Predicting diabetes using supervised machine learning algorithms on E-health records
Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accu...
Saved in:
| Published in | Informatics and Health Vol. 2; no. 1; pp. 9 - 16 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2025
KeAi Communications Co., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2949-9534 2949-9534 |
| DOI | 10.1016/j.infoh.2024.12.002 |
Cover
| Abstract | Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accurately predict diabetes, to provide immediate treatment at the early stage.
This study investigates the early detection and management of diabetes by applying machine learning techniques to electronic health records. The research explores the effectiveness of three supervised machine learning algorithms: logistic regression, Random Forest, and k-nearest neighbors (KNN), in developing predictive models for diabetes. The goal is to identify the most significant features contributing to the disease and to determine which model offers the best performance.
The KNN model emerged as the top performer among the tested algorithms. It achieved an accuracy of 96.09 %, a sensitivity of 98.54 %, and a specificity of 93.63 %. These results indicate that the KNN model with a mean test error of 0.0391 is the most reliable for predicting diabetes within the studied dataset.
The high sensitivity and specificity suggest that the KNN model is well-suited for distinguishing between diabetic and non-diabetic patients, essential for early diagnosis and effective management of the disease in clinical practice. Despite the dataset’s limited demographic scope, the three machine learning algorithms explored, provide useful results. |
|---|---|
| AbstractList | Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accurately predict diabetes, to provide immediate treatment at the early stage.
This study investigates the early detection and management of diabetes by applying machine learning techniques to electronic health records. The research explores the effectiveness of three supervised machine learning algorithms: logistic regression, Random Forest, and k-nearest neighbors (KNN), in developing predictive models for diabetes. The goal is to identify the most significant features contributing to the disease and to determine which model offers the best performance.
The KNN model emerged as the top performer among the tested algorithms. It achieved an accuracy of 96.09 %, a sensitivity of 98.54 %, and a specificity of 93.63 %. These results indicate that the KNN model with a mean test error of 0.0391 is the most reliable for predicting diabetes within the studied dataset.
The high sensitivity and specificity suggest that the KNN model is well-suited for distinguishing between diabetic and non-diabetic patients, essential for early diagnosis and effective management of the disease in clinical practice. Despite the dataset’s limited demographic scope, the three machine learning algorithms explored, provide useful results. Background: Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of hyperglycemia. Despite recent research on predicting the incidence of the disease, there is still a need for a more efficient and robust approach to accurately predict diabetes, to provide immediate treatment at the early stage. Methods: This study investigates the early detection and management of diabetes by applying machine learning techniques to electronic health records. The research explores the effectiveness of three supervised machine learning algorithms: logistic regression, Random Forest, and k-nearest neighbors (KNN), in developing predictive models for diabetes. The goal is to identify the most significant features contributing to the disease and to determine which model offers the best performance. Findings: The KNN model emerged as the top performer among the tested algorithms. It achieved an accuracy of 96.09 %, a sensitivity of 98.54 %, and a specificity of 93.63 %. These results indicate that the KNN model with a mean test error of 0.0391 is the most reliable for predicting diabetes within the studied dataset. Interpretations: The high sensitivity and specificity suggest that the KNN model is well-suited for distinguishing between diabetic and non-diabetic patients, essential for early diagnosis and effective management of the disease in clinical practice. Despite the dataset’s limited demographic scope, the three machine learning algorithms explored, provide useful results. |
| Author | Ajadi, Nurudeen Afolabi, Sulaiman Adenekan, Ibrahim Jimoh, Afeez |
| Author_xml | – sequence: 1 givenname: Sulaiman orcidid: 0009-0000-0603-0807 surname: Afolabi fullname: Afolabi, Sulaiman organization: Department of Informatics, University of Louisiana at Lafayette, LA, United States – sequence: 2 givenname: Nurudeen surname: Ajadi fullname: Ajadi, Nurudeen email: nurudeen.ajadi1@louisiana.edu organization: Department of Mathematics, University of Louisiana at Lafayette, LA, United States – sequence: 3 givenname: Afeez orcidid: 0000-0002-9744-5895 surname: Jimoh fullname: Jimoh, Afeez organization: Department of Informatics, University of Louisiana at Lafayette, LA, United States – sequence: 4 givenname: Ibrahim orcidid: 0009-0007-6369-0757 surname: Adenekan fullname: Adenekan, Ibrahim organization: Department of Mathematics, University of Louisiana at Lafayette, LA, United States |
| BookMark | eNqNkU1LxDAQhoMouH78Ai_9A62Tj3abgwcRv2BBD3oOaTLdZukmS9JV_PdmXRFP4imTGZ6X4ZkTcuiDR0IuKFQUaHO5qpzvw1AxYKKirAJgB2TGpJClrLk4_FUfk_OUVgDAOaMAckZeniNaZybnl4V1usMJU7FNu2_abjC-uYS2WGszOI_FiDr63UyPyxDdNKxTEXxxWw6ox2koIpoQbTojR70eE55_v6fk9e725eahXDzdP95cL0rDQLLSCm5bCxaoFIJKiQ1oYRvb9FxShrluWylg3nYibzvXDTa8hg5QIpu3kvNT8rjPtUGv1Ca6tY4fKminvhohLpWOkzMjqoZ32NNaNpJp0dfQmtYa2ot5LUXX1jJniX3W1m_0x7sex59ACmonWq3Ul2i1E60oU1l0xvgeMzGkFLH_J3W1pzDbeXMYVTIOvcmnyAqnvL77k_8EGryZaQ |
| Cites_doi | 10.1037/e471672008-001 10.1016/j.csbj.2016.12.005 10.26682/sjuod.2023.26.2.24 10.1023/A:1010933404324 10.1186/s40064-016-2941-7 10.1016/B978-0-12-817133-2.00018-5 10.1007/s11517-019-02066-y 10.1186/s13098-021-00767-9 10.1007/978-3-030-22475-2_1 10.1007/s11042-024-19000-6 10.1109/PDGC56933.2022.10053092 10.3390/e25010127 10.2174/1389202922666210705124359 10.1038/s41598-024-51438-4 10.3390/ijerph191912378 10.1109/IEMCON.2018.8614871 10.1002/cpt.1482 10.3389/fendo.2022.1084441 10.1109/TIT.1967.1053964 10.1016/j.dsp.2006.09.005 10.70470/SHIFAA/2023/010 10.1109/IMPACT55510.2022.10029058 10.3389/fgene.2018.00515 10.1016/j.procs.2022.12.107 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.infoh.2024.12.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-9534 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_63bef159692a4f508c8dc1f47594b859 10.1016/j.infoh.2024.12.002 10_1016_j_infoh_2024_12_002 S2949953425000013 |
| GroupedDBID | 0R~ 6I. AAFTH AAXUO ADVLN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ FDB M41 M~E ROL AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION GROUPED_DOAJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2092-d43d8d0d01944199e60a4d6d6f3912ea4d8894078b42107a6e6350b0e9e278933 |
| IEDL.DBID | DOA |
| ISSN | 2949-9534 |
| IngestDate | Fri Oct 03 12:53:43 EDT 2025 Tue Aug 19 23:41:00 EDT 2025 Tue Jul 01 05:09:49 EDT 2025 Sat Apr 05 15:40:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Regression Logistic regression KNN Random forest Diabetes Supervised learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2092-d43d8d0d01944199e60a4d6d6f3912ea4d8894078b42107a6e6350b0e9e278933 |
| ORCID | 0009-0000-0603-0807 0000-0002-9744-5895 0009-0007-6369-0757 |
| OpenAccessLink | https://doaj.org/article/63bef159692a4f508c8dc1f47594b859 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_63bef159692a4f508c8dc1f47594b859 unpaywall_primary_10_1016_j_infoh_2024_12_002 crossref_primary_10_1016_j_infoh_2024_12_002 elsevier_sciencedirect_doi_10_1016_j_infoh_2024_12_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatics and Health |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Yang, Wang, Ji, Niu (bib40) 2023; 2023 Salman Shukur, Mohd Yaacob, Doheir (bib41) 2023; 2023 Febrian, Ferdinan, Sendani, Suryanigrum, Yunanda (bib11) 2023; 216 In Lawrence, Divers, Isom, Saydah, Imperatore, Pihoker (bib3) 2021; 326 Zhang, Chen, Bi, Ding, Chen, Wang, Jiao (bib7) 2023; 13 Dutta, Hasan, Ahmad, Awal, Islam, Masud, Meshref (bib2) 2022; 19 Cover, Hart (bib31) 1967; 13 Jansson, Hufthammer, Krohn (bib24) 2018; 96 Sutton, Barto (bib17) 2018 Polat, Günes (bib9) 2007; 17 Agrebi, S., & Larbi, A. (2020). Use of artificial intelligence in infectious diseases. In *Artificial intelligence in precision health* (pp. 415–438). Zou, Qu, Luo, Yin, Ju, Tang (bib1) 2018; 9 Fregoso-Aparicio, Noguez, Montesinos, García-García (bib6) 2021; 13 Alpaydin (bib14) 2020 Tang, Liu, Zhang, Liu, Hu, Shao, Zhu, Xin, Feng, Shang, Meng, Zhang, Ming, Zhang (bib27) 2017; 7 Dutta, D., Paul, D., & Ghosh, P. (2018). Analysing feature importances for diabetes prediction using machine learning. In * 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)* (pp. 924-928). IEEE. Darolia, Chhillar (bib10) 2022; 107 El-Bashbishy, El-Bakry (bib18) 2024; 14 Liu, J., Zhang, Z., & Razavian, N. (2018). Deep EHR: Chronic disease prediction using medical notes. *arXiv* . pp. 138-149. Habehh, Gohel (bib15) 2021; 22 Sharabiani, Bress, Douzali, Darabi (bib26) 2015; 2015 Kavakiotis, Tsave, Salifoglou, Maglaveras, Vlahavas, Chouvarda (bib8) 2017; 15 Malone, Simovski, Moliné, Cheng, Gheorghe, Fontenelle, Vardaxis, Tennøe, Malmberg, Stratford, Clancy (bib29) 2020; 10 Bhat, S.S., V. Selvam, G.A. Ansari and M. Dilshad Ansari, "Hybrid Prediction Model for Type-2 Diabetes Mellitus using Machine Learning Approach," 2022b Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 150-155 . Alloghani, Al-Jumeily, Mustafina, Hussain, Aljaaf (bib16) 2020 Fix, E., & Hodges, J.L. (1951). Discriminatory analysis. Nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine, Randolph Field, Texas. Alqudah (bib25) 2020; 58 Mousa, Mustafa, Marqas, Mohammed (bib12) 2023; 26 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib23) 2017; 542 Hu, Huang, Ke, Tsai (bib33) 2016; 5 McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian, Back, Chesus, Corrado, Darzi, Etemadi, Garcia-Vicente, Gilbert, Halling-Brown, Hassabis, Jansen, Karthikesalingam, Kelly, King, Ledsam, Melnick, Mostofi, Peng, Reicher, Romera-Paredes, Sidebottom, Suleyman, Tse, Young, De Fauw, Shetty (bib22) 2020; 577 Dharmarathne, Jayasinghe, Bogahawaththa, Meddage, Rathnayake (bib19) 2024; 5 Athreya, Neavin, Carrillo-Roa, Skime, Biernacka, Frye, Rush, Wang, Binder, Iyer, Weinshilboum, Bobo (bib28) 2019; 106 Heath, D., Kasif, S. and Salzberg, S. (1993). Bhat, S.S., V. Selvam, G.A. Ansari and M.D. Ansari, Analysis of Diabetes mellitus using Machine Learning Techniques, 2022a 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 2022, pp. 1-5, doi Bhat, Ansari, Ansari (bib37) 2024 Breiman (bib36) 2001; 45 Dev, Wang, Nwosu, Jain, Veeravalli, John (bib4) 2022; 2 Ahmad, Ali (bib21) 2020; 12 Ho, T.K. (1995). Random decision forests. In *Proceedings of the 3rd International Conference on Document Analysis and Recognition* (pp. 278-282). Montreal, Canada. Feng, Zhao, Zhou, Ding, Shan (bib32) 2023; 25 Dharmarathne (10.1016/j.infoh.2024.12.002_bib19) 2024; 5 Fregoso-Aparicio (10.1016/j.infoh.2024.12.002_bib6) 2021; 13 Zhang (10.1016/j.infoh.2024.12.002_bib7) 2023; 13 10.1016/j.infoh.2024.12.002_bib39 Lawrence (10.1016/j.infoh.2024.12.002_bib3) 2021; 326 Polat (10.1016/j.infoh.2024.12.002_bib9) 2007; 17 10.1016/j.infoh.2024.12.002_bib38 Dutta (10.1016/j.infoh.2024.12.002_bib2) 2022; 19 Febrian (10.1016/j.infoh.2024.12.002_bib11) 2023; 216 Alpaydin (10.1016/j.infoh.2024.12.002_bib14) 2020 Bhat (10.1016/j.infoh.2024.12.002_bib37) 2024 Feng (10.1016/j.infoh.2024.12.002_bib32) 2023; 25 Dev (10.1016/j.infoh.2024.12.002_bib4) 2022; 2 Darolia (10.1016/j.infoh.2024.12.002_bib10) 2022; 107 Sharabiani (10.1016/j.infoh.2024.12.002_bib26) 2015; 2015 Tang (10.1016/j.infoh.2024.12.002_bib27) 2017; 7 10.1016/j.infoh.2024.12.002_bib20 Habehh (10.1016/j.infoh.2024.12.002_bib15) 2021; 22 Alqudah (10.1016/j.infoh.2024.12.002_bib25) 2020; 58 Kavakiotis (10.1016/j.infoh.2024.12.002_bib8) 2017; 15 Alloghani (10.1016/j.infoh.2024.12.002_bib16) 2020 Cover (10.1016/j.infoh.2024.12.002_bib31) 1967; 13 Mousa (10.1016/j.infoh.2024.12.002_bib12) 2023; 26 Salman Shukur (10.1016/j.infoh.2024.12.002_bib41) 2023; 2023 Esteva (10.1016/j.infoh.2024.12.002_bib23) 2017; 542 Zou (10.1016/j.infoh.2024.12.002_bib1) 2018; 9 El-Bashbishy (10.1016/j.infoh.2024.12.002_bib18) 2024; 14 Breiman (10.1016/j.infoh.2024.12.002_bib36) 2001; 45 McKinney (10.1016/j.infoh.2024.12.002_bib22) 2020; 577 Jansson (10.1016/j.infoh.2024.12.002_bib24) 2018; 96 Athreya (10.1016/j.infoh.2024.12.002_bib28) 2019; 106 10.1016/j.infoh.2024.12.002_bib5 Sutton (10.1016/j.infoh.2024.12.002_bib17) 2018 Hu (10.1016/j.infoh.2024.12.002_bib33) 2016; 5 Malone (10.1016/j.infoh.2024.12.002_bib29) 2020; 10 10.1016/j.infoh.2024.12.002_bib13 10.1016/j.infoh.2024.12.002_bib35 10.1016/j.infoh.2024.12.002_bib34 Yang (10.1016/j.infoh.2024.12.002_bib40) 2023; 2023 Ahmad (10.1016/j.infoh.2024.12.002_bib21) 2020; 12 10.1016/j.infoh.2024.12.002_bib30 |
| References_xml | – volume: 5 year: 2024 ident: bib19 article-title: A novel machine learning approach for diagnosing diabetes with a self-explainable interface publication-title: Healthc Anal – volume: 577* start-page: 89 year: 2020 end-page: 94 ident: bib22 article-title: International evaluation of an AI system for breast cancer screening publication-title: *Nature – year: 2024 ident: bib37 article-title: Performance Analysis of Machine Learning Based On Optimized Feature Selection for Type II Diabetes Mellitus publication-title: Multimed Tools Appl – volume: 326* start-page: 717 year: 2021 end-page: 727 ident: bib3 article-title: Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017 publication-title: *JAMA – volume: 216* start-page: 21 year: 2023 end-page: 30 ident: bib11 article-title: Diabetes prediction using supervised machine learning publication-title: *Procedia Comput Sci – volume: 2023 start-page: 85 year: 2023 end-page: 89 ident: bib41 article-title: Diabetes at a Glance: Assessing AI Strategies for Early Diabetes Detection and Intervention publication-title: Mesop J Artif Intell Healthc – reference: Dutta, D., Paul, D., & Ghosh, P. (2018). Analysing feature importances for diabetes prediction using machine learning. In * 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)* (pp. 924-928). IEEE. – volume: 2* year: 2022 ident: bib4 article-title: A predictive analytics approach for stroke prediction using machine learning and neural networks publication-title: *Healthc Anal – volume: 14 start-page: 4206 year: 2024 ident: bib18 article-title: Pediatric diabetes prediction using deep learning publication-title: Sci Rep – volume: 106* start-page: 855 year: 2019 end-page: 865 ident: bib28 article-title: Pharmacogenomics-driven prediction of antidepressant treatment outcomes: A machine-learning approach with multi-trial replication publication-title: *Clin Pharmacol Ther – volume: 13* start-page: 21 year: 1967 end-page: 27 ident: bib31 article-title: Nearest neighbor pattern classification publication-title: *IEEE Trans Inf Theory – reference: Liu, J., Zhang, Z., & Razavian, N. (2018). Deep EHR: Chronic disease prediction using medical notes. *arXiv* . – volume: 107* start-page: 2697 year: 2022 ident: bib10 article-title: Analyzing three predictive algorithms for diabetes mellitus against the Pima Indians dataset publication-title: *ECS Trans – volume: 25* start-page: 127 year: 2023 ident: bib32 article-title: An enhanced quantum k-nearest neighbor classification algorithm based on polar distance publication-title: *Entropy – reference: , pp. 138-149. – volume: 19* start-page: 12378 year: 2022 ident: bib2 article-title: Early prediction of diabetes using an ensemble of machine learning models publication-title: *Int J Environ Res Public Health – volume: 26* start-page: 277 year: 2023 end-page: 288 ident: bib12 article-title: A comparative study of diabetes detection using the Pima Indian diabetes database publication-title: *J Duhok Univ – start-page: 3 year: 2020 end-page: 21 ident: bib16 article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science publication-title: *Supervised and unsupervised learning for data science* – reference: Bhat, S.S., V. Selvam, G.A. Ansari and M.D. Ansari, Analysis of Diabetes mellitus using Machine Learning Techniques, 2022a 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 2022, pp. 1-5, doi: – volume: 58* start-page: 41 year: 2020 end-page: 53 ident: bib25 article-title: AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images publication-title: *Med Biol Eng Comput – volume: 542* start-page: 115 year: 2017 end-page: 118 ident: bib23 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: *Nature – volume: 22* start-page: 291 year: 2021 end-page: 300 ident: bib15 article-title: Machine learning in healthcare publication-title: *Curr Genom – volume: 10* year: 2020 ident: bib29 article-title: Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs publication-title: *Sci Rep – volume: 15* start-page: 104 year: 2017 end-page: 116 ident: bib8 article-title: Machine learning and data mining methods in diabetes research publication-title: *Comput Struct Biotechnol J – volume: 96* start-page: 465 year: 2018 end-page: 474 ident: bib24 article-title: Diabetic retinopathy in type 1 diabetes patients in Western Norway publication-title: *Acta Ophthalmol – year: 2020 ident: bib14 article-title: *Introduction to machine learning* – reference: . In – volume: 9* start-page: 515 year: 2018 ident: bib1 article-title: Predicting diabetes mellitus with machine learning techniques publication-title: *Front Genet – volume: 12* start-page: 3283 year: 2020 end-page: 3293 ident: bib21 article-title: A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs) publication-title: *J Ambient Intell Humaniz Comput – volume: 2015* year: 2015 ident: bib26 article-title: Revisiting warfarin dosing using machine learning techniques publication-title: *Comput Math Methods Med – volume: 13* start-page: 1084441 year: 2023 ident: bib7 article-title: Combined diabetic ketoacidosis and hyperosmolar hyperglycemic state in type 1 diabetes mellitus induced by immune checkpoint inhibitors: Underrecognized and underreported emergency in ICIs-DM publication-title: *Front Endocrinol – reference: Agrebi, S., & Larbi, A. (2020). Use of artificial intelligence in infectious diseases. In *Artificial intelligence in precision health* (pp. 415–438). – reference: . – volume: 5* start-page: 1304 year: 2016 ident: bib33 article-title: The distance function effect on k-nearest neighbor classification for medical datasets publication-title: *SpringerPlus – volume: 13* start-page: 148 year: 2021 ident: bib6 article-title: Machine learning and deep learning predictive models for type 2 diabetes: a systematic review publication-title: *Diabetol Metab Syndr – reference: Bhat, S.S., V. Selvam, G.A. Ansari and M. Dilshad Ansari, "Hybrid Prediction Model for Type-2 Diabetes Mellitus using Machine Learning Approach," 2022b Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 150-155, – volume: 45* start-page: 5 year: 2001 end-page: 32 ident: bib36 article-title: Random forests publication-title: *Mach Learn – reference: Ho, T.K. (1995). Random decision forests. In *Proceedings of the 3rd International Conference on Document Analysis and Recognition* (pp. 278-282). Montreal, Canada. – reference: Fix, E., & Hodges, J.L. (1951). Discriminatory analysis. Nonparametric discrimination: Consistency properties. USAF School of Aviation Medicine, Randolph Field, Texas. – volume: 2023 start-page: 1 year: 2023 end-page: 8 ident: bib40 article-title: Artificial Intelligence-Driven Diagnostic Systems for Early Detection of Diabetic Retinopathy: Integrating Retinal Imaging and Clinical Data publication-title: SHIFAA – year: 2018 ident: bib17 article-title: *Reinforcement learning: An introduction* – volume: 7* year: 2017 ident: bib27 article-title: Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients publication-title: *Sci Rep – volume: 17* start-page: 702 year: 2007 end-page: 710 ident: bib9 article-title: An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease publication-title: *Digit Signal Process – reference: Heath, D., Kasif, S. and Salzberg, S. (1993). – ident: 10.1016/j.infoh.2024.12.002_bib34 – ident: 10.1016/j.infoh.2024.12.002_bib30 doi: 10.1037/e471672008-001 – volume: 15* start-page: 104 year: 2017 ident: 10.1016/j.infoh.2024.12.002_bib8 article-title: Machine learning and data mining methods in diabetes research publication-title: *Comput Struct Biotechnol J doi: 10.1016/j.csbj.2016.12.005 – volume: 26* start-page: 277 issue: 2 year: 2023 ident: 10.1016/j.infoh.2024.12.002_bib12 article-title: A comparative study of diabetes detection using the Pima Indian diabetes database publication-title: *J Duhok Univ doi: 10.26682/sjuod.2023.26.2.24 – volume: 45* start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.infoh.2024.12.002_bib36 article-title: Random forests publication-title: *Mach Learn doi: 10.1023/A:1010933404324 – volume: 5* start-page: 1304 issue: 1 year: 2016 ident: 10.1016/j.infoh.2024.12.002_bib33 article-title: The distance function effect on k-nearest neighbor classification for medical datasets publication-title: *SpringerPlus doi: 10.1186/s40064-016-2941-7 – ident: 10.1016/j.infoh.2024.12.002_bib13 doi: 10.1016/B978-0-12-817133-2.00018-5 – year: 2020 ident: 10.1016/j.infoh.2024.12.002_bib14 – volume: 58* start-page: 41 issue: 1 year: 2020 ident: 10.1016/j.infoh.2024.12.002_bib25 article-title: AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images publication-title: *Med Biol Eng Comput doi: 10.1007/s11517-019-02066-y – volume: 96* start-page: 465 issue: 5 year: 2018 ident: 10.1016/j.infoh.2024.12.002_bib24 article-title: Diabetic retinopathy in type 1 diabetes patients in Western Norway publication-title: *Acta Ophthalmol – volume: 107* start-page: 2697 issue: 1 year: 2022 ident: 10.1016/j.infoh.2024.12.002_bib10 article-title: Analyzing three predictive algorithms for diabetes mellitus against the Pima Indians dataset publication-title: *ECS Trans – volume: 13* start-page: 148 issue: 1 year: 2021 ident: 10.1016/j.infoh.2024.12.002_bib6 article-title: Machine learning and deep learning predictive models for type 2 diabetes: a systematic review publication-title: *Diabetol Metab Syndr doi: 10.1186/s13098-021-00767-9 – volume: 12* start-page: 3283 issue: 2 year: 2020 ident: 10.1016/j.infoh.2024.12.002_bib21 article-title: A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs) publication-title: *J Ambient Intell Humaniz Comput – start-page: 3 year: 2020 ident: 10.1016/j.infoh.2024.12.002_bib16 article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science doi: 10.1007/978-3-030-22475-2_1 – ident: 10.1016/j.infoh.2024.12.002_bib20 – year: 2024 ident: 10.1016/j.infoh.2024.12.002_bib37 article-title: Performance Analysis of Machine Learning Based On Optimized Feature Selection for Type II Diabetes Mellitus publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-19000-6 – volume: 2023 start-page: 85 year: 2023 ident: 10.1016/j.infoh.2024.12.002_bib41 article-title: Diabetes at a Glance: Assessing AI Strategies for Early Diabetes Detection and Intervention publication-title: Mesop J Artif Intell Healthc – year: 2018 ident: 10.1016/j.infoh.2024.12.002_bib17 – volume: 577* start-page: 89 issue: 7788 year: 2020 ident: 10.1016/j.infoh.2024.12.002_bib22 article-title: International evaluation of an AI system for breast cancer screening publication-title: *Nature – ident: 10.1016/j.infoh.2024.12.002_bib39 doi: 10.1109/PDGC56933.2022.10053092 – volume: 25* start-page: 127 issue: 1 year: 2023 ident: 10.1016/j.infoh.2024.12.002_bib32 article-title: An enhanced quantum k-nearest neighbor classification algorithm based on polar distance publication-title: *Entropy doi: 10.3390/e25010127 – ident: 10.1016/j.infoh.2024.12.002_bib35 – volume: 22* start-page: 291 issue: 4 year: 2021 ident: 10.1016/j.infoh.2024.12.002_bib15 article-title: Machine learning in healthcare publication-title: *Curr Genom doi: 10.2174/1389202922666210705124359 – volume: 14 start-page: 4206 year: 2024 ident: 10.1016/j.infoh.2024.12.002_bib18 article-title: Pediatric diabetes prediction using deep learning publication-title: Sci Rep doi: 10.1038/s41598-024-51438-4 – volume: 19* start-page: 12378 issue: 12 year: 2022 ident: 10.1016/j.infoh.2024.12.002_bib2 article-title: Early prediction of diabetes using an ensemble of machine learning models publication-title: *Int J Environ Res Public Health doi: 10.3390/ijerph191912378 – volume: 5 year: 2024 ident: 10.1016/j.infoh.2024.12.002_bib19 article-title: A novel machine learning approach for diagnosing diabetes with a self-explainable interface publication-title: Healthc Anal – ident: 10.1016/j.infoh.2024.12.002_bib5 doi: 10.1109/IEMCON.2018.8614871 – volume: 2* year: 2022 ident: 10.1016/j.infoh.2024.12.002_bib4 article-title: A predictive analytics approach for stroke prediction using machine learning and neural networks publication-title: *Healthc Anal – volume: 7* year: 2017 ident: 10.1016/j.infoh.2024.12.002_bib27 article-title: Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients publication-title: *Sci Rep – volume: 106* start-page: 855 issue: 4 year: 2019 ident: 10.1016/j.infoh.2024.12.002_bib28 article-title: Pharmacogenomics-driven prediction of antidepressant treatment outcomes: A machine-learning approach with multi-trial replication publication-title: *Clin Pharmacol Ther doi: 10.1002/cpt.1482 – volume: 13* start-page: 1084441 year: 2023 ident: 10.1016/j.infoh.2024.12.002_bib7 article-title: Combined diabetic ketoacidosis and hyperosmolar hyperglycemic state in type 1 diabetes mellitus induced by immune checkpoint inhibitors: Underrecognized and underreported emergency in ICIs-DM publication-title: *Front Endocrinol doi: 10.3389/fendo.2022.1084441 – volume: 13* start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.infoh.2024.12.002_bib31 article-title: Nearest neighbor pattern classification publication-title: *IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1053964 – volume: 17* start-page: 702 issue: 4 year: 2007 ident: 10.1016/j.infoh.2024.12.002_bib9 article-title: An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease publication-title: *Digit Signal Process doi: 10.1016/j.dsp.2006.09.005 – volume: 542* start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.infoh.2024.12.002_bib23 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: *Nature – volume: 2023 start-page: 1 year: 2023 ident: 10.1016/j.infoh.2024.12.002_bib40 article-title: Artificial Intelligence-Driven Diagnostic Systems for Early Detection of Diabetic Retinopathy: Integrating Retinal Imaging and Clinical Data publication-title: SHIFAA doi: 10.70470/SHIFAA/2023/010 – volume: 10* issue: 1 year: 2020 ident: 10.1016/j.infoh.2024.12.002_bib29 article-title: Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs publication-title: *Sci Rep – ident: 10.1016/j.infoh.2024.12.002_bib38 doi: 10.1109/IMPACT55510.2022.10029058 – volume: 9* start-page: 515 year: 2018 ident: 10.1016/j.infoh.2024.12.002_bib1 article-title: Predicting diabetes mellitus with machine learning techniques publication-title: *Front Genet doi: 10.3389/fgene.2018.00515 – volume: 326* start-page: 717 issue: 8 year: 2021 ident: 10.1016/j.infoh.2024.12.002_bib3 article-title: Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017 publication-title: *JAMA – volume: 216* start-page: 21 year: 2023 ident: 10.1016/j.infoh.2024.12.002_bib11 article-title: Diabetes prediction using supervised machine learning publication-title: *Procedia Comput Sci doi: 10.1016/j.procs.2022.12.107 – volume: 2015* year: 2015 ident: 10.1016/j.infoh.2024.12.002_bib26 article-title: Revisiting warfarin dosing using machine learning techniques publication-title: *Comput Math Methods Med |
| SSID | ssj0003321009 |
| Score | 2.2868814 |
| Snippet | Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of... Background: Diabetes mellitus is one of the most significant health challenges currently faced by people especially in the United States of America because of... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 9 |
| SubjectTerms | Diabetes KNN Logistic regression Random forest Regression Supervised learning |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MHDz5ETVi1PTg0ZGxlbIe0UCIiYQDJHhq2rVDFAZhW4z-9b63DyLGGL1ty9vavHZ7v72P3yPkxgMTrI12HSMAvjE4dZTQoeNz1VbKCO1FWO_8OOSDCXuYtqclzzbWwuzE7_M8LFQ0Rg08lvvtkDiyztsAvGukPhmOuk_YPk4wgYFIVvEK_Xznju3JKfp3TNB-Fq_V-5taLL6YmP5hUbud5MyEmFny2sxS3Qw_vvE2_nH2R-SghJq0W-yNY7Jn4xMyHm0wNIPJzrTyu1JMfp_RJFvjhyOxhi7zFEtLy54SM6oWs9Vmnj4vE7qKac8pyidp4eJJTsmk3xvfD5yys4ITeq7wHMN8ExjXAL4DOCSE5a5ihhse-aLlWTgOAoERPs3gl7CjuAVc4mrXCouVs75_RmrxKrbnhPoui0LbEToCQ6d5oFUu42JrKz80okFuK53LdUGgIavMsheZq0eiemTLk6CeBrnDddmKIvt1fgHUKsuXSXJf2whwGBeeYhFAzDAwYStC6kKmgzaMyatVlSWQKAACPGr---jOdg_8ZbYX_5S_JLV0k9krwDGpvi737yc9je8Q priority: 102 providerName: Unpaywall |
| Title | Predicting diabetes using supervised machine learning algorithms on E-health records |
| URI | https://dx.doi.org/10.1016/j.infoh.2024.12.002 https://doi.org/10.1016/j.infoh.2024.12.002 https://doaj.org/article/63bef159692a4f508c8dc1f47594b859 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6iB72IouL8GDl4tJglWdYcp2wMYWOHDeYpJE06J1s39oF48bebN23HvKgHL6UtoQ3P2_Z5-ub9QOiOego21pDISi_fuD-MtDRJxISua22loSnkO3d7ojPkz6P6aKfVF8SE5eWBc-AeBDMu9ZwrJNU89XIiiW1SS6FMHTdxPaTukVju_EzBN5hBagqRZZmhENAFFoPlB8qDA7BwpJRUFCr2f2Okw0220B_vejrdYZz2CToupCJu5lM8RXsuO0OD_hKWViBYGZd-UwzB62O82izgxV85i2chRNLhoifEGOvpeL6crF9nKzzPcCvK0x9x7qJZnaNhuzV46kRFZ4QooUTSyHJmY0us12dezkjpBNHcCitSJmvU-f04lrBCZ7jHoaGF87qCGOKkg8xXxi7QfjbP3CXCjPA0cQ1pUk9URsRGhzEEWlOxxMoKui9BUou8AIYqI8PeVMBUAaaqRpXHtIIeAcjtUKheHU54m6rCpuo3m1aQKM2gCiGQE7y_1OTnu0dbo_1ltlf_MdtrdEShKXAITLtB--vlxt16pbI21fBQ-m33s1VFB8Nev_nyBWX-57E |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8MHDz5ETVi1PTg0ZGxlbIe0UCIiYQDJHhq2rVDFAZhW4z-9b63DyLGGL1ty9vavHZ7v72P3yPkxgMTrI12HSMAvjE4dZTQoeNz1VbKCO1FWO_8OOSDCXuYtqclzzbWwuzE7_M8LFQ0Rg08lvvtkDiyztsAvGukPhmOuk_YPk4wgYFIVvEK_Xznju3JKfp3TNB-Fq_V-5taLL6YmP5hUbud5MyEmFny2sxS3Qw_vvE2_nH2R-SghJq0W-yNY7Jn4xMyHm0wNIPJzrTyu1JMfp_RJFvjhyOxhi7zFEtLy54SM6oWs9Vmnj4vE7qKac8pyidp4eJJTsmk3xvfD5yys4ITeq7wHMN8ExjXAL4DOCSE5a5ihhse-aLlWTgOAoERPs3gl7CjuAVc4mrXCouVs75_RmrxKrbnhPoui0LbEToCQ6d5oFUu42JrKz80okFuK53LdUGgIavMsheZq0eiemTLk6CeBrnDddmKIvt1fgHUKsuXSXJf2whwGBeeYhFAzDAwYStC6kKmgzaMyatVlSWQKAACPGr---jOdg_8ZbYX_5S_JLV0k9krwDGpvi737yc9je8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+diabetes+using+supervised+machine+learning+algorithms+on+E-health+records&rft.jtitle=Informatics+and+Health&rft.au=Sulaiman+Afolabi&rft.au=Nurudeen+Ajadi&rft.au=Afeez+Jimoh&rft.au=Ibrahim+Adenekan&rft.date=2025-03-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9534&rft.volume=2&rft.issue=1&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1016%2Fj.infoh.2024.12.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_63bef159692a4f508c8dc1f47594b859 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon |