Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta

Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temp...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on advanced science, engineering and information technology Vol. 12; no. 6; pp. 2476 - 2484
Main Authors Handari, Bevina D., Wulandari, Dewi, Aquita, Nessa A., Leandra, Shafira, Sarwinda, Devvi, Hertono, Gatot F.
Format Journal Article
LanguageEnglish
Published 19.12.2022
Online AccessGet full text
ISSN2088-5334
2460-6952
2088-5334
DOI10.18517/ijaseit.12.6.16226

Cover

Abstract Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temperature, rainfall, and humidity indirectly affect DHF spread patterns. Therefore, this research uses and compares three machine learning models—restricted Boltzmann machine-backpropagation neural network (RBM-BPNN), artificial neural network-genetic algorithm (ANN-GA), and artificial neural network-particle swarm optimization (ANN-PSO)—to predict DHF case numbers in DKI Jakarta, the capital of Indonesia, which is in the DHF red zone. RBM and PSO are used to calculate optimal initial weight and bias before starting the prediction stage with ANN; meanwhile, GA updates weight and bias during the backward pass in ANN. The data includes temperature, rainfall, and humidity, plus previous DHF case data for five districts in DKI Jakarta from Jan. 6, 2009, to Sept. 25, 2017. We used Arima, Autocorrelation, and Pearson correlation for pre-processing data. The DHF case data fluctuates strongly and requires the moving averages method. The data consists of 70% training data and 30% testing data. The results show that each district requires different model architectures for the best predictions. `The best RMSE prediction of DHF cases with RBM-BPNN in Central Jakarta is 3,78%; the best RMSEs using ANN-GA in North and East Jakarta are 5,65% and 5,99%, respectively. The ANN-PSO model had the largest RMSE value in every district, with an average of 8,43%.
AbstractList Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temperature, rainfall, and humidity indirectly affect DHF spread patterns. Therefore, this research uses and compares three machine learning models—restricted Boltzmann machine-backpropagation neural network (RBM-BPNN), artificial neural network-genetic algorithm (ANN-GA), and artificial neural network-particle swarm optimization (ANN-PSO)—to predict DHF case numbers in DKI Jakarta, the capital of Indonesia, which is in the DHF red zone. RBM and PSO are used to calculate optimal initial weight and bias before starting the prediction stage with ANN; meanwhile, GA updates weight and bias during the backward pass in ANN. The data includes temperature, rainfall, and humidity, plus previous DHF case data for five districts in DKI Jakarta from Jan. 6, 2009, to Sept. 25, 2017. We used Arima, Autocorrelation, and Pearson correlation for pre-processing data. The DHF case data fluctuates strongly and requires the moving averages method. The data consists of 70% training data and 30% testing data. The results show that each district requires different model architectures for the best predictions. `The best RMSE prediction of DHF cases with RBM-BPNN in Central Jakarta is 3,78%; the best RMSEs using ANN-GA in North and East Jakarta are 5,65% and 5,99%, respectively. The ANN-PSO model had the largest RMSE value in every district, with an average of 8,43%.
Author Hertono, Gatot F.
Handari, Bevina D.
Sarwinda, Devvi
Aquita, Nessa A.
Wulandari, Dewi
Leandra, Shafira
Author_xml – sequence: 1
  givenname: Bevina D.
  surname: Handari
  fullname: Handari, Bevina D.
– sequence: 2
  givenname: Dewi
  surname: Wulandari
  fullname: Wulandari, Dewi
– sequence: 3
  givenname: Nessa A.
  surname: Aquita
  fullname: Aquita, Nessa A.
– sequence: 4
  givenname: Shafira
  surname: Leandra
  fullname: Leandra, Shafira
– sequence: 5
  givenname: Devvi
  surname: Sarwinda
  fullname: Sarwinda, Devvi
– sequence: 6
  givenname: Gatot F.
  surname: Hertono
  fullname: Hertono, Gatot F.
BookMark eNqNkc1OHDEMx6MKpFLKE3DJA3SXmUwmkzkuS_kqBdSW88ibeJawM8koCVrBCfEcnDjzFn0TnoBHYNhFAvVQ4Yst2z_L9v8LWbHOIiGbaTJMZZ4WW-YCApo4TNlQDFPBmPhE1lgi5SDPMr7yLv5MNkK4SHoreMKkWCNPY9d24I2d0l8YojcqoqbbronXLVhLf4I6Nxbp3_vH24fHmzu6DWrWedfBFKJxlh7jpYemd3Hu_Cx8oyMfTW2UWSTf195m7KHFaBQdNVPnTTxvKVj9EfAU-h7VIP09B9_Sky6a1lwvF6mdp6cedX_ByzU7-7t03P8lUGPpzo8DegiznoavZLWGJuDGq18nZ7vf_4z3B0cnewfj0dFAsaQUA4WMM1lioZBjzVmWT3hZ5kzVLNOoJ1wLlJMClUTOdCKY5qoWuZSq1KwQOlsnfDn30nZwNYemqTpvWvBXVZpUC-GqV-GqlFWiWgjXY9kSU96F4LH-IFX-QykTF2-JHkzzX_YZKJTBnQ
CitedBy_id crossref_primary_10_2478_pomr_2024_0030
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.18517/ijaseit.12.6.16226
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2088-5334
EndPage 2484
ExternalDocumentID 10.18517/ijaseit.12.6.16226
10_18517_ijaseit_12_6_16226
GroupedDBID 5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
KQ8
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c2096-ce24289e7ce4ef4235b49952cf23dedb4d6e8b7ec8e42d062d4cf6588c9d276d3
IEDL.DBID UNPAY
ISSN 2088-5334
2460-6952
IngestDate Tue Aug 19 15:54:47 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Tue Jul 01 02:45:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2096-ce24289e7ce4ef4235b49952cf23dedb4d6e8b7ec8e42d062d4cf6588c9d276d3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/16226/3587
PageCount 9
ParticipantIDs unpaywall_primary_10_18517_ijaseit_12_6_16226
crossref_primary_10_18517_ijaseit_12_6_16226
crossref_citationtrail_10_18517_ijaseit_12_6_16226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-19
PublicationDateYYYYMMDD 2022-12-19
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-19
  day: 19
PublicationDecade 2020
PublicationTitle International journal on advanced science, engineering and information technology
PublicationYear 2022
SSID ssj0000740286
Score 2.2147808
Snippet Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 2476
Title Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta
URI http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/16226/3587
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2088-5334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740286
  issn: 2088-5334
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLXodAEboDxEeVResACpmcx4bCdZTqeMhlYdhsdIZRU5tlPCZJxqklFFV4jvYMWav-BP-gV8AteJp-UhoSIhZRElfsT2tX1ufO-5CD2WMkgZE8qjAN08SlTHi6jSHgNsy0XKRLdjnZMPxnw0pXuH7PDCs85aVWamtHpp2Vgt1qf5xXtY0rPKrxkELW2En7knrn99ZanlC6H8LgdA4fdYGKyhdc4AoLfQ-nQ86b-1YeZgTnnW-dTeUw6KU8SI4yKyQepXxdo_hLxdF_XLfnV1aY7FhxOR5z9tQsMbqFq58jS2J7P2skra8vRPZsf_2b6b6LoDrbjfpNpAV7S5hTbcslDiJ467-ult9H3QxDU0R_iVtiFBJCBavFPk1elcGIMPattNjb99Ofv09ezjZ7wj5AyaA8taLSLYkoVAVePGOr3crittWC5-e3dRhq0evgz386NikVXv5lgYdZmME9du_PpELOb4BSyfc-eXigHM48nCHmNZw3C8OxriAXRWiTODd_ef4z0xg9ziDpoOn70ZjDwXVMKTBNQ1T2oAJWGkA6mpTgFMsgSUPkZkSnpKq4QqrsMk0DLUVnI5UVSmANNCGSkScNW7i1qmMPoewoQzUPG5TBKqqYqUYJIxxQhNOwkgp3QTkZXoxNIxrtvAH3lsNS8rb7Eb5rhLYh7XQ7uJts8zHTeEI39P7p3L5GXS3__H9A_QNWIdPrpwRQ9Rq1os9SOAYVWyhdb2X4ZbbnL9AK9xQ5A
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELage4ALsPyI5U8-cABp07Su7SbHbpeqLNpSAZWWU-TYzhKaJqsm1Yo9IZ6DE2fegjfZJ-ARmEncXX4ktEhIOUSJf2J7bH8Tz3xDyGOt-4kQyngcoJvHmel4ITfWE4BtpUqE6nbQOXl_IsczvncgDs4969CqMs1L1EvLxmqxPs0v3sOSnlZ-zSCItBF-6p64_vUNUssXyvhdCYDC74mgf5lsSAEAvUU2ZpPp4C2GmYM55aHzKd5zCYpTKJjjIsIg9eti8Q-hbNdF_bJfXVnlR-rDscqynzah0XVSrV15GtuTeXtVxW198iez4_9s3w1yzYFWOmhSbZJLNr9JNt2yUNInjrv66S3yfdjENcwP6SuLIUE0IFq6U2TVyULlOd2vbTct_fbl9NPX04-f6Y7Sc2gOLGu1iFAkC4GqJo11erldV9qwXPz27rwMrB6-jA6yw2KZVu8WVOXmIhmnrt309bFaLuhLWD4Xzi-VApin0yUeY6FhON0dj-gQOqukaU53Xzyne2oOudVtMhs9ezMcey6ohKcZqGuetgBKgtD2teU2ATApYlD6BNMJ6xlrYm6kDeK-1YFFyZXMcJ0ATAt0aFhfmt4d0sqL3N4llEkBKr7UccwtN6FRQgthBONJJwbklGwRthadSDvGdQz8kUWoeaG8RW6Yoy6LZFQP7RbZPst01BCO_D25dyaTF0l_7x_T3ydXGTp8dOEKH5BWtVzZhwDDqviRm1Y_AB-9Qps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Restricted+Boltzmann+Machine+%C3%A2%E2%82%AC%E2%80%9C+Backpropagation+Neural+Networks%2C+Artificial+Neural+Network+%C3%A2%E2%82%AC%E2%80%9C+Genetic+Algorithm+and+Artificial+Neural+Network+%C3%A2%E2%82%AC%E2%80%9C+Particle+Swarm+Optimization+for+Predicting+DHF+Cases+in+DKI+Jakarta&rft.jtitle=International+journal+on+advanced+science%2C+engineering+and+information+technology&rft.au=Handari%2C+Bevina+D.&rft.au=Wulandari%2C+Dewi&rft.au=Aquita%2C+Nessa+A.&rft.au=Leandra%2C+Shafira&rft.date=2022-12-19&rft.issn=2088-5334&rft.eissn=2088-5334&rft.volume=12&rft.issue=6&rft.spage=2476&rft.epage=2484&rft_id=info:doi/10.18517%2Fijaseit.12.6.16226&rft.externalDBID=n%2Fa&rft.externalDocID=10_18517_ijaseit_12_6_16226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-5334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-5334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-5334&client=summon