Protein interaction prediction for Alzheimer’s disease using a multi-source protein features fusion framework

Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a compre...

Full description

Saved in:
Bibliographic Details
Published inInformatics and Health Vol. 2; no. 2; pp. 119 - 129
Main Authors Yu, Shi-Rui, Yang, Xue-Mei, Sun, Yi-Nan, Li, Yong-Jie, Liu, Yu-Yang, Tang, Xiao-Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2949-9534
2949-9534
DOI10.1016/j.infoh.2025.06.001

Cover

Abstract Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a comprehensive protein-protein interaction (PPI) network from which to predict potential interactions. In this study, we devised a framework that integrates protein attributes and interaction information extracted from both experimental data and the scientific literature. Based on these data from multiple sources, We then constructed a PPI network reflecting a diverse range of node features and edge weights. Further, the Graph Convolutional Network (GCN) applicable to the network was used for the link prediction task. Our proposed method achieved superior performance in protein interaction prediction for Alzheimer’s disease with an AUC value of 0.8935. We identified the top ten results predicted by our model as the most promising potential protein interactions for Alzheimer’s disease. The analysis of the predictive results using empirical evaluation verify that our framework has produced a reasonable roadmap for discovering potentially novel protein interactions related to Alzheimer’s disease. •Our method integrated multi-feature PPI data from experimental and literature sources.•A weighted and multi-dimensional PPI network was constructed.•An enhanced GCN model that is able to learn the node features, edge weights, and topological structures of a PPI network was employed to predict novel protein interactions linked to Alzheimer’s disease.•Our method identified top-ten promising unknown protein interactions for Alzheimer’s disease.
AbstractList Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a comprehensive protein-protein interaction (PPI) network from which to predict potential interactions. In this study, we devised a framework that integrates protein attributes and interaction information extracted from both experimental data and the scientific literature. Based on these data from multiple sources, We then constructed a PPI network reflecting a diverse range of node features and edge weights. Further, the Graph Convolutional Network (GCN) applicable to the network was used for the link prediction task. Our proposed method achieved superior performance in protein interaction prediction for Alzheimer’s disease with an AUC value of 0.8935. We identified the top ten results predicted by our model as the most promising potential protein interactions for Alzheimer’s disease. The analysis of the predictive results using empirical evaluation verify that our framework has produced a reasonable roadmap for discovering potentially novel protein interactions related to Alzheimer’s disease. •Our method integrated multi-feature PPI data from experimental and literature sources.•A weighted and multi-dimensional PPI network was constructed.•An enhanced GCN model that is able to learn the node features, edge weights, and topological structures of a PPI network was employed to predict novel protein interactions linked to Alzheimer’s disease.•Our method identified top-ten promising unknown protein interactions for Alzheimer’s disease.
Background: Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a comprehensive protein-protein interaction (PPI) network from which to predict potential interactions. Methods: In this study, we devised a framework that integrates protein attributes and interaction information extracted from both experimental data and the scientific literature. Based on these data from multiple sources, We then constructed a PPI network reflecting a diverse range of node features and edge weights. Further, the Graph Convolutional Network (GCN) applicable to the network was used for the link prediction task. Findings: Our proposed method achieved superior performance in protein interaction prediction for Alzheimer’s disease with an AUC value of 0.8935. We identified the top ten results predicted by our model as the most promising potential protein interactions for Alzheimer’s disease. Interpretation: The analysis of the predictive results using empirical evaluation verify that our framework has produced a reasonable roadmap for discovering potentially novel protein interactions related to Alzheimer’s disease.
Author Yang, Xue-Mei
Sun, Yi-Nan
Tang, Xiao-Li
Li, Yong-Jie
Yu, Shi-Rui
Liu, Yu-Yang
Author_xml – sequence: 1
  givenname: Shi-Rui
  surname: Yu
  fullname: Yu, Shi-Rui
  organization: National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu, China
– sequence: 2
  givenname: Xue-Mei
  surname: Yang
  fullname: Yang, Xue-Mei
  organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 3
  givenname: Yi-Nan
  surname: Sun
  fullname: Sun, Yi-Nan
  organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 4
  givenname: Yong-Jie
  surname: Li
  fullname: Li, Yong-Jie
  organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 5
  givenname: Yu-Yang
  surname: Liu
  fullname: Liu, Yu-Yang
  organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
– sequence: 6
  givenname: Xiao-Li
  surname: Tang
  fullname: Tang, Xiao-Li
  email: tang.xiaoli@imicams.ac.cn
  organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China
BookMark eNqNkUtO3TAUQK0KpFJgBUyygaTXjuPYAwYI9YOEVAZlbDn2NfiRZz_ZCYiOuo1urytpHqlQR6gjX1k-R9Y9H8hBTBEJOaPQUKDi46YJ0af7hgHrGhANAH1HjpjiqlZdyw_-md-T01I2ANC2jAKoI5JucpowxCrECbOxU0ix2mV0YR19ytXF-OMewxbz75-_SuVCQVOwmkuId5WptvM4hbqkOVtcyNXm0UxzxlL55dlek80Wn1J-OCGH3owFT_-ex-T286fvl1_r629fri4vrmvLQNFaDhSMcKL3QwvSIUMrhQPhrOQD872yBgbOGe16BcgEa610ChUMqkcPsj0mV6vXJbPRuxy2Jj_rZIJ-uUj5Tps8BTuiNr0XLYdOAZccKJfOU0QEPrhODqZbXHx1zXFnnp_MOL4KKeh9A73RLw30voEGoZcGC9aumM2plIz-P6nzlcJlO48Bsy42YLRLkYx2Wr4f3uT_AIbepmg
Cites_doi 10.1186/s12859-016-1422-x
10.24963/ijcai.2021/506
10.1093/nar/gkw868
10.1186/s13195-022-00975-z
10.1016/j.compbiomed.2021.104772
10.1093/bioinformatics/btae603
10.1016/j.fsi.2023.108544
10.1038/s41419-019-2019-x
10.1016/j.ab.2024.115550
10.1186/s12911-019-0934-5
10.1016/j.ajhg.2008.02.013
10.1093/nar/gkq481
10.1007/s11063-020-10404-7
10.1038/s41598-018-33219-y
10.1186/s13287-022-02765-8
10.1074/mcp.M700287-MCP200
10.1016/j.jbi.2023.104464
10.1016/j.cell.2018.07.041
10.1093/nar/gkab1006
10.1007/978-1-4939-9873-9_1
10.1038/s41419-023-06186-0
10.1007/s11064-021-03448-1
10.1016/j.nbd.2021.105563
10.1093/bioinformatics/bty573
10.3389/fneur.2020.529930
10.1016/j.neucom.2018.02.097
10.14336/AD.2021.0529
10.1038/s41592-019-0461-4
10.1038/ni.2234
10.3389/fbioe.2022.873811
10.1002/pmic.202100190
10.1016/j.immuni.2017.09.011
10.1074/jbc.C200694200
10.1093/nar/gkaa1009
10.1021/acs.jcim.7b00028
10.7717/peerj-cs.357
10.1007/s13748-021-00261-3
10.1186/1752-0509-6-15
10.1016/j.jbi.2009.09.007
10.3390/antiox11010132
10.1186/s12859-020-3396-y
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.infoh.2025.06.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2949-9534
EndPage 129
ExternalDocumentID oai_doaj_org_article_a7f63405904840148df1eee04bd58ba5
10.1016/j.infoh.2025.06.001
10_1016_j_infoh_2025_06_001
S2949953425000189
GroupedDBID 0R~
6I.
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
GROUPED_DOAJ
M41
M~E
ROL
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2091-8b10a6d67fb308de2ec86d06dc84b2f79ca0b44215790e2623c8d9e90b97ef083
IEDL.DBID DOA
ISSN 2949-9534
IngestDate Tue Oct 14 19:09:46 EDT 2025
Tue Aug 19 23:44:58 EDT 2025
Sat Oct 25 05:29:13 EDT 2025
Sat Oct 25 16:50:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Link prediction
Multi-feature fusion
Protein-protein interaction network
Literature
Alzheimer’s disease
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2091-8b10a6d67fb308de2ec86d06dc84b2f79ca0b44215790e2623c8d9e90b97ef083
OpenAccessLink https://doaj.org/article/a7f63405904840148df1eee04bd58ba5
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a7f63405904840148df1eee04bd58ba5
unpaywall_primary_10_1016_j_infoh_2025_06_001
crossref_primary_10_1016_j_infoh_2025_06_001
elsevier_sciencedirect_doi_10_1016_j_infoh_2025_06_001
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Informatics and Health
PublicationYear 2025
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Zhang, Lu, Zhan, Zhang (bib29) 2022; 54
Liu, Castle, Taketo (bib41) 2019; 10
Heo, Xie, Song, Lee (bib16) 2019; 19
Li (bib5) 2024; 2
Lv, G., Hu, Z., Bi, Y. & Zhang, S. Learning unknown from correlations: Graph neural network for inter-novel-protein interaction prediction.
van Dam, Võsa, van der Graaf, Franke, de Magalhães (bib44) 2018; 19
Chen (bib1) 2023; 133
(2021).
Gonzalez (bib48) 2022; 162
Hamilton, Ying, Leskovec (bib33) 2017
Zhang, Yu, Xia, Wang (bib18) 2019; 324
Yang (bib27) 2017; 45
Wang (bib7) 2024; 14
Araki, Kametani (bib47) 2022; 11
Tang (bib35) 2024; 40
Decourt (bib50) 2022; 13
Perozzi, Al-Rfou, Skiena (bib31) 2014
Gilmer, Schoenholz, Riley, Vinyals, Dahl (bib32) 2017
Wee, Kumar (bib3) 2020; 18
Chen, Li, Chen, Hu, Chen (bib21) 2017; 12
Wang (bib49) 2022; 12
Makarov, Kiselev, Nikitinsky, Subelj (bib23) 2021; 7
Tahmi (bib37) 2020; 11
Zdobnov (bib11) 2021; 49
Panitch (bib53) 2022; 14
Li, Zhang, Wang, Pan (bib17) 2012; 6
Hu (bib38) 2019; 16
Khazaal, Maarouf (bib54) 2023; 2023
Wang, Satuluri, Parthasarathy (bib20) 2007
Li (bib10) 2008; 7
Wang (bib2) 2022; 22
Lee, Lee, Lee (bib15) 2020; 21
Ghasemi, Zarei (bib19) 2022; 11
Pu, Beck, Verspoor (bib4) 2023; 145
Du (bib14) 2017; 57
Qin, Bai, Li, Wang (bib52) 2022; 13
Del Toro (bib24) 2022; 50
abs/2105
Xu (bib42) 2018; 174
Cao, Lu, Xu (bib22) 2016
Taghipour, Zarrineh, Ganjtabesh, Nowzari-Dalini (bib13) 2017; 18
Rebholz-Schuhmann, Jimeno-Yepes, Arregui, Kirsch (bib28) 2010; 43
Alekseenko, Ignatov, Jones, Sabitova, Kozakov (bib9) 2020
Hashemifar, Neyshabur, Khan, Xu (bib12) 2018; 34
Li, Ilie (bib8) 2020; 2074
Smedley (bib30) 2008; 82
Singh, Park, Xu, Hosur, Berger (bib25) 2010; 38
Chen, Li, Luo, Gu (bib45) 2003; 278
Hu, Li, Rao, Thafar, Arif (bib34) 2024; 693
Dey (bib46) 2022; 10
Honda (bib40) 2012; 13
Białopiotrowicz-Data (bib43) 2023; 14
Nasiri, Berahmand, Rostami, Dabiri (bib6) 2021; 137
Zhao, Wang (bib26) 2018; 8
Kleino (bib39) 2017; 47
Wan (bib51) 2022; 47
van Dam (10.1016/j.infoh.2025.06.001_bib44) 2018; 19
Decourt (10.1016/j.infoh.2025.06.001_bib50) 2022; 13
Hashemifar (10.1016/j.infoh.2025.06.001_bib12) 2018; 34
Xu (10.1016/j.infoh.2025.06.001_bib42) 2018; 174
Makarov (10.1016/j.infoh.2025.06.001_bib23) 2021; 7
Araki (10.1016/j.infoh.2025.06.001_bib47) 2022; 11
Kleino (10.1016/j.infoh.2025.06.001_bib39) 2017; 47
Li (10.1016/j.infoh.2025.06.001_bib8) 2020; 2074
Gonzalez (10.1016/j.infoh.2025.06.001_bib48) 2022; 162
Wang (10.1016/j.infoh.2025.06.001_bib2) 2022; 22
Wee (10.1016/j.infoh.2025.06.001_bib3) 2020; 18
Nasiri (10.1016/j.infoh.2025.06.001_bib6) 2021; 137
Perozzi (10.1016/j.infoh.2025.06.001_bib31) 2014
Chen (10.1016/j.infoh.2025.06.001_bib1) 2023; 133
Wang (10.1016/j.infoh.2025.06.001_bib20) 2007
Wan (10.1016/j.infoh.2025.06.001_bib51) 2022; 47
Zhang (10.1016/j.infoh.2025.06.001_bib29) 2022; 54
Khazaal (10.1016/j.infoh.2025.06.001_bib54) 2023; 2023
Cao (10.1016/j.infoh.2025.06.001_bib22) 2016
Dey (10.1016/j.infoh.2025.06.001_bib46) 2022; 10
Li (10.1016/j.infoh.2025.06.001_bib10) 2008; 7
Tang (10.1016/j.infoh.2025.06.001_bib35) 2024; 40
Hamilton (10.1016/j.infoh.2025.06.001_bib33) 2017
Taghipour (10.1016/j.infoh.2025.06.001_bib13) 2017; 18
Zhao (10.1016/j.infoh.2025.06.001_bib26) 2018; 8
Du (10.1016/j.infoh.2025.06.001_bib14) 2017; 57
Chen (10.1016/j.infoh.2025.06.001_bib21) 2017; 12
Panitch (10.1016/j.infoh.2025.06.001_bib53) 2022; 14
Tahmi (10.1016/j.infoh.2025.06.001_bib37) 2020; 11
Zdobnov (10.1016/j.infoh.2025.06.001_bib11) 2021; 49
Białopiotrowicz-Data (10.1016/j.infoh.2025.06.001_bib43) 2023; 14
Wang (10.1016/j.infoh.2025.06.001_bib7) 2024; 14
Smedley (10.1016/j.infoh.2025.06.001_bib30) 2008; 82
Chen (10.1016/j.infoh.2025.06.001_bib45) 2003; 278
Honda (10.1016/j.infoh.2025.06.001_bib40) 2012; 13
Pu (10.1016/j.infoh.2025.06.001_bib4) 2023; 145
Qin (10.1016/j.infoh.2025.06.001_bib52) 2022; 13
Zhang (10.1016/j.infoh.2025.06.001_bib18) 2019; 324
10.1016/j.infoh.2025.06.001_bib36
Li (10.1016/j.infoh.2025.06.001_bib5) 2024; 2
Alekseenko (10.1016/j.infoh.2025.06.001_bib9) 2020
Hu (10.1016/j.infoh.2025.06.001_bib38) 2019; 16
Yang (10.1016/j.infoh.2025.06.001_bib27) 2017; 45
Wang (10.1016/j.infoh.2025.06.001_bib49) 2022; 12
Gilmer (10.1016/j.infoh.2025.06.001_bib32) 2017
Del Toro (10.1016/j.infoh.2025.06.001_bib24) 2022; 50
Singh (10.1016/j.infoh.2025.06.001_bib25) 2010; 38
Hu (10.1016/j.infoh.2025.06.001_bib34) 2024; 693
Liu (10.1016/j.infoh.2025.06.001_bib41) 2019; 10
Rebholz-Schuhmann (10.1016/j.infoh.2025.06.001_bib28) 2010; 43
Lee (10.1016/j.infoh.2025.06.001_bib15) 2020; 21
Li (10.1016/j.infoh.2025.06.001_bib17) 2012; 6
Ghasemi (10.1016/j.infoh.2025.06.001_bib19) 2022; 11
Heo (10.1016/j.infoh.2025.06.001_bib16) 2019; 19
References_xml – volume: 11
  start-page: 132
  year: 2022
  ident: bib47
  article-title: Protection against amyloid- oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia
  publication-title: Antioxidants
– volume: 14
  start-page: 30
  year: 2022
  ident: bib53
  article-title: Blood and brain transcriptome analysis reveals apoe genotype-mediated and immune-related pathways involved in Alzheimer disease
  publication-title: Alzheimer’S Res amp Ther
– volume: 19
  start-page: 240
  year: 2019
  ident: bib16
  article-title: Combining entity co-occurrence with specialized word embeddings to measure entity relation in alzheimer’s disease
  publication-title: BMC Med Inform Decis Mak
– start-page: 1025
  year: 2017
  end-page: 1035
  ident: bib33
  article-title: Inductive representation learning on large graphs
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17
– volume: 18
  start-page: 10
  year: 2017
  ident: bib13
  article-title: Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of escherichia coli from different physical interaction data sources
  publication-title: BMC Bioinforma
– volume: 12
  year: 2022
  ident: bib49
  article-title: Association of plasma apolipoproteins and levels of inflammation-related factors with different stages of Alzheimer’s disease: a cross-sectional study
  publication-title: BMJ Open
– start-page: 1145
  year: 2016
  end-page: 1152
  ident: bib22
  article-title: Deep neural networks for learning graph representations
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16
– volume: 19
  start-page: 575
  year: 2018
  end-page: 592
  ident: bib44
  article-title: Gene co-expression analysis for functional classification and gene-disease predictions
  publication-title: Brief Bioinforma
– volume: 13
  start-page: 90
  year: 2022
  ident: bib52
  article-title: The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with alzheimer’s disease: crosstalk between autophagy and apoptosis
  publication-title: Stem Cell Res amp Ther
– volume: 11
  year: 2020
  ident: bib37
  article-title: Brain amyloid burden and resting-state functional connectivity in late middle-aged hispanics
  publication-title: Front Neurol
– volume: 38
  start-page: W508
  year: 2010
  end-page: W515
  ident: bib25
  article-title: Struct2net: a web service to predict protein-protein interactions using a structure-based approach
  publication-title: Nucleic Acids Res
– reference: abs/2105
– volume: 18
  year: 2020
  ident: bib3
  article-title: Prediction of hub genes of alzheimer’s disease using a protein interaction network and functional enrichment analysis
  publication-title: Genom Inf
– volume: 34
  start-page: i802
  year: 2018
  end-page: i810
  ident: bib12
  article-title: Predicting protein-protein interactions through sequence-based deep learning
  publication-title: Bioinformatics
– volume: 13
  start-page: 37
  year: 2022
  end-page: 60
  ident: bib50
  article-title: The cause of alzheimer’s disease: the theory of multipathology convergence to chronic neuronal stress
  publication-title: Aging Dis
– volume: 82
  start-page: 949
  year: 2008
  end-page: 958
  ident: bib30
  article-title: Walking the interactome for prioritization of candidate disease genes
  publication-title: Am J Hum Genet
– volume: 57
  start-page: 1499
  year: 2017
  end-page: 1510
  ident: bib14
  article-title: Deepppi: boosting prediction of protein-protein interactions with deep neural networks
  publication-title: J Chem Inf Model
– volume: 7
  start-page: 1043
  year: 2008
  end-page: 1052
  ident: bib10
  article-title: Princess, a protein interaction confidence evaluation system with multiple data sources
  publication-title: Mol Cell Proteom
– volume: 12
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib21
  article-title: Link prediction based on non-negative matrix factorization
  publication-title: PLOS ONE
– volume: 45
  start-page: D389
  year: 2017
  end-page: D396
  ident: bib27
  article-title: Coexpedia: exploring biomedical hypotheses via co-expressions associated with medical subject headings (mesh)
  publication-title: Nucleic Acids Res
– volume: 54
  start-page: 2645
  year: 2022
  end-page: 2656
  ident: bib29
  article-title: Semi-supervised classification of graph convolutional networks with laplacian rank constraints
  publication-title: Neural Process Lett
– volume: 693
  year: 2024
  ident: bib34
  article-title: Improving protein-protein interaction prediction using protein language model and protein network features
  publication-title: Anal Biochem
– volume: 47
  start-page: 635
  year: 2017
  end-page: 647
  ident: bib39
  article-title: Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein imd to initiate drosophila nf-b signaling
  publication-title: Immunity
– reference: Lv, G., Hu, Z., Bi, Y. & Zhang, S. Learning unknown from correlations: Graph neural network for inter-novel-protein interaction prediction.
– volume: 174
  start-page: 1477
  year: 2018
  end-page: 1491
  ident: bib42
  article-title: Tbk1 suppresses ripk1-driven apoptosis and inflammation during development and in aging
  publication-title: Cell
– volume: 2
  year: 2024
  ident: bib5
  article-title: Transcriptome analysis provides preliminary insights into the response of sepia esculenta to high salinity stress
  publication-title: Agric Commun
– volume: 14
  year: 2024
  ident: bib7
  article-title: Weighted gene co-expression network analysis based on stimulation by lipopolysaccharides and polyi- nosinic:polycytidylic acid provides a core set of genes for understanding hemolymph immune response mechanisms of amphioctopus fangsiao
  publication-title: Animals
– reference: (2021).
– volume: 8
  start-page: 15107
  year: 2018
  ident: bib26
  article-title: Gogo: an improved algorithm to measure the semantic similarity between gene ontology terms
  publication-title: Sci Rep
– volume: 133
  year: 2023
  ident: bib1
  article-title: Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against poly I:c stimulation in amphioctopus fangsiao
  publication-title: Fish Shellfish Immunol
– volume: 2074
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib8
  article-title: Predicting protein-protein interactions using sprint
  publication-title: Methods Mol Biol
– volume: 278
  start-page: 13595
  year: 2003
  end-page: 13598
  ident: bib45
  article-title: Direct interactions between hif-1 alpha and mdm2 modulate p53 function
  publication-title: J Biol Chem
– start-page: 157
  year: 2020
  end-page: 174
  ident: bib9
  article-title: Protein–Protein and Protein–Peptide docking with ClusPro server
– volume: 50
  start-page: D648
  year: 2022
  end-page: D653
  ident: bib24
  article-title: The intact database: efficient access to fine-grained molecular interaction data
  publication-title: Nucleic Acids Res
– volume: 22
  year: 2022
  ident: bib2
  article-title: Protein-protein interaction networks as miners of biological discovery
  publication-title: Proteomics
– volume: 10
  year: 2022
  ident: bib46
  article-title: Electrochemical detection of alzheimer’s disease biomarker, -secretase enzyme (bace1), with one-step synthesized reduced graphene oxide
  publication-title: Front Bioeng Biotechnol
– start-page: 701
  year: 2014
  end-page: 710
  ident: bib31
  article-title: Deepwalk: Online learning of social representations
  publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’14
– start-page: 322
  year: 2007
  end-page: 331
  ident: bib20
  article-title: Local probabilistic models for link prediction
  publication-title: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, ICDM ’07
– volume: 49
  start-page: D389
  year: 2021
  end-page: D393
  ident: bib11
  article-title: Orthodb in 2020: evolutionary and functional annotations of orthologs
  publication-title: Nucleic Acids Res
– volume: 7
  year: 2021
  ident: bib23
  article-title: Survey on graph embeddings and their applications to machine learning problems on graphs
  publication-title: PeerJ Comput Sci
– volume: 14
  start-page: 667
  year: 2023
  ident: bib43
  article-title: Sirt1 and hsp90 feed-forward circuit safeguards chromosome segregation integrity in diffuse large b cell lymphomas
  publication-title: Cell death amp Dis
– volume: 145
  year: 2023
  ident: bib4
  article-title: Graph embedding-based link prediction for literature-based discovery in alzheimer’s disease
  publication-title: J Biomed Inform
– volume: 43
  start-page: 200
  year: 2010
  end-page: 207
  ident: bib28
  article-title: Measuring prediction capacity of individual verbs for the identification of protein interactions
  publication-title: J Biomed Inform
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: bib32
  article-title: Neural message passing for quantum chemistry
  publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17
– volume: 2023
  start-page: 21
  year: 2023
  end-page: 26
  ident: bib54
  article-title: Predicting coronary artery disease utilizing support vector machines: optimizing predictive model
  publication-title: Mesop J Artif Intell Health
– volume: 21
  start-page: 250
  year: 2020
  ident: bib15
  article-title: Literature mining for context-specific molecular relations using multimodal representations (commodar
  publication-title: BMC Bioinforma
– volume: 13
  start-page: 369
  year: 2012
  end-page: 378
  ident: bib40
  article-title: The kinase btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils
  publication-title: Nat Immunol
– volume: 6
  start-page: 15
  year: 2012
  ident: bib17
  article-title: A new essential protein discovery method based on the integration of protein- protein interaction and gene expression data
  publication-title: BMC Syst Biol
– volume: 16
  start-page: 737
  year: 2019
  end-page: 742
  ident: bib38
  article-title: Epic: software toolkit for elution profile-based inference of protein complexes
  publication-title: Nat Methods
– volume: 10
  start-page: 790
  year: 2019
  ident: bib41
  article-title: Interplay between caspase 9 and x-linked inhibitor of apoptosis protein (xiap) in the oocyte elimination during fetal mouse development
  publication-title: Cell death amp Dis
– volume: 162
  year: 2022
  ident: bib48
  article-title: Small molecule modulation of trkb and trkc neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer’s disease mouse model at an advanced pathological stage
  publication-title: Neurobiol Dis
– volume: 137
  year: 2021
  ident: bib6
  article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding
  publication-title: Comput Biol Med
– volume: 324
  start-page: 10
  year: 2019
  end-page: 19
  ident: bib18
  article-title: Protein–protein interactions prediction based on ensemble deep neural networks
  publication-title: Neurocomputing
– volume: 40
  start-page: btae603
  year: 2024
  ident: bib35
  article-title: Anti-symmetric framework for balanced learning of protein–protein interactions
  publication-title: Bioinformatics
– volume: 11
  start-page: 79
  year: 2022
  end-page: 92
  ident: bib19
  article-title: Improving link prediction in social networks using local and global features: a clustering-based approach
  publication-title: Prog Artif Intell
– volume: 47
  start-page: 205
  year: 2022
  end-page: 217
  ident: bib51
  article-title: Research progress on mechanism of neuroprotective roles of apelin-13 in prevention and treatment of Alzheimer’s disease
  publication-title: Neurochem Res
– volume: 18
  start-page: 10
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib13
  article-title: Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of escherichia coli from different physical interaction data sources
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-016-1422-x
– ident: 10.1016/j.infoh.2025.06.001_bib36
  doi: 10.24963/ijcai.2021/506
– volume: 45
  start-page: D389
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib27
  article-title: Coexpedia: exploring biomedical hypotheses via co-expressions associated with medical subject headings (mesh)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw868
– volume: 14
  start-page: 30
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib53
  article-title: Blood and brain transcriptome analysis reveals apoe genotype-mediated and immune-related pathways involved in Alzheimer disease
  publication-title: Alzheimer’S Res amp Ther
  doi: 10.1186/s13195-022-00975-z
– volume: 137
  year: 2021
  ident: 10.1016/j.infoh.2025.06.001_bib6
  article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104772
– volume: 18
  year: 2020
  ident: 10.1016/j.infoh.2025.06.001_bib3
  article-title: Prediction of hub genes of alzheimer’s disease using a protein interaction network and functional enrichment analysis
  publication-title: Genom Inf
– volume: 40
  start-page: btae603
  year: 2024
  ident: 10.1016/j.infoh.2025.06.001_bib35
  article-title: Anti-symmetric framework for balanced learning of protein–protein interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae603
– volume: 133
  year: 2023
  ident: 10.1016/j.infoh.2025.06.001_bib1
  article-title: Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against poly I:c stimulation in amphioctopus fangsiao
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2023.108544
– volume: 10
  start-page: 790
  year: 2019
  ident: 10.1016/j.infoh.2025.06.001_bib41
  article-title: Interplay between caspase 9 and x-linked inhibitor of apoptosis protein (xiap) in the oocyte elimination during fetal mouse development
  publication-title: Cell death amp Dis
  doi: 10.1038/s41419-019-2019-x
– start-page: 1145
  year: 2016
  ident: 10.1016/j.infoh.2025.06.001_bib22
  article-title: Deep neural networks for learning graph representations
– start-page: 701
  year: 2014
  ident: 10.1016/j.infoh.2025.06.001_bib31
  article-title: Deepwalk: Online learning of social representations
– volume: 693
  year: 2024
  ident: 10.1016/j.infoh.2025.06.001_bib34
  article-title: Improving protein-protein interaction prediction using protein language model and protein network features
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2024.115550
– volume: 19
  start-page: 240
  year: 2019
  ident: 10.1016/j.infoh.2025.06.001_bib16
  article-title: Combining entity co-occurrence with specialized word embeddings to measure entity relation in alzheimer’s disease
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-0934-5
– volume: 82
  start-page: 949
  year: 2008
  ident: 10.1016/j.infoh.2025.06.001_bib30
  article-title: Walking the interactome for prioritization of candidate disease genes
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.02.013
– volume: 38
  start-page: W508
  year: 2010
  ident: 10.1016/j.infoh.2025.06.001_bib25
  article-title: Struct2net: a web service to predict protein-protein interactions using a structure-based approach
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq481
– volume: 54
  start-page: 2645
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib29
  article-title: Semi-supervised classification of graph convolutional networks with laplacian rank constraints
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10404-7
– volume: 8
  start-page: 15107
  year: 2018
  ident: 10.1016/j.infoh.2025.06.001_bib26
  article-title: Gogo: an improved algorithm to measure the semantic similarity between gene ontology terms
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33219-y
– start-page: 1025
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib33
  article-title: Inductive representation learning on large graphs
– volume: 13
  start-page: 90
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib52
  article-title: The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with alzheimer’s disease: crosstalk between autophagy and apoptosis
  publication-title: Stem Cell Res amp Ther
  doi: 10.1186/s13287-022-02765-8
– volume: 7
  start-page: 1043
  year: 2008
  ident: 10.1016/j.infoh.2025.06.001_bib10
  article-title: Princess, a protein interaction confidence evaluation system with multiple data sources
  publication-title: Mol Cell Proteom
  doi: 10.1074/mcp.M700287-MCP200
– volume: 145
  year: 2023
  ident: 10.1016/j.infoh.2025.06.001_bib4
  article-title: Graph embedding-based link prediction for literature-based discovery in alzheimer’s disease
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2023.104464
– volume: 174
  start-page: 1477
  year: 2018
  ident: 10.1016/j.infoh.2025.06.001_bib42
  article-title: Tbk1 suppresses ripk1-driven apoptosis and inflammation during development and in aging
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.041
– volume: 2023
  start-page: 21
  year: 2023
  ident: 10.1016/j.infoh.2025.06.001_bib54
  article-title: Predicting coronary artery disease utilizing support vector machines: optimizing predictive model
  publication-title: Mesop J Artif Intell Health
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib21
  article-title: Link prediction based on non-negative matrix factorization
  publication-title: PLOS ONE
– volume: 19
  start-page: 575
  year: 2018
  ident: 10.1016/j.infoh.2025.06.001_bib44
  article-title: Gene co-expression analysis for functional classification and gene-disease predictions
  publication-title: Brief Bioinforma
– volume: 50
  start-page: D648
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib24
  article-title: The intact database: efficient access to fine-grained molecular interaction data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1006
– start-page: 1263
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib32
  article-title: Neural message passing for quantum chemistry
– volume: 14
  year: 2024
  ident: 10.1016/j.infoh.2025.06.001_bib7
  article-title: Weighted gene co-expression network analysis based on stimulation by lipopolysaccharides and polyi- nosinic:polycytidylic acid provides a core set of genes for understanding hemolymph immune response mechanisms of amphioctopus fangsiao
  publication-title: Animals
– volume: 2074
  start-page: 1
  year: 2020
  ident: 10.1016/j.infoh.2025.06.001_bib8
  article-title: Predicting protein-protein interactions using sprint
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-9873-9_1
– volume: 14
  start-page: 667
  year: 2023
  ident: 10.1016/j.infoh.2025.06.001_bib43
  article-title: Sirt1 and hsp90 feed-forward circuit safeguards chromosome segregation integrity in diffuse large b cell lymphomas
  publication-title: Cell death amp Dis
  doi: 10.1038/s41419-023-06186-0
– volume: 47
  start-page: 205
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib51
  article-title: Research progress on mechanism of neuroprotective roles of apelin-13 in prevention and treatment of Alzheimer’s disease
  publication-title: Neurochem Res
  doi: 10.1007/s11064-021-03448-1
– volume: 2
  year: 2024
  ident: 10.1016/j.infoh.2025.06.001_bib5
  article-title: Transcriptome analysis provides preliminary insights into the response of sepia esculenta to high salinity stress
  publication-title: Agric Commun
– volume: 162
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib48
  article-title: Small molecule modulation of trkb and trkc neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer’s disease mouse model at an advanced pathological stage
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2021.105563
– volume: 34
  start-page: i802
  year: 2018
  ident: 10.1016/j.infoh.2025.06.001_bib12
  article-title: Predicting protein-protein interactions through sequence-based deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty573
– volume: 11
  year: 2020
  ident: 10.1016/j.infoh.2025.06.001_bib37
  article-title: Brain amyloid burden and resting-state functional connectivity in late middle-aged hispanics
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.529930
– volume: 324
  start-page: 10
  year: 2019
  ident: 10.1016/j.infoh.2025.06.001_bib18
  article-title: Protein–protein interactions prediction based on ensemble deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.097
– volume: 13
  start-page: 37
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib50
  article-title: The cause of alzheimer’s disease: the theory of multipathology convergence to chronic neuronal stress
  publication-title: Aging Dis
  doi: 10.14336/AD.2021.0529
– start-page: 157
  year: 2020
  ident: 10.1016/j.infoh.2025.06.001_bib9
– volume: 16
  start-page: 737
  year: 2019
  ident: 10.1016/j.infoh.2025.06.001_bib38
  article-title: Epic: software toolkit for elution profile-based inference of protein complexes
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0461-4
– volume: 13
  start-page: 369
  year: 2012
  ident: 10.1016/j.infoh.2025.06.001_bib40
  article-title: The kinase btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils
  publication-title: Nat Immunol
  doi: 10.1038/ni.2234
– volume: 10
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib46
  article-title: Electrochemical detection of alzheimer’s disease biomarker, -secretase enzyme (bace1), with one-step synthesized reduced graphene oxide
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2022.873811
– volume: 22
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib2
  article-title: Protein-protein interaction networks as miners of biological discovery
  publication-title: Proteomics
  doi: 10.1002/pmic.202100190
– volume: 47
  start-page: 635
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib39
  article-title: Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein imd to initiate drosophila nf-b signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.09.011
– volume: 278
  start-page: 13595
  year: 2003
  ident: 10.1016/j.infoh.2025.06.001_bib45
  article-title: Direct interactions between hif-1 alpha and mdm2 modulate p53 function
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C200694200
– volume: 49
  start-page: D389
  year: 2021
  ident: 10.1016/j.infoh.2025.06.001_bib11
  article-title: Orthodb in 2020: evolutionary and functional annotations of orthologs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1009
– volume: 57
  start-page: 1499
  year: 2017
  ident: 10.1016/j.infoh.2025.06.001_bib14
  article-title: Deepppi: boosting prediction of protein-protein interactions with deep neural networks
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00028
– volume: 12
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib49
  article-title: Association of plasma apolipoproteins and levels of inflammation-related factors with different stages of Alzheimer’s disease: a cross-sectional study
  publication-title: BMJ Open
– volume: 7
  year: 2021
  ident: 10.1016/j.infoh.2025.06.001_bib23
  article-title: Survey on graph embeddings and their applications to machine learning problems on graphs
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.357
– volume: 11
  start-page: 79
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib19
  article-title: Improving link prediction in social networks using local and global features: a clustering-based approach
  publication-title: Prog Artif Intell
  doi: 10.1007/s13748-021-00261-3
– start-page: 322
  year: 2007
  ident: 10.1016/j.infoh.2025.06.001_bib20
  article-title: Local probabilistic models for link prediction
– volume: 6
  start-page: 15
  year: 2012
  ident: 10.1016/j.infoh.2025.06.001_bib17
  article-title: A new essential protein discovery method based on the integration of protein- protein interaction and gene expression data
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-15
– volume: 43
  start-page: 200
  year: 2010
  ident: 10.1016/j.infoh.2025.06.001_bib28
  article-title: Measuring prediction capacity of individual verbs for the identification of protein interactions
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2009.09.007
– volume: 11
  start-page: 132
  year: 2022
  ident: 10.1016/j.infoh.2025.06.001_bib47
  article-title: Protection against amyloid- oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia
  publication-title: Antioxidants
  doi: 10.3390/antiox11010132
– volume: 21
  start-page: 250
  year: 2020
  ident: 10.1016/j.infoh.2025.06.001_bib15
  article-title: Literature mining for context-specific molecular relations using multimodal representations (commodar
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-020-3396-y
SSID ssj0003321009
Score 2.3045058
Snippet Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date,...
Background: Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease....
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 119
SubjectTerms Alzheimer’s disease
Link prediction
Literature
Multi-feature fusion
Protein-protein interaction network
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLXKzKIrHmpRBwHygmU98iS2Yy8HBEIsEIuONF1FflzToUMYzUNVWfEb_B5fgu0kiKlQBbsochzr-ib32PfcY4SOXFE4amlOBPWShPWGIUpoTpgPaBmE99IktsWlOB-xizEfNzrbsRZmLX-feFjR0DFrkPF-nTjYQF3BA_DuoO7o8mr4Mx4fp5iKiUjW6gq9_eRa7EkS_Wsh6POqmum_f_R0-irEnG3VtduLpEwYmSW_-6ul6dv7f3Qb3zn6bbTZQE08rH1jB32C6gu6u4rCDJMKR52IeV3VgGfzmK5JlwHD4uH0_hdMbmH-9PC4wE0KB0eG_DXWOFEQSb3pj2dNbx6SQOgC-9UiddNyvr6i0dnpj5Nz0hy6QGwWsAORZkC1cKLwJqfSQQZWCkeFs5KZzBfKamoYC0ihUBSygJ6sdAoUNaoAHwDdLupUdxV8Q9i7bGAKkNZyYI7mmvHwm3fcS8-VhbyHvrfTUc5qbY2yJZ3dlMlyZbRcWVPveug4TtlL0yiMnW4Ei5fNd1bqwoucxYpaFpauYa3n_AAAKDOOS6N5D4l2wssGY9TYIXQ1-f_byYt7vGe0ex9sv486y_kKDgLEWZrDxrWfAe44_Lg
  priority: 102
  providerName: Unpaywall
Title Protein interaction prediction for Alzheimer’s disease using a multi-source protein features fusion framework
URI https://dx.doi.org/10.1016/j.infoh.2025.06.001
https://doi.org/10.1016/j.infoh.2025.06.001
https://doaj.org/article/a7f63405904840148df1eee04bd58ba5
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemgvCNSiLo-VDxzr4k0cxz4uCIQqseLQlegp8mMMi5bsah-qygHxN_h7_BL8SNDuBXroJYoia2LNRJ7PmW8-I3Roy9JSQ3PCqRPE7zc0kVwVhDmPloE7J3RkWwz4-ZD9vCquVo76CpywJA-cHHekSsdzFlokmd-LePBuXQ8AKNO2EFpF9VIq5MpmKqzBeWhNobKVGYqErhCxUH7Iih-pArGWiqJi_1pG-rSsp-rvHzUer2Scsy202UBF3E9T3EYfoP6CJpdBWGFU46DzMEtdCXg6C-WWeOsxKO6P729gdAez58enOW5KMDgw3K-xwpFCSNJPezxtrDmIAp9z7JbzaKblbH1Fw7PTXyfnpDk0gZjM534idI8qbnnpdE6FhQyM4JZyawTTmSulUVQz5jN9KSlkHv0YYSVIqmUJzgOyHbRRT2r4hrCzWU-XIIwpgFmaK1b4ZdoWTrhCGsg76Hvrv2qatDGqljR2W0V3V8HdVaLOddBx8PHr0CBsHR_4cFdNuKv3wt1BvI1Q1WCElPu9qdHbbyev8fyX2e7-j9nuoc_BZOKk7aONxWwJBx7ELHQ3fq_-evFw2kUfh4PL_u8XxKT1fA
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLXKzKIrHmpRBwHygmU98iS2Yy8HBEIsEIuONF1FflzToUMYzUNVWfEb_B5fgu0kiKlQBbsochzr-ib32PfcY4SOXFE4amlOBPWShPWGIUpoTpgPaBmE99IktsWlOB-xizEfNzrbsRZmLX-feFjR0DFrkPF-nTjYQF3BA_DuoO7o8mr4Mx4fp5iKiUjW6gq9_eRa7EkS_Wsh6POqmum_f_R0-irEnG3VtduLpEwYmSW_-6ul6dv7f3Qb3zn6bbTZQE08rH1jB32C6gu6u4rCDJMKR52IeV3VgGfzmK5JlwHD4uH0_hdMbmH-9PC4wE0KB0eG_DXWOFEQSb3pj2dNbx6SQOgC-9UiddNyvr6i0dnpj5Nz0hy6QGwWsAORZkC1cKLwJqfSQQZWCkeFs5KZzBfKamoYC0ihUBSygJ6sdAoUNaoAHwDdLupUdxV8Q9i7bGAKkNZyYI7mmvHwm3fcS8-VhbyHvrfTUc5qbY2yJZ3dlMlyZbRcWVPveug4TtlL0yiMnW4Ei5fNd1bqwoucxYpaFpauYa3n_AAAKDOOS6N5D4l2wssGY9TYIXQ1-f_byYt7vGe0ex9sv486y_kKDgLEWZrDxrWfAe44_Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+interaction+prediction+for+Alzheimer%E2%80%99s+disease+using+a+multi-source+protein+features+fusion+framework&rft.jtitle=Informatics+and+Health&rft.au=Shi-Rui+Yu&rft.au=Xue-Mei+Yang&rft.au=Yi-Nan+Sun&rft.au=Yong-Jie+Li&rft.date=2025-09-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9534&rft.volume=2&rft.issue=2&rft.spage=119&rft.epage=129&rft_id=info:doi/10.1016%2Fj.infoh.2025.06.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7f63405904840148df1eee04bd58ba5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon