CRISP: a correlation-filtered recursive feature elimination and integration of SMOTE pipeline for gait-based Parkinson’s disease screening

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD det...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 19; p. 1660963
Main Authors Afzal, Namra, Iqbal, Javaid, Waris, Asim, Khan, Muhammad Jawad, Hazzazi, Fawwaz, Ali, Hasnain, Ijaz, Muhammad Adeel, Gilani, Syed Omer
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2025
Subjects
Online AccessGet full text
ISSN1662-5188
1662-5188
DOI10.3389/fncom.2025.1660963

Cover

Abstract Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD detection. However, current computational approaches often suffer from redundant features and class imbalance, limiting both accuracy and generalizability. We propose CRISP (Correlation-filtered Recursive Feature Elimination and Integration of SMOTE Pipeline for Gait-Based Parkinson's Disease Screening), a lightweight multistage framework that sequentially applies correlation-based feature pruning, recursive feature elimination (RFE), and Synthetic Minority Oversampling Technique (SMOTE) based class balancing. To ensure clinically meaningful evaluation, a novel subject-wise protocol was also introduced that assigns one prediction per individual enhancing patient-level variability capture and better aligning with diagnostic workflows. Using 306 VGRF recordings (93 PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient Boosting (XGBoost) were evaluated for both binary PD detection and multiclass severity grading. CRISP consistently improved performance across all models under 5-fold cross-validation. XGBoost achieved the highest performance, increasing subject-wise PD detection accuracy from 96.1 ± 0.8% to 98.3 ± 0.8%, and severity grading accuracy from 96.2 ± 0.7% to 99.3 ± 0.5%. CRISP is the first VGRF-based pipeline to combine correlation-filtered feature pruning, recursive feature elimination, and SMOTE to enhance PD detection performance, while also introducing a subject-wise evaluation protocol that captures patient-level variability for truly personalized diagnostics. These twin novelties deliver clinically significant gains and lay the foundation for real-time, on-device PD detection and severity monitoring.
AbstractList Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD detection. However, current computational approaches often suffer from redundant features and class imbalance, limiting both accuracy and generalizability.IntroductionParkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD detection. However, current computational approaches often suffer from redundant features and class imbalance, limiting both accuracy and generalizability.We propose CRISP (Correlation-filtered Recursive Feature Elimination and Integration of SMOTE Pipeline for Gait-Based Parkinson's Disease Screening), a lightweight multistage framework that sequentially applies correlation-based feature pruning, recursive feature elimination (RFE), and Synthetic Minority Oversampling Technique (SMOTE) based class balancing. To ensure clinically meaningful evaluation, a novel subject-wise protocol was also introduced that assigns one prediction per individual enhancing patient-level variability capture and better aligning with diagnostic workflows. Using 306 VGRF recordings (93 PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient Boosting (XGBoost) were evaluated for both binary PD detection and multiclass severity grading.MethodsWe propose CRISP (Correlation-filtered Recursive Feature Elimination and Integration of SMOTE Pipeline for Gait-Based Parkinson's Disease Screening), a lightweight multistage framework that sequentially applies correlation-based feature pruning, recursive feature elimination (RFE), and Synthetic Minority Oversampling Technique (SMOTE) based class balancing. To ensure clinically meaningful evaluation, a novel subject-wise protocol was also introduced that assigns one prediction per individual enhancing patient-level variability capture and better aligning with diagnostic workflows. Using 306 VGRF recordings (93 PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient Boosting (XGBoost) were evaluated for both binary PD detection and multiclass severity grading.CRISP consistently improved performance across all models under 5-fold cross-validation. XGBoost achieved the highest performance, increasing subject-wise PD detection accuracy from 96.1 ± 0.8% to 98.3 ± 0.8%, and severity grading accuracy from 96.2 ± 0.7% to 99.3 ± 0.5%.ResultsCRISP consistently improved performance across all models under 5-fold cross-validation. XGBoost achieved the highest performance, increasing subject-wise PD detection accuracy from 96.1 ± 0.8% to 98.3 ± 0.8%, and severity grading accuracy from 96.2 ± 0.7% to 99.3 ± 0.5%.CRISP is the first VGRF-based pipeline to combine correlation-filtered feature pruning, recursive feature elimination, and SMOTE to enhance PD detection performance, while also introducing a subject-wise evaluation protocol that captures patient-level variability for truly personalized diagnostics. These twin novelties deliver clinically significant gains and lay the foundation for real-time, on-device PD detection and severity monitoring.ConclusionCRISP is the first VGRF-based pipeline to combine correlation-filtered feature pruning, recursive feature elimination, and SMOTE to enhance PD detection performance, while also introducing a subject-wise evaluation protocol that captures patient-level variability for truly personalized diagnostics. These twin novelties deliver clinically significant gains and lay the foundation for real-time, on-device PD detection and severity monitoring.
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD detection. However, current computational approaches often suffer from redundant features and class imbalance, limiting both accuracy and generalizability. We propose CRISP (Correlation-filtered Recursive Feature Elimination and Integration of SMOTE Pipeline for Gait-Based Parkinson's Disease Screening), a lightweight multistage framework that sequentially applies correlation-based feature pruning, recursive feature elimination (RFE), and Synthetic Minority Oversampling Technique (SMOTE) based class balancing. To ensure clinically meaningful evaluation, a novel subject-wise protocol was also introduced that assigns one prediction per individual enhancing patient-level variability capture and better aligning with diagnostic workflows. Using 306 VGRF recordings (93 PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient Boosting (XGBoost) were evaluated for both binary PD detection and multiclass severity grading. CRISP consistently improved performance across all models under 5-fold cross-validation. XGBoost achieved the highest performance, increasing subject-wise PD detection accuracy from 96.1 ± 0.8% to 98.3 ± 0.8%, and severity grading accuracy from 96.2 ± 0.7% to 99.3 ± 0.5%. CRISP is the first VGRF-based pipeline to combine correlation-filtered feature pruning, recursive feature elimination, and SMOTE to enhance PD detection performance, while also introducing a subject-wise evaluation protocol that captures patient-level variability for truly personalized diagnostics. These twin novelties deliver clinically significant gains and lay the foundation for real-time, on-device PD detection and severity monitoring.
IntroductionParkinson’s disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD detection. However, current computational approaches often suffer from redundant features and class imbalance, limiting both accuracy and generalizability.MethodsWe propose CRISP (Correlation-filtered Recursive Feature Elimination and Integration of SMOTE Pipeline for Gait-Based Parkinson’s Disease Screening), a lightweight multistage framework that sequentially applies correlation-based feature pruning, recursive feature elimination (RFE), and Synthetic Minority Oversampling Technique (SMOTE) based class balancing. To ensure clinically meaningful evaluation, a novel subject-wise protocol was also introduced that assigns one prediction per individual enhancing patient-level variability capture and better aligning with diagnostic workflows. Using 306 VGRF recordings (93 PD, 76 controls), five classifiers, i.e., k-Nearest Neighbours (KNN), Decision Tree (DT), Random Forest (RF), Gradient boosting (GB), and Extreme Gradient Boosting (XGBoost) were evaluated for both binary PD detection and multiclass severity grading.ResultsCRISP consistently improved performance across all models under 5-fold cross-validation. XGBoost achieved the highest performance, increasing subject-wise PD detection accuracy from 96.1 ± 0.8% to 98.3 ± 0.8%, and severity grading accuracy from 96.2 ± 0.7% to 99.3 ± 0.5%.ConclusionCRISP is the first VGRF-based pipeline to combine correlation-filtered feature pruning, recursive feature elimination, and SMOTE to enhance PD detection performance, while also introducing a subject-wise evaluation protocol that captures patient-level variability for truly personalized diagnostics. These twin novelties deliver clinically significant gains and lay the foundation for real-time, on-device PD detection and severity monitoring.
Author Hazzazi, Fawwaz
Khan, Muhammad Jawad
Gilani, Syed Omer
Iqbal, Javaid
Ijaz, Muhammad Adeel
Afzal, Namra
Waris, Asim
Ali, Hasnain
Author_xml – sequence: 1
  givenname: Namra
  surname: Afzal
  fullname: Afzal, Namra
– sequence: 2
  givenname: Javaid
  surname: Iqbal
  fullname: Iqbal, Javaid
– sequence: 3
  givenname: Asim
  surname: Waris
  fullname: Waris, Asim
– sequence: 4
  givenname: Muhammad Jawad
  surname: Khan
  fullname: Khan, Muhammad Jawad
– sequence: 5
  givenname: Fawwaz
  surname: Hazzazi
  fullname: Hazzazi, Fawwaz
– sequence: 6
  givenname: Hasnain
  surname: Ali
  fullname: Ali, Hasnain
– sequence: 7
  givenname: Muhammad Adeel
  surname: Ijaz
  fullname: Ijaz, Muhammad Adeel
– sequence: 8
  givenname: Syed Omer
  surname: Gilani
  fullname: Gilani, Syed Omer
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41140842$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URH_gBVggL9lksOPEidmhUYGRilrRsrZu7JuRS2IPdlLUHQ_AC_B6PAnuZKhYsvL11fcdXemckiMfPBLykrOVEK1603sTxlXJynrFpWRKiifkJE9lUfO2PfpnPianKd0yJktZs2fkuOK8Ym1VnpCf68-b66u3FKgJMeIAkwu-6N0wYURLI5o5JneHtEeY5ogUBzc6v49R8JY6P-E2Lv_Q0-tPlzfndOd2OedzK0S6BTcVHaSMu4L41fkU_O8fvxK1LmFe02Qiond--5w87WFI-OLwnpEv789v1h-Li8sPm_W7i8KUTImiV0J1bdV1BiUIxbmRtkLT1VBXDXSsl1ALbIRpsRZKCW4B-14YU0ppha3EGdksXBvgVu-iGyHe6wBO7xchbjXEyZkBteCoFANu0Iqq4aViyoIAK4HbRjRNZomFNfsd3H-HYXgEcqYfPOm9J_3gSR885dbrpbWL4duMadKjSwaHATyGOWmRRSnGWslz9NUhOncj2kf6X4c5UC4BE0NKEfv_OeAPhduy8g
Cites_doi 10.3389/fncom.2023.1274575
10.1016/j.bspc.2025.107659
10.2174/1871527320666211006142100
10.1007/978-1-4614-6849-3
10.3390/DIAGNOSTICS12082003
10.1016/j.humov.2024.103301
10.3934/Neuroscience.2023017
10.1111/j.1460-9568.2005.04298.x
10.1186/s12984-021-00958-5
10.18653/v1/W16-2923
10.1007/s10489-020-02182-5
10.1016/S0140-6736(21)00218-X
10.1038/s41598-024-83357-9
10.1038/s41598-024-72648-w
10.1161/01.cir.101.23.e215
10.1007/s11571-022-09925-9
10.3389/fphys.2020.587057
10.1016/j.amjmed.2017.11.051
10.3389/fdgth.2024.1377165
10.1016/j.neunet.2018.12.012
10.1038/s41598-025-98571-2
10.1016/j.cmpb.2017.04.007
10.1109/JSEN.2022.3210773
10.1109/LSENS.2020.2994938
10.1016/j.eswa.2019.113075
10.3389/fnhum.2022.768575
10.1080/10255842.2023.2263125
10.1080/17582024.2025.2510842
10.3390/s24051572
10.1016/j.procs.2024.04.015
10.1371/journal.pone.0175951
10.1038/s41598-019-38748-8
10.1002/mds.20507
10.1186/s12984-024-01458-y
10.1109/TNSRE.2023.3269569
ContentType Journal Article
Copyright Copyright © 2025 Afzal, Iqbal, Waris, Khan, Hazzazi, Ali, Ijaz and Gilani.
Copyright_xml – notice: Copyright © 2025 Afzal, Iqbal, Waris, Khan, Hazzazi, Ali, Ijaz and Gilani.
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.3389/fncom.2025.1660963
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_31e990a1ced34712909da3ad6a1d7377
10.3389/fncom.2025.1660963
41140842
10_3389_fncom_2025_1660963
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
AFFHD
C1A
IPNFZ
M48
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c2093-f939b84bbce6a3911c6d4ecb5a547ab0f6a53e73c8e539931daeff3cc266d3d43
IEDL.DBID M48
ISSN 1662-5188
IngestDate Mon Oct 13 19:20:26 EDT 2025
Thu Oct 30 06:01:40 EDT 2025
Wed Oct 29 12:25:18 EDT 2025
Thu Oct 30 02:00:46 EDT 2025
Thu Oct 16 04:44:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords subject-wise accuracy
correlation-filtered feature pruning
XGBoost
Parkinson’s disease
gait analysis
vertical ground-reaction force
Language English
License Copyright © 2025 Afzal, Iqbal, Waris, Khan, Hazzazi, Ali, Ijaz and Gilani.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2093-f939b84bbce6a3911c6d4ecb5a547ab0f6a53e73c8e539931daeff3cc266d3d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1660963/pdf
PMID 41140842
PQID 3265900861
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_31e990a1ced34712909da3ad6a1d7377
unpaywall_primary_10_3389_fncom_2025_1660963
proquest_miscellaneous_3265900861
pubmed_primary_41140842
crossref_primary_10_3389_fncom_2025_1660963
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Abdullah (ref9001) 2024; 21
Ramesh (ref27) 2023; 10
Choi (ref9) 2024; 14
Liu (ref24) 2021; 51
Dong (ref12) 2023; 31
Roy (ref29) 2024; 235
Connolly (ref11) 2016
Etoom (ref13) 2024; 98
Horst (ref19) 2019; 9
Shalin (ref32) 2021; 18
Hausdorff (ref17) 2008
Amisola (ref4) 2025
Alkhatib (ref3) 2020; 4
Rana (ref28) 2022; 12
Bloem (ref7) 2021; 397
Joshi (ref21) 2017; 145
Zhou (ref39) 2025; 15
Kumar (ref23) 2021; 21
Hemmerling (ref18) 2025; 106
Ghaheri (ref15) 2024; 27
Baker (ref5) 2018; 131
Siddique (ref33) 2023; 17
Wang (ref36) 2024; 18
Navita (ref26) 2025; 15
Alam (ref2) 2017; 12
Goldberger (ref16) 2000; 101
Kuhn (ref22) 2013
Yogev (ref37) 2005; 22
Barberà (ref6) 2024
Maachi (ref25) 2020; 143
Brindha (ref8) 2022
Salchow-Hömmen (ref31) 2022; 16
Saha (ref30) 2022; 22
Abdulsadig (ref1) 2024; 6
Frenkel-Toledo (ref14) 2005; 20
Chudzik (ref10) 2024; 24
Veeraragavan (ref35) 2020; 11
Zeng (ref38) 2019; 111
Srinivasarao (ref34) 2024
References_xml – volume: 17
  start-page: 1274575
  year: 2023
  ident: ref33
  article-title: Monitoring time domain characteristics of Parkinson’s disease using 3D memristive neuromorphic system
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2023.1274575
– volume: 106
  start-page: 107659
  year: 2025
  ident: ref18
  article-title: Gait analysis in mixed reality for Parkinson’s disease assessment
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2025.107659
– volume: 21
  start-page: 596
  year: 2021
  ident: ref23
  article-title: Tremor and rigidity in patients with Parkinson’s disease: emphasis on epidemiology, pathophysiology and contributing factors
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/1871527320666211006142100
– year: 2024
  ident: ref6
– volume-title: Applied predictive Modeling
  year: 2013
  ident: ref22
  doi: 10.1007/978-1-4614-6849-3
– volume: 12
  start-page: 2003
  year: 2022
  ident: ref28
  article-title: Imperative role of machine learning algorithm for detection of Parkinson’s disease: review, challenges and recommendations
  publication-title: Diagn.
  doi: 10.3390/DIAGNOSTICS12082003
– volume: 98
  start-page: 103301
  year: 2024
  ident: ref13
  article-title: Effects of freezing of gait on vertical ground reaction force in Parkinson’s disease
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2024.103301
– volume: 10
  start-page: 200
  year: 2023
  ident: ref27
  article-title: Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: a review of the literature
  publication-title: AIMS Neurosci.
  doi: 10.3934/Neuroscience.2023017
– volume: 22
  start-page: 1248
  year: 2005
  ident: ref37
  article-title: Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding?
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04298.x
– volume: 18
  start-page: 167
  year: 2021
  ident: ref32
  article-title: Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks
  publication-title: J. Neuro Engineering Rehabil.
  doi: 10.1186/s12984-021-00958-5
– start-page: 175
  volume-title: Proceedings of the 15th workshop on biomedical natural language processing
  year: 2016
  ident: ref11
  article-title: An information foraging approach to determining the number of relevant features
  doi: 10.18653/v1/W16-2923
– volume: 51
  start-page: 7221
  year: 2021
  ident: ref24
  article-title: A dual-branch model for diagnosis of Parkinson’s disease based on the independent and joint features of the left and right gait
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02182-5
– year: 2024
  ident: ref34
– volume: 397
  start-page: 2284
  year: 2021
  ident: ref7
  article-title: Parkinson’s disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00218-X
– volume: 15
  start-page: 1
  year: 2025
  ident: ref26
  article-title: Gait-based Parkinson’s disease diagnosis and severity classification using force sensors and machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-83357-9
– volume: 14
  start-page: 1
  year: 2024
  ident: ref9
  article-title: Convolutional neural network based detection of early stage Parkinson’s disease using the six minute walk test
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-72648-w
– year: 2008
  ident: ref17
– volume: 101
  start-page: e215
  year: 2000
  ident: ref16
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.cir.101.23.e215
– volume: 18
  start-page: 109
  year: 2024
  ident: ref36
  article-title: Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-022-09925-9
– volume: 11
  start-page: 587057
  year: 2020
  ident: ref35
  article-title: Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.587057
– volume: 131
  start-page: 602
  year: 2018
  ident: ref5
  article-title: Gait disorders
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2017.11.051
– volume: 6
  start-page: 1377165
  year: 2024
  ident: ref1
  article-title: A comparative study in class imbalance mitigation when working with physiological signals
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2024.1377165
– volume: 111
  start-page: 64
  year: 2019
  ident: ref38
  article-title: Classification of gait patterns between patients with Parkinson’s disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.12.012
– volume: 15
  start-page: 13830
  year: 2025
  ident: ref39
  article-title: Efficient human activity recognition on edge devices using DeepConv LSTM architectures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-98571-2
– volume: 145
  start-page: 135
  year: 2017
  ident: ref21
  article-title: An automatic non-invasive method for Parkinson’s disease classification
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2017.04.007
– volume: 22
  start-page: 21362
  year: 2022
  ident: ref30
  article-title: Machine learning for microcontroller-class hardware: a review
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2022.3210773
– volume: 4
  start-page: 1
  year: 2020
  ident: ref3
  article-title: Machine learning algorithm for gait analysis and classification on early detection of Parkinson
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2994938
– volume: 143
  start-page: 143
  year: 2020
  ident: ref25
  article-title: Deep 1D-convnet for accurate Parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113075
– volume: 16
  start-page: 768575
  year: 2022
  ident: ref31
  article-title: Review—emerging portable technologies for gait analysis in neurological disorders
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2022.768575
– volume: 27
  start-page: 1858
  year: 2024
  ident: ref15
  article-title: Diagnosis of Parkinson’s disease based on voice signals using SHAP and hard voting ensemble method
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2023.2263125
– start-page: 1
  year: 2025
  ident: ref4
  article-title: Gait analysis for Parkinson’s disease using multiscale entropy
  publication-title: Neurodegener. Dis. Manag.
  doi: 10.1080/17582024.2025.2510842
– volume: 24
  start-page: 1572
  year: 2024
  ident: ref10
  article-title: Machine learning and digital biomarkers can detect early stages of neurodegenerative diseases
  publication-title: Sens
  doi: 10.3390/s24051572
– volume: 235
  start-page: 122
  year: 2024
  ident: ref29
  article-title: A comparative analysis of advanced machine learning algorithms to diagnose Parkinson’s disease
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2024.04.015
– volume: 12
  start-page: e0175951
  year: 2017
  ident: ref2
  article-title: Vertical ground reaction force marker for Parkinson’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175951
– year: 2022
  ident: ref8
– volume: 9
  start-page: 1
  year: 2019
  ident: ref19
  article-title: Explaining the unique nature of individual gait patterns with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38748-8
– volume: 20
  start-page: 1109
  year: 2005
  ident: ref14
  article-title: Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20507
– volume: 21
  start-page: 178
  year: 2024
  ident: ref9001
  article-title: Multibody dynamics-based musculoskeletal modeling for gait analysis: a systematic review
  publication-title: J NeuroEngineering Rehabil
  doi: 10.1186/s12984-024-01458-y
– volume: 31
  start-page: 2205
  year: 2023
  ident: ref12
  article-title: Static-dynamic temporal networks for Parkinson’s disease detection and severity prediction
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3269569
SSID ssj0062650
Score 2.3507211
Snippet Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF)...
IntroductionParkinson’s disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction...
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1660963
SubjectTerms correlation-filtered feature pruning
gait analysis
Parkinson’s disease
subject-wise accuracy
vertical ground-reaction force
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABAeURXjIS4gKhSfxIwq1UrQpSAdFW6s0av9BKS3a13RXqjR_AH-Dv8UuYsbOrIiHBgWMiJ7E8k5lv7JlvGHsmAWLjQ19a26lSKqXKvo2qrME2baUbFxI7_9F7fXgq352ps0utvignLNMD54XbEXVAgwm1C16gIW36qvcgwGuofSvaVEdedf06mMo2GFG6qnKJDIZg_U4cKDUE43z1qtYaUbv4zQ0ltv4_Qczr7OpqmMPFV5hOL7mdg5vsxogX-W6e5y12JQy32fbugLHylwv-nKcMzrQ1vs2-7316e_zxNQfuqOdGznIr44QOxIPnC9pap2x1HkOi8-Rhmnp60TAOg-dr7gi6nkV-fPThZJ_PJ3OqWcenZgv-GSbLkjyf51QvnUrHfn77cc7Hgx6OVggjY_SHd9jpwf7J3mE5dlsoXVP1ooy96G0nrXVBg0Ab6LSXwVkFSrZgq6hBidAK1wVisxW1hxCjcA5dvBdeirtsa5gN4T7jWsfOWi2ASqVAIAiNbePqKGnzBEFdwV6sF9_MM6mGwWCERGWSqAyJyoyiKtgbks9mJBFipxuoJmZUE_M3NSnY07V0Df5AdCoCQ5itzg3iV-qc2um6YPey2DefkhgtVp1sCvZyowf_MOMH_2PGD9k1emfe7nnEtpaLVXiMAGhpnyRd_wU61QSL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwELbK9gAceBXo8pKREBfwbhLHTsJtqVoVpJaKdqVyivysVmyz0T6EyokfwB_g7_FLmHGSVUEgwYVjIluJxmPPN56Zbwh5lirlE-sKpnUuWCqEYEXmBYuVTrJIJsYFdv6DQ7k_Tt-eitMNctbVwmBapcfSfWwEPalCLL-V6mJoQqOD9pKMXSJ8dMMujQxPAfC6iqGvMBsEXHsxiKUEoM6HtfVXyKYUANp7ZHN8eDT6gO6YlOCOxXnelNT8YfJPZiuw-_8Okl4nV1dVrS4-qen0kpnau9lwiCwCuyFmp3wcrJZ6YD7_wv34HyRwi9xooS4dNTNukw1X3SFbowrc_PML-pyG5NNwq79Fvu68f3N89IoqarBdSJOgx_wEY_nO0jlGBTDRnnoXmEipm4Z2ZDiMqsrSjvYCn2eeHh-8O9ml9aTGcnuYNZvTMzVZMjTalmKpd6h6-_7l24K2MSoKByg49WDK75Lx3u7Jzj5rG0Uwk0QFZ77ghc5TrY2TisPxbaRNndFCiTRTOvJSCe4ybnKHRLw8tsp5z40BdGK5Tfk90qtmldsmVEqfay25wiovxQE_-ywxsU_x3gfwaJ-86PSgrBs-kBL8KBR4GQReosDLVuB98hpVZT0SubzDC1jUsl2wkscOIIGKjbMcoEJSRIVVXFmpYpvxLOuTp52ilbD3MaCjKjdbLUqA3tj0NZdxn9xvNHD9qRQc3ShPkz55uVbJv_jjB_82_CG5ho_NndQj0lvOV-4xoLSlftLusB9DKkGH
  priority: 102
  providerName: Unpaywall
Title CRISP: a correlation-filtered recursive feature elimination and integration of SMOTE pipeline for gait-based Parkinson’s disease screening
URI https://www.ncbi.nlm.nih.gov/pubmed/41140842
https://www.proquest.com/docview/3265900861
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1660963/pdf
https://doaj.org/article/31e990a1ced34712909da3ad6a1d7377
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: ADMLS
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFB7W3Qf1QdT1Ui9lBFkfNGuSmUwSQaS7dF2F1rK7hfoU5roUatJNW7R_wV_tOZO0KKywL4FcJgk5MznfuX6EvOZSutjYPFAqSwKeJEmQpy4JIqniNBSxtr47_2AoTsf86ySZ7JBNum37ARfXmnbIJzWuZ4e_rtafYMF_RIsT9O17V2LiB1jxyWEkBGBydjC_CpBYCgOwLcvGLbIHyitHdocB3wYaAM57ElcYBzZZlGVNXc1_bvuP7vIt_q_DpXfJ7VU5l-ufcjb7S1ed3Cf3WpBJe82seEB2bPmQ7PdKMLB_rOkB9Wmf3p--T34fn305H32gkmok6mhS4wI3xSi6NbRGfzymuFNnfQ9QameeCAwvo7I0dNNwAvcrR88H3y76dD6dY6E7jKpqeimnywDVpaFYZO3rzd4saBsbovDjAmMaVOgjMj7pXxyfBi1BQ6DjMGeBy1muMq6UtkIy-G1qYbjVKpEJT6UKnZAJsynTmcUGuCwy0jrHtAZUYJjh7DHZLavSPiVUCJcpJZjE6irJALe6NNaR4-hvARzYIW83n76YN304CrBfUFCFF1SBgipaQXXIEUpneyX20PYHqvqyaJdkwSILqlhG2hoGKjrOw9xIJo2QkUlZmnbIq41sC1hzGEiRpa1WiwIgL5KtZiLqkCeN0LeP4mBghhmPO-Tddhbc4I2f3eBhz8kdHNI4gF6Q3WW9si8BEi1Vl-wd9Yejs653KcD28yTq-okOZ8bDUe_7H6KeDzQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwELbK9gAceBXo8pKREBfwbhLHTsJtqVoVpJaKdqVyivysVmyz0T6EyokfwB_g7_FLmHGSVUEgwYVjIluJxmPPN56Zbwh5lirlE-sKpnUuWCqEYEXmBYuVTrJIJsYFdv6DQ7k_Tt-eitMNctbVwmBapcfSfWwEPalCLL-V6mJoQqOD9pKMXSJ8dMMujQxPAfC6iqGvMBsEXHsxiKUEoM6HtfVXyKYUANp7ZHN8eDT6gO6YlOCOxXnelNT8YfJPZiuw-_8Okl4nV1dVrS4-qen0kpnau9lwiCwCuyFmp3wcrJZ6YD7_wv34HyRwi9xooS4dNTNukw1X3SFbowrc_PML-pyG5NNwq79Fvu68f3N89IoqarBdSJOgx_wEY_nO0jlGBTDRnnoXmEipm4Z2ZDiMqsrSjvYCn2eeHh-8O9ml9aTGcnuYNZvTMzVZMjTalmKpd6h6-_7l24K2MSoKByg49WDK75Lx3u7Jzj5rG0Uwk0QFZ77ghc5TrY2TisPxbaRNndFCiTRTOvJSCe4ybnKHRLw8tsp5z40BdGK5Tfk90qtmldsmVEqfay25wiovxQE_-ywxsU_x3gfwaJ-86PSgrBs-kBL8KBR4GQReosDLVuB98hpVZT0SubzDC1jUsl2wkscOIIGKjbMcoEJSRIVVXFmpYpvxLOuTp52ilbD3MaCjKjdbLUqA3tj0NZdxn9xvNHD9qRQc3ShPkz55uVbJv_jjB_82_CG5ho_NndQj0lvOV-4xoLSlftLusB9DKkGH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISP%3A+a+correlation-filtered+recursive+feature+elimination+and+integration+of+SMOTE+pipeline+for+gait-based+Parkinson%27s+disease+screening&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Afzal%2C+Namra&rft.au=Iqbal%2C+Javaid&rft.au=Waris%2C+Asim&rft.au=Khan%2C+Muhammad+Jawad&rft.date=2025&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=19&rft_id=info:doi/10.3389%2Ffncom.2025.1660963&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon