Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta
Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temp...
        Saved in:
      
    
          | Published in | International journal on advanced science, engineering and information technology Vol. 12; no. 6; pp. 2476 - 2484 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        19.12.2022
     | 
| Online Access | Get full text | 
| ISSN | 2088-5334 2460-6952 2088-5334  | 
| DOI | 10.18517/ijaseit.12.6.16226 | 
Cover
| Abstract | Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temperature, rainfall, and humidity indirectly affect DHF spread patterns. Therefore, this research uses and compares three machine learning models—restricted Boltzmann machine-backpropagation neural network (RBM-BPNN), artificial neural network-genetic algorithm (ANN-GA), and artificial neural network-particle swarm optimization (ANN-PSO)—to predict DHF case numbers in DKI Jakarta, the capital of Indonesia, which is in the DHF red zone. RBM and PSO are used to calculate optimal initial weight and bias before starting the prediction stage with ANN; meanwhile, GA updates weight and bias during the backward pass in ANN. The data includes temperature, rainfall, and humidity, plus previous DHF case data for five districts in DKI Jakarta from Jan. 6, 2009, to Sept. 25, 2017. We used Arima, Autocorrelation, and Pearson correlation for pre-processing data. The DHF case data fluctuates strongly and requires the moving averages method. The data consists of 70% training data and 30% testing data. The results show that each district requires different model architectures for the best predictions. `The best RMSE prediction of DHF cases with RBM-BPNN in Central Jakarta is 3,78%; the best RMSEs using ANN-GA in North and East Jakarta are 5,65% and 5,99%, respectively. The ANN-PSO model had the largest RMSE value in every district, with an average of 8,43%. | 
    
|---|---|
| AbstractList | Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans and strategies. Previous research shows that temperature, rainfall, and humidity indirectly affect DHF spread patterns. Therefore, this research uses and compares three machine learning models—restricted Boltzmann machine-backpropagation neural network (RBM-BPNN), artificial neural network-genetic algorithm (ANN-GA), and artificial neural network-particle swarm optimization (ANN-PSO)—to predict DHF case numbers in DKI Jakarta, the capital of Indonesia, which is in the DHF red zone. RBM and PSO are used to calculate optimal initial weight and bias before starting the prediction stage with ANN; meanwhile, GA updates weight and bias during the backward pass in ANN. The data includes temperature, rainfall, and humidity, plus previous DHF case data for five districts in DKI Jakarta from Jan. 6, 2009, to Sept. 25, 2017. We used Arima, Autocorrelation, and Pearson correlation for pre-processing data. The DHF case data fluctuates strongly and requires the moving averages method. The data consists of 70% training data and 30% testing data. The results show that each district requires different model architectures for the best predictions. `The best RMSE prediction of DHF cases with RBM-BPNN in Central Jakarta is 3,78%; the best RMSEs using ANN-GA in North and East Jakarta are 5,65% and 5,99%, respectively. The ANN-PSO model had the largest RMSE value in every district, with an average of 8,43%. | 
    
| Author | Hertono, Gatot F. Handari, Bevina D. Sarwinda, Devvi Aquita, Nessa A. Wulandari, Dewi Leandra, Shafira  | 
    
| Author_xml | – sequence: 1 givenname: Bevina D. surname: Handari fullname: Handari, Bevina D. – sequence: 2 givenname: Dewi surname: Wulandari fullname: Wulandari, Dewi – sequence: 3 givenname: Nessa A. surname: Aquita fullname: Aquita, Nessa A. – sequence: 4 givenname: Shafira surname: Leandra fullname: Leandra, Shafira – sequence: 5 givenname: Devvi surname: Sarwinda fullname: Sarwinda, Devvi – sequence: 6 givenname: Gatot F. surname: Hertono fullname: Hertono, Gatot F.  | 
    
| BookMark | eNqNkc1OHDEMx6MKpFLKE3DJA3SXmUwmkzkuS_kqBdSW88ibeJawM8koCVrBCfEcnDjzFn0TnoBHYNhFAvVQ4Yst2z_L9v8LWbHOIiGbaTJMZZ4WW-YCApo4TNlQDFPBmPhE1lgi5SDPMr7yLv5MNkK4SHoreMKkWCNPY9d24I2d0l8YojcqoqbbronXLVhLf4I6Nxbp3_vH24fHmzu6DWrWedfBFKJxlh7jpYemd3Hu_Cx8oyMfTW2UWSTf195m7KHFaBQdNVPnTTxvKVj9EfAU-h7VIP09B9_Sky6a1lwvF6mdp6cedX_ByzU7-7t03P8lUGPpzo8DegiznoavZLWGJuDGq18nZ7vf_4z3B0cnewfj0dFAsaQUA4WMM1lioZBjzVmWT3hZ5kzVLNOoJ1wLlJMClUTOdCKY5qoWuZSq1KwQOlsnfDn30nZwNYemqTpvWvBXVZpUC-GqV-GqlFWiWgjXY9kSU96F4LH-IFX-QykTF2-JHkzzX_YZKJTBnQ | 
    
| CitedBy_id | crossref_primary_10_2478_pomr_2024_0030 | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.18517/ijaseit.12.6.16226 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 2088-5334 | 
    
| EndPage | 2484 | 
    
| ExternalDocumentID | 10.18517/ijaseit.12.6.16226 10_18517_ijaseit_12_6_16226  | 
    
| GroupedDBID | 5VS AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION KQ8 OK1 ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c2096-ce24289e7ce4ef4235b49952cf23dedb4d6e8b7ec8e42d062d4cf6588c9d276d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2088-5334 2460-6952  | 
    
| IngestDate | Tue Aug 19 15:54:47 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Tue Jul 01 02:45:25 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | cc-by-sa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2096-ce24289e7ce4ef4235b49952cf23dedb4d6e8b7ec8e42d062d4cf6588c9d276d3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/16226/3587 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_18517_ijaseit_12_6_16226 crossref_primary_10_18517_ijaseit_12_6_16226 crossref_citationtrail_10_18517_ijaseit_12_6_16226  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-12-19 | 
    
| PublicationDateYYYYMMDD | 2022-12-19 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal on advanced science, engineering and information technology | 
    
| PublicationYear | 2022 | 
    
| SSID | ssj0000740286 | 
    
| Score | 2.2147808 | 
    
| Snippet | Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early predictions of DHF case numbers help... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 2476 | 
    
| Title | Comparing Restricted Boltzmann Machine – Backpropagation Neural Networks, Artificial Neural Network – Genetic Algorithm and Artificial Neural Network – Particle Swarm Optimization for Predicting DHF Cases in DKI Jakarta | 
    
| URI | http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/16226/3587 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2088-5334 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740286 issn: 2088-5334 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLXodAEboDxEeVResACpmcx4bCdZTqeMhlYdhsdIZRU5tlPCZJxqklFFV4jvYMWav-BP-gV8AteJp-UhoSIhZRElfsT2tX1ufO-5CD2WMkgZE8qjAN08SlTHi6jSHgNsy0XKRLdjnZMPxnw0pXuH7PDCs85aVWamtHpp2Vgt1qf5xXtY0rPKrxkELW2En7knrn99ZanlC6H8LgdA4fdYGKyhdc4AoLfQ-nQ86b-1YeZgTnnW-dTeUw6KU8SI4yKyQepXxdo_hLxdF_XLfnV1aY7FhxOR5z9tQsMbqFq58jS2J7P2skra8vRPZsf_2b6b6LoDrbjfpNpAV7S5hTbcslDiJ467-ult9H3QxDU0R_iVtiFBJCBavFPk1elcGIMPattNjb99Ofv09ezjZ7wj5AyaA8taLSLYkoVAVePGOr3crittWC5-e3dRhq0evgz386NikVXv5lgYdZmME9du_PpELOb4BSyfc-eXigHM48nCHmNZw3C8OxriAXRWiTODd_ef4z0xg9ziDpoOn70ZjDwXVMKTBNQ1T2oAJWGkA6mpTgFMsgSUPkZkSnpKq4QqrsMk0DLUVnI5UVSmANNCGSkScNW7i1qmMPoewoQzUPG5TBKqqYqUYJIxxQhNOwkgp3QTkZXoxNIxrtvAH3lsNS8rb7Eb5rhLYh7XQ7uJts8zHTeEI39P7p3L5GXS3__H9A_QNWIdPrpwRQ9Rq1os9SOAYVWyhdb2X4ZbbnL9AK9xQ5A | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELage4ALsPyI5U8-cABp07Su7SbHbpeqLNpSAZWWU-TYzhKaJqsm1Yo9IZ6DE2fegjfZJ-ARmEncXX4ktEhIOUSJf2J7bH8Tz3xDyGOt-4kQyngcoJvHmel4ITfWE4BtpUqE6nbQOXl_IsczvncgDs4969CqMs1L1EvLxmqxPs0v3sOSnlZ-zSCItBF-6p64_vUNUssXyvhdCYDC74mgf5lsSAEAvUU2ZpPp4C2GmYM55aHzKd5zCYpTKJjjIsIg9eti8Q-hbNdF_bJfXVnlR-rDscqynzah0XVSrV15GtuTeXtVxW198iez4_9s3w1yzYFWOmhSbZJLNr9JNt2yUNInjrv66S3yfdjENcwP6SuLIUE0IFq6U2TVyULlOd2vbTct_fbl9NPX04-f6Y7Sc2gOLGu1iFAkC4GqJo11erldV9qwXPz27rwMrB6-jA6yw2KZVu8WVOXmIhmnrt309bFaLuhLWD4Xzi-VApin0yUeY6FhON0dj-gQOqukaU53Xzyne2oOudVtMhs9ezMcey6ohKcZqGuetgBKgtD2teU2ATApYlD6BNMJ6xlrYm6kDeK-1YFFyZXMcJ0ATAt0aFhfmt4d0sqL3N4llEkBKr7UccwtN6FRQgthBONJJwbklGwRthadSDvGdQz8kUWoeaG8RW6Yoy6LZFQP7RbZPst01BCO_D25dyaTF0l_7x_T3ydXGTp8dOEKH5BWtVzZhwDDqviRm1Y_AB-9Qps | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Restricted+Boltzmann+Machine+%C3%A2%E2%82%AC%E2%80%9C+Backpropagation+Neural+Networks%2C+Artificial+Neural+Network+%C3%A2%E2%82%AC%E2%80%9C+Genetic+Algorithm+and+Artificial+Neural+Network+%C3%A2%E2%82%AC%E2%80%9C+Particle+Swarm+Optimization+for+Predicting+DHF+Cases+in+DKI+Jakarta&rft.jtitle=International+journal+on+advanced+science%2C+engineering+and+information+technology&rft.au=Handari%2C+Bevina+D.&rft.au=Wulandari%2C+Dewi&rft.au=Aquita%2C+Nessa+A.&rft.au=Leandra%2C+Shafira&rft.date=2022-12-19&rft.issn=2088-5334&rft.eissn=2088-5334&rft.volume=12&rft.issue=6&rft.spage=2476&rft.epage=2484&rft_id=info:doi/10.18517%2Fijaseit.12.6.16226&rft.externalDBID=n%2Fa&rft.externalDocID=10_18517_ijaseit_12_6_16226 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-5334&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-5334&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-5334&client=summon |