in hematological malignancy with deep learning – volume: 6 year: 2024 ident: b0085 article-title: Adaptive Elite Ant Lion Optimizer tuned optimal controller for underactuated systems – volume: 8 start-page: 331 year: 2023 end-page: 342 ident: b0185 article-title: A robust deformed convolutional neural network (CNN) for image denoising – volume: 5 start-page: 839 year: 2024 ident: b0065 article-title: Vision Transformer Based Effective Model for Early Detection and Classification of Lung Cancer – volume: 70 start-page: 4453 year: 2024 end-page: 4468 ident: b0095 article-title: Hybrid RNN-FFBPNN Optimized with Glowworm Swarm Algorithm for Lung Cancer Prediction – volume: 243 year: 2024 ident: b0160 article-title: DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence – volume: 86 year: 2023 ident: b0075 article-title: Adversarial transformer network for classification of lung cancer disease from CT scan images – volume: 1 start-page: 43 year: 2021 end-page: 46 ident: bib187 article-title: November). Comparative study of detection and classification of Alzheimer’s disease using Hybrid model and CNN publication-title: 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON) – volume: 17 year: 2024 ident: b0180 article-title: Enhancing non-small cell lung cancer tumor segmentation with a novel two-step deep learning approach – volume: 16 start-page: 2262 year: 2023 end-page: 2274 ident: b0175 article-title: Subaperture keystone transform matched filtering algorithm and its application for air moving target detection in an SBEWR system – volume: 28 start-page: 8579 year: 2024 end-page: 8602 ident: b0090 article-title: Lung cancer detection and classification using deep neural network based on hybrid metaheuristic algorithm – volume: 3 year: 2023 ident: b0165 article-title: A novel hybrid deep learning method for early detection of lung cancer using neural networks – volume: 24 start-page: 54 year: 2024 ident: b0120 article-title: Transfer learning–based PET/CT three-dimensional convolutional neural network fusion of image and clinical information for prediction of EGFR mutation in lung adenocarcinoma – volume: 15 start-page: 1611 year: 2023 end-page: 1623 ident: b0145 article-title: Wader hunt optimization based UNET model for change detection in satellite images – volume: 223 year: 2023 ident: b0100 article-title: TriHorn-net: A model for accurate depth-based 3D hand pose estimation – volume: 88 year: 2024 ident: b0150 article-title: An efficient lung cancer detection using optimal SVM and improved weight based beetle swarm optimization – year: 2024 ident: b0010 article-title: Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification – volume: 137 year: 2023 ident: b0045 article-title: Automatically weighted binary multi-view clustering via deep initialization (AW-BMVC) – volume: 55 start-page: 50 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0080 article-title: Proficiency evaluation of shape and WPT radiomics based on machine learning for CT lung cancer prognosis publication-title: Egypt. J. Radiol. Nucl. Med. doi: 10.1186/s43055-024-01223-0 – volume: 6 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0110 article-title: An enhanced multimodal fusion deep learning neural network for lung cancer classification publication-title: Syst. Soft Comput. – volume: 9 start-page: 50301 year: 2021 ident: 10.1016/j.eswa.2025.127124_b0030 article-title: LDNNET: Towards robust classification of lung nodule and cancer using lung dense neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068896 – volume: 88 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0150 article-title: An efficient lung cancer detection using optimal SVM and improved weight based beetle swarm optimization publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105373 – volume: 5 start-page: 839 issue: 7 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0065 article-title: Vision Transformer Based Effective Model for Early Detection and Classification of Lung Cancer publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03120-9 – volume: 8 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0125 article-title: Cross-spectral vision transformer for lung nodule detection with improved moth flame algorithm using deep learning. e-Prime-Advances in Electrical Engineering publication-title: Electronics and Energy – volume: 3 start-page: 322 issue: 4 year: 2022 ident: 10.1016/j.eswa.2025.127124_bib186 article-title: Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN publication-title: Journal of Soft Computing Paradigm doi: 10.36548/jscp.2021.4.007 – volume: 24 start-page: 40 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0070 article-title: Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: A secondary analysis of lung nodule datasets publication-title: Cancer Imaging doi: 10.1186/s40644-024-00683-x – year: 2024 ident: 10.1016/j.eswa.2025.127124_b0035 article-title: Automated CT quantification of interstitial lung abnormality in patients with resectable stage I non‐small cell lung cancer: Prognostic significance. Thoracic publication-title: Cancer. – volume: 8 start-page: 331 issue: 2 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0185 article-title: A robust deformed convolutional neural network (CNN) for image denoising publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/cit2.12110 – volume: 17 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0180 article-title: Enhancing non-small cell lung cancer tumor segmentation with a novel two-step deep learning approach publication-title: J. Radiat. Res. Appl. Sci. – volume: 137 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0045 article-title: Automatically weighted binary multi-view clustering via deep initialization (AW-BMVC) publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.109281 – volume: 186 year: 2021 ident: 10.1016/j.eswa.2025.127124_b0040 article-title: Second-order synchroextracting wavelet transform for nonstationary signal analysis of rotating machinery publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108123 – volume: 86 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0075 article-title: Adversarial transformer network for classification of lung cancer disease from CT scan images publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105327 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2025.127124_b0115 article-title: Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier publication-title: Neural Comput. & Applic. – ident: 10.1016/j.eswa.2025.127124_b0050 – year: 2024 ident: 10.1016/j.eswa.2025.127124_b0060 article-title: Transformer Based Hierarchical Model for Non-Small Cell Lung Cancer Detection and Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3449230 – volume: 70 start-page: 4453 issue: 5 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0095 article-title: Hybrid RNN-FFBPNN Optimized with Glowworm Swarm Algorithm for Lung Cancer Prediction publication-title: IETE J. Res. doi: 10.1080/03772063.2023.2233465 – volume: 24 start-page: 54 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0120 article-title: Transfer learning–based PET/CT three-dimensional convolutional neural network fusion of image and clinical information for prediction of EGFR mutation in lung adenocarcinoma publication-title: BMC Med. Imaging doi: 10.1186/s12880-024-01232-5 – year: 2024 ident: 10.1016/j.eswa.2025.127124_b0010 article-title: Transformer-Based Weakly Supervised Learning for Whole Slide Lung Cancer Image Classification publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2024.3425434 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0135 article-title: Lung Cancer Classification based on Auxiliary Classifier (WGAN) Optimised with HOA from CT Images publication-title: IETE J. Res. – volume: 28 start-page: 6219 issue: 7 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0015 article-title: Diagnosis and multi-classification of lung diseases in CXR images using optimized deep convolutional neural network publication-title: Soft. Comput. doi: 10.1007/s00500-023-09480-3 – volume: 24 start-page: 120 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0105 article-title: VER-Net: A hybrid transfer learning model for lung cancer detection using CT scan images publication-title: BMC Med. Imaging doi: 10.1186/s12880-024-01238-z – volume: 15 start-page: 1611 issue: 3 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0145 article-title: Wader hunt optimization based UNET model for change detection in satellite images publication-title: Int. J. Inf. Technol. – volume: 19 issue: 2 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0170 article-title: Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT publication-title: PLoS One doi: 10.1371/journal.pone.0297390 – volume: 36 start-page: 8141 issue: 14 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0130 article-title: Dual-stage classification for lung cancer detection and staging using hybrid deep learning techniques publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-024-09425-3 – volume: 243 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0160 article-title: DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2023.107879 – volume: 16 start-page: 2262 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0175 article-title: Subaperture keystone transform matched filtering algorithm and its application for air moving target detection in an SBEWR system publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2023.3245295 – volume: 2 year: 2022 ident: 10.1016/j.eswa.2025.127124_b0140 article-title: HematoNet: Expert level classification of bone marrow cytology morphology in hematological malignancy with deep learning publication-title: Artif. Intell. Life Sci. – volume: 83 start-page: 43931 issue: 15 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0155 article-title: A hybrid model for lung cancer prediction using patch processing and deeplearning on CT images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-17349-8 – volume: 1 start-page: 43 year: 2021 ident: 10.1016/j.eswa.2025.127124_bib187 article-title: November). Comparative study of detection and classification of Alzheimer’s disease using Hybrid model and CNN – volume: 11 start-page: 79750 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0005 article-title: Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3298955 – volume: 33 start-page: 1383 issue: 4 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0020 article-title: A transformer‐based deep neural network for detection and classification of lung cancer via PET/CT images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22858 – ident: 10.1016/j.eswa.2025.127124_b0055 – volume: 6 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0085 article-title: Adaptive Elite Ant Lion Optimizer tuned optimal controller for underactuated systems publication-title: Franklin Open doi: 10.1016/j.fraope.2024.100085 – volume: 28 start-page: 8579 issue: 15 year: 2024 ident: 10.1016/j.eswa.2025.127124_b0090 article-title: Lung cancer detection and classification using deep neural network based on hybrid metaheuristic algorithm publication-title: Soft. Comput. doi: 10.1007/s00500-023-08845-y – ident: 10.1016/j.eswa.2025.127124_b0025 doi: 10.1016/j.measen.2024.101052 – volume: 3 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0165 article-title: A novel hybrid deep learning method for early detection of lung cancer using neural networks publication-title: Healthcare Anal. – volume: 223 year: 2023 ident: 10.1016/j.eswa.2025.127124_b0100 article-title: TriHorn-net: A model for accurate depth-based 3D hand pose estimation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119922 – volume: 3 issue: 05 year: 2014 ident: 10.1016/j.eswa.2025.127124_bib188 article-title: The technique to detect and avoid the denial of service attacks in wireless sensor networks publication-title: International Journal of Research in Engineering and Technology (IJRET) |
| SSID | ssj0017007 |
| Score | 2.4662244 |
| Snippet | Lung cancer is a leading cause of death for both men and women, requires accurate and early detection to improve treatment outcomes. The inability of... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 127124 |
| SubjectTerms | Automatically Weighted Binary Multi-View Clustering Robust Deformed Convolutional Neural Network Second-Order Synchroextracting Wavelet Transform Sub Aperture Keystone Transform Matched Filtering TriHorn-Net Wader Hunt Optimization Algorithm |
| Title | Automatic lung cancer detection from CT image using optimized Robust Deformed Convolutional Neural Network with TriHorn-Net |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.127124 |
| Volume | 276 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0017007 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF-tS5uBN0maZyWSOpVqqYg_aQm8hs0QiNilpqqDgb_dNFlEQD57CDBkSvjfzluR77yF0HmkREEWUJYgDAYqKicVjEAjlvqOYYiRQ5o_u3cQfz8jNnM5baNjkwhhaZa37K51eaut6pl-j2V8mSf8BnAMwhxDa0bJphkn4JYSZLga9jy-ahyk_x6p6e8wyd9eJMxXHS69eTe0hl_Yclzku-d04fTM4ox20VXuKeFC9zC5q6XQPbTddGHB9KPfR-2BdZGXhVfwMJxdLI8ccK12ULKsUmwwSPJziZAG6Axui-yPOQFMskjet8H0m1qsCX2rjvcJ4mKUv9XaEp5vaHeWlJItj89UWT_NknOWpBZMHaDa6mg7HVt1SwZKuzQtLa0fxOA7iwGG-JLFnC18qISnXMuIuU5ErIUjxJIlsX3AJ3ovkKpI64AKCH-YdonaapfoIYSLi2IP4yolcmyguRaQ9KmmgVBBITWkHXTRYhsuqckbYUMqeQoN8aJAPK-Q7iDZwhz_kH4Jq_2Pd8T_XnaBNM6pIX6eoXeRrfQbuRSG65f7poo3B9e148glZrNI3 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG7W9aAX38a3PXgzuAu0tD1uVg0-D4qJN0IfGIwLZpfVRBN_u1MeRhPjwROh0ECm05n54JsZhA4SIznRRDuSuABQdEockcKCUBG4mmlGuLZ_dK-ug_COnN_T-w4atrkwllbZ2P7aplfWuhnpNdLsPWdZ7xaCA3CHAO1o1TSDz6BZQj1mEdjRxxfPw9afY3XBPebY25vMmZrkZSavtviQR49cj7ke-d07ffM4p0tooQkV8aB-m2XUMfkKWmzbMOBmV66i98G0LKrKq_gJti5WdiHHWJuyolnl2KaQ4GGEsxEYD2yZ7g-4AFMxyt6MxjeFnE5KfGxs-ArnwyJ_afQRnm6Ld1SHii2O7WdbHI2zsBjnDgyuobvTk2gYOk1PBUd5fVE6xrhapClPucsCRVK_LwOlpaLCqER4TCeeApTiK5L0AykUhC9K6EQZLiSgH-avo25e5GYDYSLT1AeA5SZen2ihZGJ8qijXmnNlKN1Eh60s4-e6dEbccsoeYyv52Eo-riW_iWgr7viHAsRg2_-Yt_XPeftoLoyuLuPLs-uLbTRvr9QMsB3ULcdTswuxRin3Kl36BGC808w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+lung+cancer+detection+from+CT+image+using+optimized+Robust+Deformed+Convolutional+Neural+Network+with+TriHorn-Net&rft.jtitle=Expert+systems+with+applications&rft.au=Lokanath+Reddy%2C+C&rft.au=Prasad%2C+M.V.D.&rft.date=2025-06-01&rft.issn=0957-4174&rft.volume=276&rft.spage=127124&rft_id=info:doi/10.1016%2Fj.eswa.2025.127124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_127124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |