Electronic Structure, Irreversibility Line and Magnetoresistance of Cu0.3Bi2Se3 Superconductor
Cux Bi2Se3 is a superconductor that is a potential candidate for topological superconductors. We report our laser- based angle-resolved photoemission measurement on the electronic structure of the CuxBi2Se3 superconductor, and a detailed magneto-resistance measurement in both normal and superconduct...
Saved in:
Published in | Chinese physics letters Vol. 32; no. 6; pp. 141 - 145 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/32/6/067401 |
Cover
Summary: | Cux Bi2Se3 is a superconductor that is a potential candidate for topological superconductors. We report our laser- based angle-resolved photoemission measurement on the electronic structure of the CuxBi2Se3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi2Se3 topological insulator remains robust after the Cu-intercalation, while the Dirae cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper critical field at zero temperature of ~4000 Oe for the Cu0.3Bi2Se3 superconductor with a middle point Tc of 1.g K. The relation between the upper critical field He2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cuo.3Bi2Se3 superconductors up to room temperature. These observations provide useful information for further study of this possible candidate for topological superconductors. |
---|---|
Bibliography: | Cux Bi2Se3 is a superconductor that is a potential candidate for topological superconductors. We report our laser- based angle-resolved photoemission measurement on the electronic structure of the CuxBi2Se3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi2Se3 topological insulator remains robust after the Cu-intercalation, while the Dirae cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper critical field at zero temperature of ~4000 Oe for the Cu0.3Bi2Se3 superconductor with a middle point Tc of 1.g K. The relation between the upper critical field He2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cuo.3Bi2Se3 superconductors up to room temperature. These observations provide useful information for further study of this possible candidate for topological superconductors. 11-1959/O4 YI He-Mian, CHEN Chao-Yu, SUN Xuan, XIE Zhuo-Jin, FENG Ya, LIANG Ai-Ji, PENG Ying-Ying, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Wian, XU Zu-Yan, GU Gen-Da, ZHOU Xing-Jiang( 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 ; 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; 3 Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA ; 4Collaborative Innovation Center of Quantum Matter, Beijing 100871) USDOE Office of Science (SC), Basic Energy Sciences (BES) SC00112704 BNL-108429-2015-JA |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/32/6/067401 |