Implementation of Hybrid ACO-PSO-GA-DE Algorithm for Mammogram Classification
Breast Cancer is one of the fastest growing cancer that causes women to death in the world. The early detection of breast cancer improves the chances of its cure. The malignant tumor that is the sign of breast cancer can be detected by mammography. This paper develops a technique to classify the mam...
Saved in:
| Published in | International journal of recent technology and engineering Vol. 8; no. 2; pp. 3944 - 3948 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
30.07.2019
|
| Online Access | Get full text |
| ISSN | 2277-3878 2277-3878 |
| DOI | 10.35940/ijrte.B2374.078219 |
Cover
| Abstract | Breast Cancer is one of the fastest growing cancer that causes women to death in the world. The early detection of breast cancer improves the chances of its cure. The malignant tumor that is the sign of breast cancer can be detected by mammography. This paper develops a technique to classify the mammogram images as normal, benign or malignant. This paper applies HAPGD (Hybrid ACO (Ant Colony Optimization), PSO (Particle Swarm Optimization), GA (Genetic Algorithm), and DE (Differential Evolution)) classification algorithm to texture features extracted from the mammogram image. The analysis has been done on the DDSM and MIAS dataset by using classification accuracy, specificity, and sensitivity as the parameter with three state of art algorithms i.e. SVM classifier (without any optimization technique), Firefly (SVM with Firefly optimization), ACO-PSO-GA (SVM with hybrid ACO-PSO-GA optimization). The improvement in the performance measures against three state of art techniques shows the significance of the algorithm. |
|---|---|
| AbstractList | Breast Cancer is one of the fastest growing cancer that causes women to death in the world. The early detection of breast cancer improves the chances of its cure. The malignant tumor that is the sign of breast cancer can be detected by mammography. This paper develops a technique to classify the mammogram images as normal, benign or malignant. This paper applies HAPGD (Hybrid ACO (Ant Colony Optimization), PSO (Particle Swarm Optimization), GA (Genetic Algorithm), and DE (Differential Evolution)) classification algorithm to texture features extracted from the mammogram image. The analysis has been done on the DDSM and MIAS dataset by using classification accuracy, specificity, and sensitivity as the parameter with three state of art algorithms i.e. SVM classifier (without any optimization technique), Firefly (SVM with Firefly optimization), ACO-PSO-GA (SVM with hybrid ACO-PSO-GA optimization). The improvement in the performance measures against three state of art techniques shows the significance of the algorithm. |
| Author | Priti Bala, Anju |
| Author_xml | – sequence: 1 givenname: Anju surname: Bala fullname: Bala, Anju – sequence: 2 surname: Priti fullname: Priti |
| BookMark | eNp90M1OwkAQwPGNwUREnsDLvkBxv2i7x1IRSCCYqOdmuuzikm2XbGsMby-2HtRETzOX32Tyv0aD2tcaoVtKJnwqBbmzh9DqyYzxRExIkjIqL9CQsSSJeJqkg2_7FRo3zYEQQnlMBY-HaLOqjk5Xum6htb7G3uDlqQx2h7N8Gz0-baNFFt3Pceb2Ptj2tcLGB7yBqvL7ABXOHTSNNVZ1_AZdGnCNHn_NEXp5mD_ny2i9XazybB0pRqSMdLzjijMJhgGFhGngklElSmok40LJeEqBCGNomU6VlkTFPFbp-WMQJKWMj5Do777VRzi9g3PFMdgKwqmgpOiqFF2VovysUvRVzoz3TAXfNEGbv9Tsp5K_lLJ9rTaAdf_aD6Dceto |
| CitedBy_id | crossref_primary_10_1515_jisys_2022_0269 |
| ContentType | Journal Article |
| CorporateAuthor | Research Scholar, Department of Computer Science and Applications, M.D.U, Rohtak, India Assistant Professor, Department of Computer Science and Applications, M.D.U, Rohtak, India |
| CorporateAuthor_xml | – name: Assistant Professor, Department of Computer Science and Applications, M.D.U, Rohtak, India – name: Research Scholar, Department of Computer Science and Applications, M.D.U, Rohtak, India |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.35940/ijrte.B2374.078219 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2277-3878 |
| EndPage | 3948 |
| ExternalDocumentID | 10.35940/ijrte.b2374.078219 10_35940_ijrte_B2374_078219 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E OK1 RNS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2099-e6d3c329af2a1a72ea3921c4b1f9234c9651a04ff1b85ce90c636c8143a408123 |
| IEDL.DBID | UNPAY |
| ISSN | 2277-3878 |
| IngestDate | Sun Sep 07 11:18:25 EDT 2025 Tue Jul 01 04:00:13 EDT 2025 Thu Apr 24 23:07:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2099-e6d3c329af2a1a72ea3921c4b1f9234c9651a04ff1b85ce90c636c8143a408123 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.35940/ijrte.b2374.078219 |
| PageCount | 5 |
| ParticipantIDs | unpaywall_primary_10_35940_ijrte_b2374_078219 crossref_primary_10_35940_ijrte_B2374_078219 crossref_citationtrail_10_35940_ijrte_B2374_078219 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-30 |
| PublicationDateYYYYMMDD | 2019-07-30 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of recent technology and engineering |
| PublicationYear | 2019 |
| SSID | ssj0001361436 |
| Score | 2.1071818 |
| Snippet | Breast Cancer is one of the fastest growing cancer that causes women to death in the world. The early detection of breast cancer improves the chances of its... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 3944 |
| Title | Implementation of Hybrid ACO-PSO-GA-DE Algorithm for Mammogram Classification |
| URI | https://doi.org/10.35940/ijrte.b2374.078219 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2277-3878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001361436 issn: 2277-3878 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66HtSDb_G55ODRrH2kaXOsuusidFfQBT2VJE10tduVtYvowd9u0lapgqL3GQiTgfkmme8bAA78xCEBtSjifqIbFGUTFBiuDOUBx0oDVGYbNnLUI90BPr_2riudbcOFqf3fux7F1tHwfpLLFndcH7dMOTMSn3PE08C7AeYGvYvwxqyPMx-RbuAHpa7QT55fas_8NHtkL88sTWsFpbNcMrWfCh1CM0fy0JrmvCVev6k0_vGsK2CpApYwLDNhFczIbA0s1uQG10FUSAGPKrZRBscKdl8MYwuGJ310cdlHZyE6bcMwvR1PhvndCGpECyOmU9XMcMFigaYZLSrcN8Cg07466aJqnQIShh-LJElc4TqUKYfZzHck09jIFpjbSqM8LCjxbGZhpWweeEJSSxCXiEADKoY1cHDcTdDIxpncApBRJQ1FlTuJWZ9uMd20qQT7RAgfEyy3gfMR6FhUWuNm5UUa656jiFVcxCo-NrGKy1htg8NPp8dSauN3c_R5gz_Z85r9zj_td8GCBke0eMe19kAjn0zlvgYgOW-C2eit3azS7x22NtR5 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SHtSDb7G-yMGjqfvIZjfHtbYWoQ_QQj0tSTbRarstdYvUX2-yu5YqVPQ-A2EyMN8k830DwIUfOySgFkXcj3WDomyCAsOVoTzgWGmAymzDRm61SbOH7_pev9DZNlyYpf9716PYuhq8TFNZ5Y7r46opZ0bis0w8DbxLoNxrd8NHsz7OfES6gR_kukKrPL_VnvVZMmHzdzYcLhWUxnbO1H7LdAjNHMlrdZbyqvj4odL4x7PugK0CWMIwz4RdsCaTPbC5JDe4D1qZFPCoYBslcKxgc24YWzCsdVD3voNuQ3RTh-HwaTwdpM8jqBEtbDGdqmaGC2YLNM1oUeZ-AHqN-kOtiYp1CkgYfiySJHaF61CmHGYz35FMYyNbYG4rjfKwoMSzmYWVsnngCUktQVwiAg2oGNbAwXEPQSkZJ_IIQEaVNBRV7sRmfbrFdNOmYuwTIXxMsKwA5yvQkSi0xs3Ki2Gke44sVlEWq-jaxCrKY1UBlwunSS618bs5WtzgKnu-ZH_8T_sTsKHBEc3eca1TUEqnM3mmAUjKz4vE-wS_69NI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Hybrid+ACO-PSO-GA-DE+Algorithm+for+Mammogram+Classification&rft.jtitle=International+journal+of+recent+technology+and+engineering&rft.au=Bala%2C+Anju&rft.au=Priti&rft.date=2019-07-30&rft.issn=2277-3878&rft.eissn=2277-3878&rft.volume=8&rft.issue=2&rft.spage=3944&rft.epage=3948&rft_id=info:doi/10.35940%2Fijrte.B2374.078219&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijrte_B2374_078219 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2277-3878&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2277-3878&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2277-3878&client=summon |