Predicting diabetes using supervised machine learning algorithms on E-health records

Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accu...

Full description

Saved in:
Bibliographic Details
Published inInformatics and Health Vol. 2; no. 1; pp. 9 - 16
Main Authors Afolabi, Sulaiman, Ajadi, Nurudeen, Jimoh, Afeez, Adenekan, Ibrahim
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2949-9534
2949-9534
DOI10.1016/j.infoh.2024.12.002

Cover

Abstract Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accurately predict diabetes, to provide immediate treatment at the early stage. This study investigates the early detection and management of diabetes by applying machine learning techniques to electronic health records. The research explores the effectiveness of three supervised machine learning algorithms: logistic regression, Random Forest, and k-nearest neighbors (KNN), in developing predictive models for diabetes. The goal is to identify the most significant features contributing to the disease and to determine which model offers the best performance. The KNN model emerged as the top performer among the tested algorithms. It achieved an accuracy of 96.09 %, a sensitivity of 98.54 %, and a specificity of 93.63 %. These results indicate that the KNN model with a mean test error of 0.0391 is the most reliable for predicting diabetes within the studied dataset. The high sensitivity and specificity suggest that the KNN model is well-suited for distinguishing between diabetic and non-diabetic patients, essential for early diagnosis and effective management of the disease in clinical practice. Despite the dataset’s limited demographic scope, the three machine learning algorithms explored, provide useful results.
AbstractList Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accurately predict diabetes, to provide immediate treatment at the early stage. This study investigates the early detection and management of diabetes by applying machine learning techniques to electronic health records. The research explores the effectiveness of three supervised machine learning algorithms: logistic regression, Random Forest, and k-nearest neighbors (KNN), in developing predictive models for diabetes. The goal is to identify the most significant features contributing to the disease and to determine which model offers the best performance. The KNN model emerged as the top performer among the tested algorithms. It achieved an accuracy of 96.09 %, a sensitivity of 98.54 %, and a specificity of 93.63 %. These results indicate that the KNN model with a mean test error of 0.0391 is the most reliable for predicting diabetes within the studied dataset. The high sensitivity and specificity suggest that the KNN model is well-suited for distinguishing between diabetic and non-diabetic patients, essential for early diagnosis and effective management of the disease in clinical practice. Despite the dataset’s limited demographic scope, the three machine learning algorithms explored, provide useful results.
Background: Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accurately predict diabetes, to provide immediate treatment at the early stage. Methods: This study investigates the early detection and management of diabetes by applying machine learning techniques to electronic health records. The research explores the effectiveness of three supervised machine learning algorithms: logistic regression, Random Forest, and k-nearest neighbors (KNN), in developing predictive models for diabetes. The goal is to identify the most significant features contributing to the disease and to determine which model offers the best performance. Findings: The KNN model emerged as the top performer among the tested algorithms. It achieved an accuracy of 96.09 %, a sensitivity of 98.54 %, and a specificity of 93.63 %. These results indicate that the KNN model with a mean test error of 0.0391 is the most reliable for predicting diabetes within the studied dataset. Interpretations: The high sensitivity and specificity suggest that the KNN model is well-suited for distinguishing between diabetic and non-diabetic patients, essential for early diagnosis and effective management of the disease in clinical practice. Despite the dataset’s limited demographic scope, the three machine learning algorithms explored, provide useful results.
Author Ajadi, Nurudeen
Afolabi, Sulaiman
Adenekan, Ibrahim
Jimoh, Afeez
Author_xml – sequence: 1
  givenname: Sulaiman
  orcidid: 0009-0000-0603-0807
  surname: Afolabi
  fullname: Afolabi, Sulaiman
  organization: Department of Informatics, University of Louisiana at Lafayette, LA, United States
– sequence: 2
  givenname: Nurudeen
  surname: Ajadi
  fullname: Ajadi, Nurudeen
  email: nurudeen.ajadi1@louisiana.edu
  organization: Department of Mathematics, University of Louisiana at Lafayette, LA, United States
– sequence: 3
  givenname: Afeez
  orcidid: 0000-0002-9744-5895
  surname: Jimoh
  fullname: Jimoh, Afeez
  organization: Department of Informatics, University of Louisiana at Lafayette, LA, United States
– sequence: 4
  givenname: Ibrahim
  orcidid: 0009-0007-6369-0757
  surname: Adenekan
  fullname: Adenekan, Ibrahim
  organization: Department of Mathematics, University of Louisiana at Lafayette, LA, United States
BookMark eNqNkU1LxDAQhoMouH78Ai_9A62Tj3abgwcRv2BBD3oOaTLdZukmS9JV_PdmXRFP4imTGZ6X4ZkTcuiDR0IuKFQUaHO5qpzvw1AxYKKirAJgB2TGpJClrLk4_FUfk_OUVgDAOaMAckZeniNaZybnl4V1usMJU7FNu2_abjC-uYS2WGszOI_FiDr63UyPyxDdNKxTEXxxWw6ox2koIpoQbTojR70eE55_v6fk9e725eahXDzdP95cL0rDQLLSCm5bCxaoFIJKiQ1oYRvb9FxShrluWylg3nYibzvXDTa8hg5QIpu3kvNT8rjPtUGv1Ca6tY4fKminvhohLpWOkzMjqoZ32NNaNpJp0dfQmtYa2ot5LUXX1jJniX3W1m_0x7sex59ACmonWq3Ul2i1E60oU1l0xvgeMzGkFLH_J3W1pzDbeXMYVTIOvcmnyAqnvL77k_8EGryZaQ
Cites_doi 10.1037/e471672008-001
10.1016/j.csbj.2016.12.005
10.26682/sjuod.2023.26.2.24
10.1023/A:1010933404324
10.1186/s40064-016-2941-7
10.1016/B978-0-12-817133-2.00018-5
10.1007/s11517-019-02066-y
10.1186/s13098-021-00767-9
10.1007/978-3-030-22475-2_1
10.1007/s11042-024-19000-6
10.1109/PDGC56933.2022.10053092
10.3390/e25010127
10.2174/1389202922666210705124359
10.1038/s41598-024-51438-4
10.3390/ijerph191912378
10.1109/IEMCON.2018.8614871
10.1002/cpt.1482
10.3389/fendo.2022.1084441
10.1109/TIT.1967.1053964
10.1016/j.dsp.2006.09.005
10.70470/SHIFAA/2023/010
10.1109/IMPACT55510.2022.10029058
10.3389/fgene.2018.00515
10.1016/j.procs.2022.12.107
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.infoh.2024.12.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2949-9534
EndPage 16
ExternalDocumentID oai_doaj_org_article_63bef159692a4f508c8dc1f47594b859
10.1016/j.infoh.2024.12.002
10_1016_j_infoh_2024_12_002
S2949953425000013
GroupedDBID 0R~
6I.
AAFTH
AAXUO
ADVLN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
M41
M~E
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c2092-d43d8d0d01944199e60a4d6d6f3912ea4d8894078b42107a6e6350b0e9e278933
IEDL.DBID DOA
ISSN 2949-9534
IngestDate Fri Oct 03 12:53:43 EDT 2025
Tue Aug 19 23:41:00 EDT 2025
Tue Jul 01 05:09:49 EDT 2025
Sat Apr 05 15:40:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Regression
Logistic regression
KNN
Random forest
Diabetes
Supervised learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2092-d43d8d0d01944199e60a4d6d6f3912ea4d8894078b42107a6e6350b0e9e278933
ORCID 0009-0000-0603-0807
0000-0002-9744-5895
0009-0007-6369-0757
OpenAccessLink https://doaj.org/article/63bef159692a4f508c8dc1f47594b859
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_63bef159692a4f508c8dc1f47594b859
unpaywall_primary_10_1016_j_infoh_2024_12_002
crossref_primary_10_1016_j_infoh_2024_12_002
elsevier_sciencedirect_doi_10_1016_j_infoh_2024_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Informatics and Health
PublicationYear 2025
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Yang, Wang, Ji, Niu (bib40) 2023; 2023
Salman Shukur, Mohd Yaacob, Doheir (bib41) 2023; 2023
Febrian, Ferdinan, Sendani, Suryanigrum, Yunanda (bib11) 2023; 216
In
Lawrence, Divers, Isom, Saydah, Imperatore, Pihoker (bib3) 2021; 326
Zhang, Chen, Bi, Ding, Chen, Wang, Jiao (bib7) 2023; 13
Dutta, Hasan, Ahmad, Awal, Islam, Masud, Meshref (bib2) 2022; 19
Cover, Hart (bib31) 1967; 13
Jansson, Hufthammer, Krohn (bib24) 2018; 96
Sutton, Barto (bib17) 2018
Polat, Günes (bib9) 2007; 17
Agrebi, S., & Larbi, A. (2020). Use of artificial intelligence in infectious diseases. In *Artificial intelligence in precision health* (pp. 415–438).
Zou, Qu, Luo, Yin, Ju, Tang (bib1) 2018; 9
Fregoso-Aparicio, Noguez, Montesinos, García-García (bib6) 2021; 13
Alpaydin (bib14) 2020
Tang, Liu, Zhang, Liu, Hu, Shao, Zhu, Xin, Feng, Shang, Meng, Zhang, Ming, Zhang (bib27) 2017; 7
Dutta, D., Paul, D., & Ghosh, P. (2018). Analysing feature importances for diabetes prediction using machine learning. In * 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)* (pp. 924-928). IEEE.
Darolia, Chhillar (bib10) 2022; 107
El-Bashbishy, El-Bakry (bib18) 2024; 14
Liu, J., Zhang, Z., & Razavian, N. (2018). Deep EHR: Chronic disease prediction using medical notes. *arXiv* .
pp. 138-149.
Habehh, Gohel (bib15) 2021; 22
Sharabiani, Bress, Douzali, Darabi (bib26) 2015; 2015
Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib8) 2017; 15
Malone, Simovski, Moliné, Cheng, Gheorghe, Fontenelle, Vardaxis, Tennøe, Malmberg, Stratford, Clancy (bib29) 2020; 10
Bhat, S.S., V. Selvam, G.A. Ansari and M. Dilshad Ansari, "Hybrid Prediction Model for Type-2 Diabetes Mellitus using Machine Learning Approach," 2022b Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 150-155
.
Alloghani, Al-Jumeily, Mustafina, Hussain, Aljaaf (bib16) 2020
Fix, E., & Hodges, J.L. (1951). Discriminatory analysis. Nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine, Randolph Field, Texas.
Alqudah (bib25) 2020; 58
Mousa, Mustafa, Marqas, Mohammed (bib12) 2023; 26
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib23) 2017; 542
Hu, Huang, Ke, Tsai (bib33) 2016; 5
McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (bib22) 2020; 577
Dharmarathne, Jayasinghe, Bogahawaththa, Meddage, Rathnayake (bib19) 2024; 5
Athreya, Neavin, Carrillo-Roa, Skime, Biernacka, Frye, Rush, Wang, Binder, Iyer, Weinshilboum, Bobo (bib28) 2019; 106
Heath, D., Kasif, S. and Salzberg, S. (1993).
Bhat, S.S., V. Selvam, G.A. Ansari and M.D. Ansari, Analysis of Diabetes mellitus using Machine Learning Techniques, 2022a 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 2022, pp. 1-5, doi
Bhat, Ansari, Ansari (bib37) 2024
Breiman (bib36) 2001; 45
Dev, Wang, Nwosu, Jain, Veeravalli, John (bib4) 2022; 2
Ahmad, Ali (bib21) 2020; 12
Ho, T.K. (1995). Random decision forests. In *Proceedings of the 3rd International Conference on Document Analysis and Recognition* (pp. 278-282). Montreal, Canada.
Feng, Zhao, Zhou, Ding, Shan (bib32) 2023; 25
Dharmarathne (10.1016/j.infoh.2024.12.002_bib19) 2024; 5
Fregoso-Aparicio (10.1016/j.infoh.2024.12.002_bib6) 2021; 13
Zhang (10.1016/j.infoh.2024.12.002_bib7) 2023; 13
10.1016/j.infoh.2024.12.002_bib39
Lawrence (10.1016/j.infoh.2024.12.002_bib3) 2021; 326
Polat (10.1016/j.infoh.2024.12.002_bib9) 2007; 17
10.1016/j.infoh.2024.12.002_bib38
Dutta (10.1016/j.infoh.2024.12.002_bib2) 2022; 19
Febrian (10.1016/j.infoh.2024.12.002_bib11) 2023; 216
Alpaydin (10.1016/j.infoh.2024.12.002_bib14) 2020
Bhat (10.1016/j.infoh.2024.12.002_bib37) 2024
Feng (10.1016/j.infoh.2024.12.002_bib32) 2023; 25
Dev (10.1016/j.infoh.2024.12.002_bib4) 2022; 2
Darolia (10.1016/j.infoh.2024.12.002_bib10) 2022; 107
Sharabiani (10.1016/j.infoh.2024.12.002_bib26) 2015; 2015
Tang (10.1016/j.infoh.2024.12.002_bib27) 2017; 7
10.1016/j.infoh.2024.12.002_bib20
Habehh (10.1016/j.infoh.2024.12.002_bib15) 2021; 22
Alqudah (10.1016/j.infoh.2024.12.002_bib25) 2020; 58
Kavakiotis (10.1016/j.infoh.2024.12.002_bib8) 2017; 15
Alloghani (10.1016/j.infoh.2024.12.002_bib16) 2020
Cover (10.1016/j.infoh.2024.12.002_bib31) 1967; 13
Mousa (10.1016/j.infoh.2024.12.002_bib12) 2023; 26
Salman Shukur (10.1016/j.infoh.2024.12.002_bib41) 2023; 2023
Esteva (10.1016/j.infoh.2024.12.002_bib23) 2017; 542
Zou (10.1016/j.infoh.2024.12.002_bib1) 2018; 9
El-Bashbishy (10.1016/j.infoh.2024.12.002_bib18) 2024; 14
Breiman (10.1016/j.infoh.2024.12.002_bib36) 2001; 45
McKinney (10.1016/j.infoh.2024.12.002_bib22) 2020; 577
Jansson (10.1016/j.infoh.2024.12.002_bib24) 2018; 96
Athreya (10.1016/j.infoh.2024.12.002_bib28) 2019; 106
10.1016/j.infoh.2024.12.002_bib5
Sutton (10.1016/j.infoh.2024.12.002_bib17) 2018
Hu (10.1016/j.infoh.2024.12.002_bib33) 2016; 5
Malone (10.1016/j.infoh.2024.12.002_bib29) 2020; 10
10.1016/j.infoh.2024.12.002_bib13
10.1016/j.infoh.2024.12.002_bib35
10.1016/j.infoh.2024.12.002_bib34
Yang (10.1016/j.infoh.2024.12.002_bib40) 2023; 2023
Ahmad (10.1016/j.infoh.2024.12.002_bib21) 2020; 12
10.1016/j.infoh.2024.12.002_bib30
References_xml – volume: 5
  year: 2024
  ident: bib19
  article-title: A novel machine learning approach for diagnosing diabetes with a self-explainable interface
  publication-title: Healthc Anal
– volume: 577*
  start-page: 89
  year: 2020
  end-page: 94
  ident: bib22
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: *Nature
– year: 2024
  ident: bib37
  article-title: Performance Analysis of Machine Learning Based On Optimized Feature Selection for Type II Diabetes Mellitus
  publication-title: Multimed Tools Appl
– volume: 326*
  start-page: 717
  year: 2021
  end-page: 727
  ident: bib3
  article-title: Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017
  publication-title: *JAMA
– volume: 216*
  start-page: 21
  year: 2023
  end-page: 30
  ident: bib11
  article-title: Diabetes prediction using supervised machine learning
  publication-title: *Procedia Comput Sci
– volume: 2023
  start-page: 85
  year: 2023
  end-page: 89
  ident: bib41
  article-title: Diabetes at a Glance: Assessing AI Strategies for Early Diabetes Detection and Intervention
  publication-title: Mesop J Artif Intell Healthc
– reference: Dutta, D., Paul, D., & Ghosh, P. (2018). Analysing feature importances for diabetes prediction using machine learning. In * 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)* (pp. 924-928). IEEE.
– volume: 2*
  year: 2022
  ident: bib4
  article-title: A predictive analytics approach for stroke prediction using machine learning and neural networks
  publication-title: *Healthc Anal
– volume: 14
  start-page: 4206
  year: 2024
  ident: bib18
  article-title: Pediatric diabetes prediction using deep learning
  publication-title: Sci Rep
– volume: 106*
  start-page: 855
  year: 2019
  end-page: 865
  ident: bib28
  article-title: Pharmacogenomics-driven prediction of antidepressant treatment outcomes: A machine-learning approach with multi-trial replication
  publication-title: *Clin Pharmacol Ther
– volume: 13*
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib31
  article-title: Nearest neighbor pattern classification
  publication-title: *IEEE Trans Inf Theory
– reference: Liu, J., Zhang, Z., & Razavian, N. (2018). Deep EHR: Chronic disease prediction using medical notes. *arXiv* .
– volume: 107*
  start-page: 2697
  year: 2022
  ident: bib10
  article-title: Analyzing three predictive algorithms for diabetes mellitus against the Pima Indians dataset
  publication-title: *ECS Trans
– volume: 25*
  start-page: 127
  year: 2023
  ident: bib32
  article-title: An enhanced quantum k-nearest neighbor classification algorithm based on polar distance
  publication-title: *Entropy
– reference: , pp. 138-149.
– volume: 19*
  start-page: 12378
  year: 2022
  ident: bib2
  article-title: Early prediction of diabetes using an ensemble of machine learning models
  publication-title: *Int J Environ Res Public Health
– volume: 26*
  start-page: 277
  year: 2023
  end-page: 288
  ident: bib12
  article-title: A comparative study of diabetes detection using the Pima Indian diabetes database
  publication-title: *J Duhok Univ
– start-page: 3
  year: 2020
  end-page: 21
  ident: bib16
  article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science
  publication-title: *Supervised and unsupervised learning for data science*
– reference: Bhat, S.S., V. Selvam, G.A. Ansari and M.D. Ansari, Analysis of Diabetes mellitus using Machine Learning Techniques, 2022a 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 2022, pp. 1-5, doi:
– volume: 58*
  start-page: 41
  year: 2020
  end-page: 53
  ident: bib25
  article-title: AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images
  publication-title: *Med Biol Eng Comput
– volume: 542*
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib23
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: *Nature
– volume: 22*
  start-page: 291
  year: 2021
  end-page: 300
  ident: bib15
  article-title: Machine learning in healthcare
  publication-title: *Curr Genom
– volume: 10*
  year: 2020
  ident: bib29
  article-title: Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs
  publication-title: *Sci Rep
– volume: 15*
  start-page: 104
  year: 2017
  end-page: 116
  ident: bib8
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: *Comput Struct Biotechnol J
– volume: 96*
  start-page: 465
  year: 2018
  end-page: 474
  ident: bib24
  article-title: Diabetic retinopathy in type 1 diabetes patients in Western Norway
  publication-title: *Acta Ophthalmol
– year: 2020
  ident: bib14
  article-title: *Introduction to machine learning*
– reference: . In
– volume: 9*
  start-page: 515
  year: 2018
  ident: bib1
  article-title: Predicting diabetes mellitus with machine learning techniques
  publication-title: *Front Genet
– volume: 12*
  start-page: 3283
  year: 2020
  end-page: 3293
  ident: bib21
  article-title: A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs)
  publication-title: *J Ambient Intell Humaniz Comput
– volume: 2015*
  year: 2015
  ident: bib26
  article-title: Revisiting warfarin dosing using machine learning techniques
  publication-title: *Comput Math Methods Med
– volume: 13*
  start-page: 1084441
  year: 2023
  ident: bib7
  article-title: Combined diabetic ketoacidosis and hyperosmolar hyperglycemic state in type 1 diabetes mellitus induced by immune checkpoint inhibitors: Underrecognized and underreported emergency in ICIs-DM
  publication-title: *Front Endocrinol
– reference: Agrebi, S., & Larbi, A. (2020). Use of artificial intelligence in infectious diseases. In *Artificial intelligence in precision health* (pp. 415–438).
– reference: .
– volume: 5*
  start-page: 1304
  year: 2016
  ident: bib33
  article-title: The distance function effect on k-nearest neighbor classification for medical datasets
  publication-title: *SpringerPlus
– volume: 13*
  start-page: 148
  year: 2021
  ident: bib6
  article-title: Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
  publication-title: *Diabetol Metab Syndr
– reference: Bhat, S.S., V. Selvam, G.A. Ansari and M. Dilshad Ansari, "Hybrid Prediction Model for Type-2 Diabetes Mellitus using Machine Learning Approach," 2022b Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 150-155,
– volume: 45*
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib36
  article-title: Random forests
  publication-title: *Mach Learn
– reference: Ho, T.K. (1995). Random decision forests. In *Proceedings of the 3rd International Conference on Document Analysis and Recognition* (pp. 278-282). Montreal, Canada.
– reference: Fix, E., & Hodges, J.L. (1951). Discriminatory analysis. Nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine, Randolph Field, Texas.
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 8
  ident: bib40
  article-title: Artificial Intelligence-Driven Diagnostic Systems for Early Detection of Diabetic Retinopathy: Integrating Retinal Imaging and Clinical Data
  publication-title: SHIFAA
– year: 2018
  ident: bib17
  article-title: *Reinforcement learning: An introduction*
– volume: 7*
  year: 2017
  ident: bib27
  article-title: Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients
  publication-title: *Sci Rep
– volume: 17*
  start-page: 702
  year: 2007
  end-page: 710
  ident: bib9
  article-title: An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
  publication-title: *Digit Signal Process
– reference: Heath, D., Kasif, S. and Salzberg, S. (1993).
– ident: 10.1016/j.infoh.2024.12.002_bib34
– ident: 10.1016/j.infoh.2024.12.002_bib30
  doi: 10.1037/e471672008-001
– volume: 15*
  start-page: 104
  year: 2017
  ident: 10.1016/j.infoh.2024.12.002_bib8
  article-title: Machine learning and data mining methods in diabetes research
  publication-title: *Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2016.12.005
– volume: 26*
  start-page: 277
  issue: 2
  year: 2023
  ident: 10.1016/j.infoh.2024.12.002_bib12
  article-title: A comparative study of diabetes detection using the Pima Indian diabetes database
  publication-title: *J Duhok Univ
  doi: 10.26682/sjuod.2023.26.2.24
– volume: 45*
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.infoh.2024.12.002_bib36
  article-title: Random forests
  publication-title: *Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 5*
  start-page: 1304
  issue: 1
  year: 2016
  ident: 10.1016/j.infoh.2024.12.002_bib33
  article-title: The distance function effect on k-nearest neighbor classification for medical datasets
  publication-title: *SpringerPlus
  doi: 10.1186/s40064-016-2941-7
– ident: 10.1016/j.infoh.2024.12.002_bib13
  doi: 10.1016/B978-0-12-817133-2.00018-5
– year: 2020
  ident: 10.1016/j.infoh.2024.12.002_bib14
– volume: 58*
  start-page: 41
  issue: 1
  year: 2020
  ident: 10.1016/j.infoh.2024.12.002_bib25
  article-title: AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images
  publication-title: *Med Biol Eng Comput
  doi: 10.1007/s11517-019-02066-y
– volume: 96*
  start-page: 465
  issue: 5
  year: 2018
  ident: 10.1016/j.infoh.2024.12.002_bib24
  article-title: Diabetic retinopathy in type 1 diabetes patients in Western Norway
  publication-title: *Acta Ophthalmol
– volume: 107*
  start-page: 2697
  issue: 1
  year: 2022
  ident: 10.1016/j.infoh.2024.12.002_bib10
  article-title: Analyzing three predictive algorithms for diabetes mellitus against the Pima Indians dataset
  publication-title: *ECS Trans
– volume: 13*
  start-page: 148
  issue: 1
  year: 2021
  ident: 10.1016/j.infoh.2024.12.002_bib6
  article-title: Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
  publication-title: *Diabetol Metab Syndr
  doi: 10.1186/s13098-021-00767-9
– volume: 12*
  start-page: 3283
  issue: 2
  year: 2020
  ident: 10.1016/j.infoh.2024.12.002_bib21
  article-title: A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs)
  publication-title: *J Ambient Intell Humaniz Comput
– start-page: 3
  year: 2020
  ident: 10.1016/j.infoh.2024.12.002_bib16
  article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science
  doi: 10.1007/978-3-030-22475-2_1
– ident: 10.1016/j.infoh.2024.12.002_bib20
– year: 2024
  ident: 10.1016/j.infoh.2024.12.002_bib37
  article-title: Performance Analysis of Machine Learning Based On Optimized Feature Selection for Type II Diabetes Mellitus
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-19000-6
– volume: 2023
  start-page: 85
  year: 2023
  ident: 10.1016/j.infoh.2024.12.002_bib41
  article-title: Diabetes at a Glance: Assessing AI Strategies for Early Diabetes Detection and Intervention
  publication-title: Mesop J Artif Intell Healthc
– year: 2018
  ident: 10.1016/j.infoh.2024.12.002_bib17
– volume: 577*
  start-page: 89
  issue: 7788
  year: 2020
  ident: 10.1016/j.infoh.2024.12.002_bib22
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: *Nature
– ident: 10.1016/j.infoh.2024.12.002_bib39
  doi: 10.1109/PDGC56933.2022.10053092
– volume: 25*
  start-page: 127
  issue: 1
  year: 2023
  ident: 10.1016/j.infoh.2024.12.002_bib32
  article-title: An enhanced quantum k-nearest neighbor classification algorithm based on polar distance
  publication-title: *Entropy
  doi: 10.3390/e25010127
– ident: 10.1016/j.infoh.2024.12.002_bib35
– volume: 22*
  start-page: 291
  issue: 4
  year: 2021
  ident: 10.1016/j.infoh.2024.12.002_bib15
  article-title: Machine learning in healthcare
  publication-title: *Curr Genom
  doi: 10.2174/1389202922666210705124359
– volume: 14
  start-page: 4206
  year: 2024
  ident: 10.1016/j.infoh.2024.12.002_bib18
  article-title: Pediatric diabetes prediction using deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-51438-4
– volume: 19*
  start-page: 12378
  issue: 12
  year: 2022
  ident: 10.1016/j.infoh.2024.12.002_bib2
  article-title: Early prediction of diabetes using an ensemble of machine learning models
  publication-title: *Int J Environ Res Public Health
  doi: 10.3390/ijerph191912378
– volume: 5
  year: 2024
  ident: 10.1016/j.infoh.2024.12.002_bib19
  article-title: A novel machine learning approach for diagnosing diabetes with a self-explainable interface
  publication-title: Healthc Anal
– ident: 10.1016/j.infoh.2024.12.002_bib5
  doi: 10.1109/IEMCON.2018.8614871
– volume: 2*
  year: 2022
  ident: 10.1016/j.infoh.2024.12.002_bib4
  article-title: A predictive analytics approach for stroke prediction using machine learning and neural networks
  publication-title: *Healthc Anal
– volume: 7*
  year: 2017
  ident: 10.1016/j.infoh.2024.12.002_bib27
  article-title: Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients
  publication-title: *Sci Rep
– volume: 106*
  start-page: 855
  issue: 4
  year: 2019
  ident: 10.1016/j.infoh.2024.12.002_bib28
  article-title: Pharmacogenomics-driven prediction of antidepressant treatment outcomes: A machine-learning approach with multi-trial replication
  publication-title: *Clin Pharmacol Ther
  doi: 10.1002/cpt.1482
– volume: 13*
  start-page: 1084441
  year: 2023
  ident: 10.1016/j.infoh.2024.12.002_bib7
  article-title: Combined diabetic ketoacidosis and hyperosmolar hyperglycemic state in type 1 diabetes mellitus induced by immune checkpoint inhibitors: Underrecognized and underreported emergency in ICIs-DM
  publication-title: *Front Endocrinol
  doi: 10.3389/fendo.2022.1084441
– volume: 13*
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.infoh.2024.12.002_bib31
  article-title: Nearest neighbor pattern classification
  publication-title: *IEEE Trans Inf Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 17*
  start-page: 702
  issue: 4
  year: 2007
  ident: 10.1016/j.infoh.2024.12.002_bib9
  article-title: An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
  publication-title: *Digit Signal Process
  doi: 10.1016/j.dsp.2006.09.005
– volume: 542*
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.infoh.2024.12.002_bib23
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: *Nature
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.infoh.2024.12.002_bib40
  article-title: Artificial Intelligence-Driven Diagnostic Systems for Early Detection of Diabetic Retinopathy: Integrating Retinal Imaging and Clinical Data
  publication-title: SHIFAA
  doi: 10.70470/SHIFAA/2023/010
– volume: 10*
  issue: 1
  year: 2020
  ident: 10.1016/j.infoh.2024.12.002_bib29
  article-title: Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs
  publication-title: *Sci Rep
– ident: 10.1016/j.infoh.2024.12.002_bib38
  doi: 10.1109/IMPACT55510.2022.10029058
– volume: 9*
  start-page: 515
  year: 2018
  ident: 10.1016/j.infoh.2024.12.002_bib1
  article-title: Predicting diabetes mellitus with machine learning techniques
  publication-title: *Front Genet
  doi: 10.3389/fgene.2018.00515
– volume: 326*
  start-page: 717
  issue: 8
  year: 2021
  ident: 10.1016/j.infoh.2024.12.002_bib3
  article-title: Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017
  publication-title: *JAMA
– volume: 216*
  start-page: 21
  year: 2023
  ident: 10.1016/j.infoh.2024.12.002_bib11
  article-title: Diabetes prediction using supervised machine learning
  publication-title: *Procedia Comput Sci
  doi: 10.1016/j.procs.2022.12.107
– volume: 2015*
  year: 2015
  ident: 10.1016/j.infoh.2024.12.002_bib26
  article-title: Revisiting warfarin dosing using machine learning techniques
  publication-title: *Comput Math Methods Med
SSID ssj0003321009
Score 2.2868814
Snippet Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of...
Background: Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 9
SubjectTerms Diabetes
KNN
Logistic regression
Random forest
Regression
Supervised learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MHDz5ETVi1PTg0ZGxlbIe0UCIiYQDJHhq2rVDFAZhW4z-9b63DyLGGL1ty9vavHZ7v72P3yPkxgMTrI12HSMAvjE4dZTQoeNz1VbKCO1FWO_8OOSDCXuYtqclzzbWwuzE7_M8LFQ0Rg08lvvtkDiyztsAvGukPhmOuk_YPk4wgYFIVvEK_Xznju3JKfp3TNB-Fq_V-5taLL6YmP5hUbud5MyEmFny2sxS3Qw_vvE2_nH2R-SghJq0W-yNY7Jn4xMyHm0wNIPJzrTyu1JMfp_RJFvjhyOxhi7zFEtLy54SM6oWs9Vmnj4vE7qKac8pyidp4eJJTsmk3xvfD5yys4ITeq7wHMN8ExjXAL4DOCSE5a5ihhse-aLlWTgOAoERPs3gl7CjuAVc4mrXCouVs75_RmrxKrbnhPoui0LbEToCQ6d5oFUu42JrKz80okFuK53LdUGgIavMsheZq0eiemTLk6CeBrnDddmKIvt1fgHUKsuXSXJf2whwGBeeYhFAzDAwYStC6kKmgzaMyatVlSWQKAACPGr---jOdg_8ZbYX_5S_JLV0k9krwDGpvi737yc9je8Q
  priority: 102
  providerName: Unpaywall
Title Predicting diabetes using supervised machine learning algorithms on E-health records
URI https://dx.doi.org/10.1016/j.infoh.2024.12.002
https://doi.org/10.1016/j.infoh.2024.12.002
https://doaj.org/article/63bef159692a4f508c8dc1f47594b859
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6iB72IouL8GDl4tJglWdYcp2wMYWOHDeYpJE06J1s39oF48bebN23HvKgHL6UtoQ3P2_Z5-ub9QOiOego21pDISi_fuD-MtDRJxISua22loSnkO3d7ojPkz6P6aKfVF8SE5eWBc-AeBDMu9ZwrJNU89XIiiW1SS6FMHTdxPaTukVju_EzBN5hBagqRZZmhENAFFoPlB8qDA7BwpJRUFCr2f2Okw0220B_vejrdYZz2CToupCJu5lM8RXsuO0OD_hKWViBYGZd-UwzB62O82izgxV85i2chRNLhoifEGOvpeL6crF9nKzzPcCvK0x9x7qJZnaNhuzV46kRFZ4QooUTSyHJmY0us12dezkjpBNHcCitSJmvU-f04lrBCZ7jHoaGF87qCGOKkg8xXxi7QfjbP3CXCjPA0cQ1pUk9URsRGhzEEWlOxxMoKui9BUou8AIYqI8PeVMBUAaaqRpXHtIIeAcjtUKheHU54m6rCpuo3m1aQKM2gCiGQE7y_1OTnu0dbo_1ltlf_MdtrdEShKXAITLtB--vlxt16pbI21fBQ-m33s1VFB8Nev_nyBWX-57E
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MHDz5ETVi1PTg0ZGxlbIe0UCIiYQDJHhq2rVDFAZhW4z-9b63DyLGGL1ty9vavHZ7v72P3yPkxgMTrI12HSMAvjE4dZTQoeNz1VbKCO1FWO_8OOSDCXuYtqclzzbWwuzE7_M8LFQ0Rg08lvvtkDiyztsAvGukPhmOuk_YPk4wgYFIVvEK_Xznju3JKfp3TNB-Fq_V-5taLL6YmP5hUbud5MyEmFny2sxS3Qw_vvE2_nH2R-SghJq0W-yNY7Jn4xMyHm0wNIPJzrTyu1JMfp_RJFvjhyOxhi7zFEtLy54SM6oWs9Vmnj4vE7qKac8pyidp4eJJTsmk3xvfD5yys4ITeq7wHMN8ExjXAL4DOCSE5a5ihhse-aLlWTgOAoERPs3gl7CjuAVc4mrXCouVs75_RmrxKrbnhPoui0LbEToCQ6d5oFUu42JrKz80okFuK53LdUGgIavMsheZq0eiemTLk6CeBrnDddmKIvt1fgHUKsuXSXJf2whwGBeeYhFAzDAwYStC6kKmgzaMyatVlSWQKAACPGr---jOdg_8ZbYX_5S_JLV0k9krwDGpvi737yc9je8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+diabetes+using+supervised+machine+learning+algorithms+on+E-health+records&rft.jtitle=Informatics+and+Health&rft.au=Sulaiman+Afolabi&rft.au=Nurudeen+Ajadi&rft.au=Afeez+Jimoh&rft.au=Ibrahim+Adenekan&rft.date=2025-03-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9534&rft.volume=2&rft.issue=1&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1016%2Fj.infoh.2024.12.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_63bef159692a4f508c8dc1f47594b859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon