Protein interaction prediction for Alzheimer’s disease using a multi-source protein features fusion framework
Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a compre...
Saved in:
| Published in | Informatics and Health Vol. 2; no. 2; pp. 119 - 129 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2025
KeAi Communications Co., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2949-9534 2949-9534 |
| DOI | 10.1016/j.infoh.2025.06.001 |
Cover
| Abstract | Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a comprehensive protein-protein interaction (PPI) network from which to predict potential interactions.
In this study, we devised a framework that integrates protein attributes and interaction information extracted from both experimental data and the scientific literature. Based on these data from multiple sources, We then constructed a PPI network reflecting a diverse range of node features and edge weights. Further, the Graph Convolutional Network (GCN) applicable to the network was used for the link prediction task.
Our proposed method achieved superior performance in protein interaction prediction for Alzheimer’s disease with an AUC value of 0.8935. We identified the top ten results predicted by our model as the most promising potential protein interactions for Alzheimer’s disease.
The analysis of the predictive results using empirical evaluation verify that our framework has produced a reasonable roadmap for discovering potentially novel protein interactions related to Alzheimer’s disease.
•Our method integrated multi-feature PPI data from experimental and literature sources.•A weighted and multi-dimensional PPI network was constructed.•An enhanced GCN model that is able to learn the node features, edge weights, and topological structures of a PPI network was employed to predict novel protein interactions linked to Alzheimer’s disease.•Our method identified top-ten promising unknown protein interactions for Alzheimer’s disease. |
|---|---|
| AbstractList | Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a comprehensive protein-protein interaction (PPI) network from which to predict potential interactions.
In this study, we devised a framework that integrates protein attributes and interaction information extracted from both experimental data and the scientific literature. Based on these data from multiple sources, We then constructed a PPI network reflecting a diverse range of node features and edge weights. Further, the Graph Convolutional Network (GCN) applicable to the network was used for the link prediction task.
Our proposed method achieved superior performance in protein interaction prediction for Alzheimer’s disease with an AUC value of 0.8935. We identified the top ten results predicted by our model as the most promising potential protein interactions for Alzheimer’s disease.
The analysis of the predictive results using empirical evaluation verify that our framework has produced a reasonable roadmap for discovering potentially novel protein interactions related to Alzheimer’s disease.
•Our method integrated multi-feature PPI data from experimental and literature sources.•A weighted and multi-dimensional PPI network was constructed.•An enhanced GCN model that is able to learn the node features, edge weights, and topological structures of a PPI network was employed to predict novel protein interactions linked to Alzheimer’s disease.•Our method identified top-ten promising unknown protein interactions for Alzheimer’s disease. Background: Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date, researchers have only considered laboratory data and the scientific literature in isolation, and so have not been able to construct a comprehensive protein-protein interaction (PPI) network from which to predict potential interactions. Methods: In this study, we devised a framework that integrates protein attributes and interaction information extracted from both experimental data and the scientific literature. Based on these data from multiple sources, We then constructed a PPI network reflecting a diverse range of node features and edge weights. Further, the Graph Convolutional Network (GCN) applicable to the network was used for the link prediction task. Findings: Our proposed method achieved superior performance in protein interaction prediction for Alzheimer’s disease with an AUC value of 0.8935. We identified the top ten results predicted by our model as the most promising potential protein interactions for Alzheimer’s disease. Interpretation: The analysis of the predictive results using empirical evaluation verify that our framework has produced a reasonable roadmap for discovering potentially novel protein interactions related to Alzheimer’s disease. |
| Author | Yang, Xue-Mei Sun, Yi-Nan Tang, Xiao-Li Li, Yong-Jie Yu, Shi-Rui Liu, Yu-Yang |
| Author_xml | – sequence: 1 givenname: Shi-Rui surname: Yu fullname: Yu, Shi-Rui organization: National Science Library (Chengdu), Chinese Academy of Sciences, Chengdu, China – sequence: 2 givenname: Xue-Mei surname: Yang fullname: Yang, Xue-Mei organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China – sequence: 3 givenname: Yi-Nan surname: Sun fullname: Sun, Yi-Nan organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China – sequence: 4 givenname: Yong-Jie surname: Li fullname: Li, Yong-Jie organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China – sequence: 5 givenname: Yu-Yang surname: Liu fullname: Liu, Yu-Yang organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China – sequence: 6 givenname: Xiao-Li surname: Tang fullname: Tang, Xiao-Li email: tang.xiaoli@imicams.ac.cn organization: Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, China |
| BookMark | eNqNkUtO3TAUQK0KpFJgBUyygaTXjuPYAwYI9YOEVAZlbDn2NfiRZz_ZCYiOuo1urytpHqlQR6gjX1k-R9Y9H8hBTBEJOaPQUKDi46YJ0af7hgHrGhANAH1HjpjiqlZdyw_-md-T01I2ANC2jAKoI5JucpowxCrECbOxU0ix2mV0YR19ytXF-OMewxbz75-_SuVCQVOwmkuId5WptvM4hbqkOVtcyNXm0UxzxlL55dlek80Wn1J-OCGH3owFT_-ex-T286fvl1_r629fri4vrmvLQNFaDhSMcKL3QwvSIUMrhQPhrOQD872yBgbOGe16BcgEa610ChUMqkcPsj0mV6vXJbPRuxy2Jj_rZIJ-uUj5Tps8BTuiNr0XLYdOAZccKJfOU0QEPrhODqZbXHx1zXFnnp_MOL4KKeh9A73RLw30voEGoZcGC9aumM2plIz-P6nzlcJlO48Bsy42YLRLkYx2Wr4f3uT_AIbepmg |
| Cites_doi | 10.1186/s12859-016-1422-x 10.24963/ijcai.2021/506 10.1093/nar/gkw868 10.1186/s13195-022-00975-z 10.1016/j.compbiomed.2021.104772 10.1093/bioinformatics/btae603 10.1016/j.fsi.2023.108544 10.1038/s41419-019-2019-x 10.1016/j.ab.2024.115550 10.1186/s12911-019-0934-5 10.1016/j.ajhg.2008.02.013 10.1093/nar/gkq481 10.1007/s11063-020-10404-7 10.1038/s41598-018-33219-y 10.1186/s13287-022-02765-8 10.1074/mcp.M700287-MCP200 10.1016/j.jbi.2023.104464 10.1016/j.cell.2018.07.041 10.1093/nar/gkab1006 10.1007/978-1-4939-9873-9_1 10.1038/s41419-023-06186-0 10.1007/s11064-021-03448-1 10.1016/j.nbd.2021.105563 10.1093/bioinformatics/bty573 10.3389/fneur.2020.529930 10.1016/j.neucom.2018.02.097 10.14336/AD.2021.0529 10.1038/s41592-019-0461-4 10.1038/ni.2234 10.3389/fbioe.2022.873811 10.1002/pmic.202100190 10.1016/j.immuni.2017.09.011 10.1074/jbc.C200694200 10.1093/nar/gkaa1009 10.1021/acs.jcim.7b00028 10.7717/peerj-cs.357 10.1007/s13748-021-00261-3 10.1186/1752-0509-6-15 10.1016/j.jbi.2009.09.007 10.3390/antiox11010132 10.1186/s12859-020-3396-y |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.infoh.2025.06.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-9534 |
| EndPage | 129 |
| ExternalDocumentID | oai_doaj_org_article_a7f63405904840148df1eee04bd58ba5 10.1016/j.infoh.2025.06.001 10_1016_j_infoh_2025_06_001 S2949953425000189 |
| GroupedDBID | 0R~ 6I. AAFTH AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ FDB GROUPED_DOAJ M41 M~E ROL AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2091-8b10a6d67fb308de2ec86d06dc84b2f79ca0b44215790e2623c8d9e90b97ef083 |
| IEDL.DBID | DOA |
| ISSN | 2949-9534 |
| IngestDate | Tue Oct 14 19:09:46 EDT 2025 Tue Aug 19 23:44:58 EDT 2025 Sat Oct 25 05:29:13 EDT 2025 Sat Oct 25 16:50:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Link prediction Multi-feature fusion Protein-protein interaction network Literature Alzheimer’s disease |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2091-8b10a6d67fb308de2ec86d06dc84b2f79ca0b44215790e2623c8d9e90b97ef083 |
| OpenAccessLink | https://doaj.org/article/a7f63405904840148df1eee04bd58ba5 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a7f63405904840148df1eee04bd58ba5 unpaywall_primary_10_1016_j_infoh_2025_06_001 crossref_primary_10_1016_j_infoh_2025_06_001 elsevier_sciencedirect_doi_10_1016_j_infoh_2025_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatics and Health |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Zhang, Lu, Zhan, Zhang (bib29) 2022; 54 Liu, Castle, Taketo (bib41) 2019; 10 Heo, Xie, Song, Lee (bib16) 2019; 19 Li (bib5) 2024; 2 Lv, G., Hu, Z., Bi, Y. & Zhang, S. Learning unknown from correlations: Graph neural network for inter-novel-protein interaction prediction. van Dam, Võsa, van der Graaf, Franke, de Magalhães (bib44) 2018; 19 Chen (bib1) 2023; 133 (2021). Gonzalez (bib48) 2022; 162 Hamilton, Ying, Leskovec (bib33) 2017 Zhang, Yu, Xia, Wang (bib18) 2019; 324 Yang (bib27) 2017; 45 Wang (bib7) 2024; 14 Araki, Kametani (bib47) 2022; 11 Tang (bib35) 2024; 40 Decourt (bib50) 2022; 13 Perozzi, Al-Rfou, Skiena (bib31) 2014 Gilmer, Schoenholz, Riley, Vinyals, Dahl (bib32) 2017 Wee, Kumar (bib3) 2020; 18 Chen, Li, Chen, Hu, Chen (bib21) 2017; 12 Wang (bib49) 2022; 12 Makarov, Kiselev, Nikitinsky, Subelj (bib23) 2021; 7 Tahmi (bib37) 2020; 11 Zdobnov (bib11) 2021; 49 Panitch (bib53) 2022; 14 Li, Zhang, Wang, Pan (bib17) 2012; 6 Hu (bib38) 2019; 16 Khazaal, Maarouf (bib54) 2023; 2023 Wang, Satuluri, Parthasarathy (bib20) 2007 Li (bib10) 2008; 7 Wang (bib2) 2022; 22 Lee, Lee, Lee (bib15) 2020; 21 Ghasemi, Zarei (bib19) 2022; 11 Pu, Beck, Verspoor (bib4) 2023; 145 Du (bib14) 2017; 57 Qin, Bai, Li, Wang (bib52) 2022; 13 Del Toro (bib24) 2022; 50 abs/2105 Xu (bib42) 2018; 174 Cao, Lu, Xu (bib22) 2016 Taghipour, Zarrineh, Ganjtabesh, Nowzari-Dalini (bib13) 2017; 18 Rebholz-Schuhmann, Jimeno-Yepes, Arregui, Kirsch (bib28) 2010; 43 Alekseenko, Ignatov, Jones, Sabitova, Kozakov (bib9) 2020 Hashemifar, Neyshabur, Khan, Xu (bib12) 2018; 34 Li, Ilie (bib8) 2020; 2074 Smedley (bib30) 2008; 82 Singh, Park, Xu, Hosur, Berger (bib25) 2010; 38 Chen, Li, Luo, Gu (bib45) 2003; 278 Hu, Li, Rao, Thafar, Arif (bib34) 2024; 693 Dey (bib46) 2022; 10 Honda (bib40) 2012; 13 Białopiotrowicz-Data (bib43) 2023; 14 Nasiri, Berahmand, Rostami, Dabiri (bib6) 2021; 137 Zhao, Wang (bib26) 2018; 8 Kleino (bib39) 2017; 47 Wan (bib51) 2022; 47 van Dam (10.1016/j.infoh.2025.06.001_bib44) 2018; 19 Decourt (10.1016/j.infoh.2025.06.001_bib50) 2022; 13 Hashemifar (10.1016/j.infoh.2025.06.001_bib12) 2018; 34 Xu (10.1016/j.infoh.2025.06.001_bib42) 2018; 174 Makarov (10.1016/j.infoh.2025.06.001_bib23) 2021; 7 Araki (10.1016/j.infoh.2025.06.001_bib47) 2022; 11 Kleino (10.1016/j.infoh.2025.06.001_bib39) 2017; 47 Li (10.1016/j.infoh.2025.06.001_bib8) 2020; 2074 Gonzalez (10.1016/j.infoh.2025.06.001_bib48) 2022; 162 Wang (10.1016/j.infoh.2025.06.001_bib2) 2022; 22 Wee (10.1016/j.infoh.2025.06.001_bib3) 2020; 18 Nasiri (10.1016/j.infoh.2025.06.001_bib6) 2021; 137 Perozzi (10.1016/j.infoh.2025.06.001_bib31) 2014 Chen (10.1016/j.infoh.2025.06.001_bib1) 2023; 133 Wang (10.1016/j.infoh.2025.06.001_bib20) 2007 Wan (10.1016/j.infoh.2025.06.001_bib51) 2022; 47 Zhang (10.1016/j.infoh.2025.06.001_bib29) 2022; 54 Khazaal (10.1016/j.infoh.2025.06.001_bib54) 2023; 2023 Cao (10.1016/j.infoh.2025.06.001_bib22) 2016 Dey (10.1016/j.infoh.2025.06.001_bib46) 2022; 10 Li (10.1016/j.infoh.2025.06.001_bib10) 2008; 7 Tang (10.1016/j.infoh.2025.06.001_bib35) 2024; 40 Hamilton (10.1016/j.infoh.2025.06.001_bib33) 2017 Taghipour (10.1016/j.infoh.2025.06.001_bib13) 2017; 18 Zhao (10.1016/j.infoh.2025.06.001_bib26) 2018; 8 Du (10.1016/j.infoh.2025.06.001_bib14) 2017; 57 Chen (10.1016/j.infoh.2025.06.001_bib21) 2017; 12 Panitch (10.1016/j.infoh.2025.06.001_bib53) 2022; 14 Tahmi (10.1016/j.infoh.2025.06.001_bib37) 2020; 11 Zdobnov (10.1016/j.infoh.2025.06.001_bib11) 2021; 49 Białopiotrowicz-Data (10.1016/j.infoh.2025.06.001_bib43) 2023; 14 Wang (10.1016/j.infoh.2025.06.001_bib7) 2024; 14 Smedley (10.1016/j.infoh.2025.06.001_bib30) 2008; 82 Chen (10.1016/j.infoh.2025.06.001_bib45) 2003; 278 Honda (10.1016/j.infoh.2025.06.001_bib40) 2012; 13 Pu (10.1016/j.infoh.2025.06.001_bib4) 2023; 145 Qin (10.1016/j.infoh.2025.06.001_bib52) 2022; 13 Zhang (10.1016/j.infoh.2025.06.001_bib18) 2019; 324 10.1016/j.infoh.2025.06.001_bib36 Li (10.1016/j.infoh.2025.06.001_bib5) 2024; 2 Alekseenko (10.1016/j.infoh.2025.06.001_bib9) 2020 Hu (10.1016/j.infoh.2025.06.001_bib38) 2019; 16 Yang (10.1016/j.infoh.2025.06.001_bib27) 2017; 45 Wang (10.1016/j.infoh.2025.06.001_bib49) 2022; 12 Gilmer (10.1016/j.infoh.2025.06.001_bib32) 2017 Del Toro (10.1016/j.infoh.2025.06.001_bib24) 2022; 50 Singh (10.1016/j.infoh.2025.06.001_bib25) 2010; 38 Hu (10.1016/j.infoh.2025.06.001_bib34) 2024; 693 Liu (10.1016/j.infoh.2025.06.001_bib41) 2019; 10 Rebholz-Schuhmann (10.1016/j.infoh.2025.06.001_bib28) 2010; 43 Lee (10.1016/j.infoh.2025.06.001_bib15) 2020; 21 Li (10.1016/j.infoh.2025.06.001_bib17) 2012; 6 Ghasemi (10.1016/j.infoh.2025.06.001_bib19) 2022; 11 Heo (10.1016/j.infoh.2025.06.001_bib16) 2019; 19 |
| References_xml | – volume: 11 start-page: 132 year: 2022 ident: bib47 article-title: Protection against amyloid- oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia publication-title: Antioxidants – volume: 14 start-page: 30 year: 2022 ident: bib53 article-title: Blood and brain transcriptome analysis reveals apoe genotype-mediated and immune-related pathways involved in Alzheimer disease publication-title: Alzheimer’S Res amp Ther – volume: 19 start-page: 240 year: 2019 ident: bib16 article-title: Combining entity co-occurrence with specialized word embeddings to measure entity relation in alzheimer’s disease publication-title: BMC Med Inform Decis Mak – start-page: 1025 year: 2017 end-page: 1035 ident: bib33 article-title: Inductive representation learning on large graphs publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17 – volume: 18 start-page: 10 year: 2017 ident: bib13 article-title: Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of escherichia coli from different physical interaction data sources publication-title: BMC Bioinforma – volume: 12 year: 2022 ident: bib49 article-title: Association of plasma apolipoproteins and levels of inflammation-related factors with different stages of Alzheimer’s disease: a cross-sectional study publication-title: BMJ Open – start-page: 1145 year: 2016 end-page: 1152 ident: bib22 article-title: Deep neural networks for learning graph representations publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16 – volume: 19 start-page: 575 year: 2018 end-page: 592 ident: bib44 article-title: Gene co-expression analysis for functional classification and gene-disease predictions publication-title: Brief Bioinforma – volume: 13 start-page: 90 year: 2022 ident: bib52 article-title: The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with alzheimer’s disease: crosstalk between autophagy and apoptosis publication-title: Stem Cell Res amp Ther – volume: 11 year: 2020 ident: bib37 article-title: Brain amyloid burden and resting-state functional connectivity in late middle-aged hispanics publication-title: Front Neurol – volume: 38 start-page: W508 year: 2010 end-page: W515 ident: bib25 article-title: Struct2net: a web service to predict protein-protein interactions using a structure-based approach publication-title: Nucleic Acids Res – reference: abs/2105 – volume: 18 year: 2020 ident: bib3 article-title: Prediction of hub genes of alzheimer’s disease using a protein interaction network and functional enrichment analysis publication-title: Genom Inf – volume: 34 start-page: i802 year: 2018 end-page: i810 ident: bib12 article-title: Predicting protein-protein interactions through sequence-based deep learning publication-title: Bioinformatics – volume: 13 start-page: 37 year: 2022 end-page: 60 ident: bib50 article-title: The cause of alzheimer’s disease: the theory of multipathology convergence to chronic neuronal stress publication-title: Aging Dis – volume: 82 start-page: 949 year: 2008 end-page: 958 ident: bib30 article-title: Walking the interactome for prioritization of candidate disease genes publication-title: Am J Hum Genet – volume: 57 start-page: 1499 year: 2017 end-page: 1510 ident: bib14 article-title: Deepppi: boosting prediction of protein-protein interactions with deep neural networks publication-title: J Chem Inf Model – volume: 7 start-page: 1043 year: 2008 end-page: 1052 ident: bib10 article-title: Princess, a protein interaction confidence evaluation system with multiple data sources publication-title: Mol Cell Proteom – volume: 12 start-page: 1 year: 2017 end-page: 18 ident: bib21 article-title: Link prediction based on non-negative matrix factorization publication-title: PLOS ONE – volume: 45 start-page: D389 year: 2017 end-page: D396 ident: bib27 article-title: Coexpedia: exploring biomedical hypotheses via co-expressions associated with medical subject headings (mesh) publication-title: Nucleic Acids Res – volume: 54 start-page: 2645 year: 2022 end-page: 2656 ident: bib29 article-title: Semi-supervised classification of graph convolutional networks with laplacian rank constraints publication-title: Neural Process Lett – volume: 693 year: 2024 ident: bib34 article-title: Improving protein-protein interaction prediction using protein language model and protein network features publication-title: Anal Biochem – volume: 47 start-page: 635 year: 2017 end-page: 647 ident: bib39 article-title: Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein imd to initiate drosophila nf-b signaling publication-title: Immunity – reference: Lv, G., Hu, Z., Bi, Y. & Zhang, S. Learning unknown from correlations: Graph neural network for inter-novel-protein interaction prediction. – volume: 174 start-page: 1477 year: 2018 end-page: 1491 ident: bib42 article-title: Tbk1 suppresses ripk1-driven apoptosis and inflammation during development and in aging publication-title: Cell – volume: 2 year: 2024 ident: bib5 article-title: Transcriptome analysis provides preliminary insights into the response of sepia esculenta to high salinity stress publication-title: Agric Commun – volume: 14 year: 2024 ident: bib7 article-title: Weighted gene co-expression network analysis based on stimulation by lipopolysaccharides and polyi- nosinic:polycytidylic acid provides a core set of genes for understanding hemolymph immune response mechanisms of amphioctopus fangsiao publication-title: Animals – reference: (2021). – volume: 8 start-page: 15107 year: 2018 ident: bib26 article-title: Gogo: an improved algorithm to measure the semantic similarity between gene ontology terms publication-title: Sci Rep – volume: 133 year: 2023 ident: bib1 article-title: Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against poly I:c stimulation in amphioctopus fangsiao publication-title: Fish Shellfish Immunol – volume: 2074 start-page: 1 year: 2020 end-page: 11 ident: bib8 article-title: Predicting protein-protein interactions using sprint publication-title: Methods Mol Biol – volume: 278 start-page: 13595 year: 2003 end-page: 13598 ident: bib45 article-title: Direct interactions between hif-1 alpha and mdm2 modulate p53 function publication-title: J Biol Chem – start-page: 157 year: 2020 end-page: 174 ident: bib9 article-title: Protein–Protein and Protein–Peptide docking with ClusPro server – volume: 50 start-page: D648 year: 2022 end-page: D653 ident: bib24 article-title: The intact database: efficient access to fine-grained molecular interaction data publication-title: Nucleic Acids Res – volume: 22 year: 2022 ident: bib2 article-title: Protein-protein interaction networks as miners of biological discovery publication-title: Proteomics – volume: 10 year: 2022 ident: bib46 article-title: Electrochemical detection of alzheimer’s disease biomarker, -secretase enzyme (bace1), with one-step synthesized reduced graphene oxide publication-title: Front Bioeng Biotechnol – start-page: 701 year: 2014 end-page: 710 ident: bib31 article-title: Deepwalk: Online learning of social representations publication-title: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’14 – start-page: 322 year: 2007 end-page: 331 ident: bib20 article-title: Local probabilistic models for link prediction publication-title: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, ICDM ’07 – volume: 49 start-page: D389 year: 2021 end-page: D393 ident: bib11 article-title: Orthodb in 2020: evolutionary and functional annotations of orthologs publication-title: Nucleic Acids Res – volume: 7 year: 2021 ident: bib23 article-title: Survey on graph embeddings and their applications to machine learning problems on graphs publication-title: PeerJ Comput Sci – volume: 14 start-page: 667 year: 2023 ident: bib43 article-title: Sirt1 and hsp90 feed-forward circuit safeguards chromosome segregation integrity in diffuse large b cell lymphomas publication-title: Cell death amp Dis – volume: 145 year: 2023 ident: bib4 article-title: Graph embedding-based link prediction for literature-based discovery in alzheimer’s disease publication-title: J Biomed Inform – volume: 43 start-page: 200 year: 2010 end-page: 207 ident: bib28 article-title: Measuring prediction capacity of individual verbs for the identification of protein interactions publication-title: J Biomed Inform – start-page: 1263 year: 2017 end-page: 1272 ident: bib32 article-title: Neural message passing for quantum chemistry publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17 – volume: 2023 start-page: 21 year: 2023 end-page: 26 ident: bib54 article-title: Predicting coronary artery disease utilizing support vector machines: optimizing predictive model publication-title: Mesop J Artif Intell Health – volume: 21 start-page: 250 year: 2020 ident: bib15 article-title: Literature mining for context-specific molecular relations using multimodal representations (commodar publication-title: BMC Bioinforma – volume: 13 start-page: 369 year: 2012 end-page: 378 ident: bib40 article-title: The kinase btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils publication-title: Nat Immunol – volume: 6 start-page: 15 year: 2012 ident: bib17 article-title: A new essential protein discovery method based on the integration of protein- protein interaction and gene expression data publication-title: BMC Syst Biol – volume: 16 start-page: 737 year: 2019 end-page: 742 ident: bib38 article-title: Epic: software toolkit for elution profile-based inference of protein complexes publication-title: Nat Methods – volume: 10 start-page: 790 year: 2019 ident: bib41 article-title: Interplay between caspase 9 and x-linked inhibitor of apoptosis protein (xiap) in the oocyte elimination during fetal mouse development publication-title: Cell death amp Dis – volume: 162 year: 2022 ident: bib48 article-title: Small molecule modulation of trkb and trkc neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer’s disease mouse model at an advanced pathological stage publication-title: Neurobiol Dis – volume: 137 year: 2021 ident: bib6 article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding publication-title: Comput Biol Med – volume: 324 start-page: 10 year: 2019 end-page: 19 ident: bib18 article-title: Protein–protein interactions prediction based on ensemble deep neural networks publication-title: Neurocomputing – volume: 40 start-page: btae603 year: 2024 ident: bib35 article-title: Anti-symmetric framework for balanced learning of protein–protein interactions publication-title: Bioinformatics – volume: 11 start-page: 79 year: 2022 end-page: 92 ident: bib19 article-title: Improving link prediction in social networks using local and global features: a clustering-based approach publication-title: Prog Artif Intell – volume: 47 start-page: 205 year: 2022 end-page: 217 ident: bib51 article-title: Research progress on mechanism of neuroprotective roles of apelin-13 in prevention and treatment of Alzheimer’s disease publication-title: Neurochem Res – volume: 18 start-page: 10 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib13 article-title: Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of escherichia coli from different physical interaction data sources publication-title: BMC Bioinforma doi: 10.1186/s12859-016-1422-x – ident: 10.1016/j.infoh.2025.06.001_bib36 doi: 10.24963/ijcai.2021/506 – volume: 45 start-page: D389 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib27 article-title: Coexpedia: exploring biomedical hypotheses via co-expressions associated with medical subject headings (mesh) publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw868 – volume: 14 start-page: 30 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib53 article-title: Blood and brain transcriptome analysis reveals apoe genotype-mediated and immune-related pathways involved in Alzheimer disease publication-title: Alzheimer’S Res amp Ther doi: 10.1186/s13195-022-00975-z – volume: 137 year: 2021 ident: 10.1016/j.infoh.2025.06.001_bib6 article-title: A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104772 – volume: 18 year: 2020 ident: 10.1016/j.infoh.2025.06.001_bib3 article-title: Prediction of hub genes of alzheimer’s disease using a protein interaction network and functional enrichment analysis publication-title: Genom Inf – volume: 40 start-page: btae603 year: 2024 ident: 10.1016/j.infoh.2025.06.001_bib35 article-title: Anti-symmetric framework for balanced learning of protein–protein interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btae603 – volume: 133 year: 2023 ident: 10.1016/j.infoh.2025.06.001_bib1 article-title: Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against poly I:c stimulation in amphioctopus fangsiao publication-title: Fish Shellfish Immunol doi: 10.1016/j.fsi.2023.108544 – volume: 10 start-page: 790 year: 2019 ident: 10.1016/j.infoh.2025.06.001_bib41 article-title: Interplay between caspase 9 and x-linked inhibitor of apoptosis protein (xiap) in the oocyte elimination during fetal mouse development publication-title: Cell death amp Dis doi: 10.1038/s41419-019-2019-x – start-page: 1145 year: 2016 ident: 10.1016/j.infoh.2025.06.001_bib22 article-title: Deep neural networks for learning graph representations – start-page: 701 year: 2014 ident: 10.1016/j.infoh.2025.06.001_bib31 article-title: Deepwalk: Online learning of social representations – volume: 693 year: 2024 ident: 10.1016/j.infoh.2025.06.001_bib34 article-title: Improving protein-protein interaction prediction using protein language model and protein network features publication-title: Anal Biochem doi: 10.1016/j.ab.2024.115550 – volume: 19 start-page: 240 year: 2019 ident: 10.1016/j.infoh.2025.06.001_bib16 article-title: Combining entity co-occurrence with specialized word embeddings to measure entity relation in alzheimer’s disease publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0934-5 – volume: 82 start-page: 949 year: 2008 ident: 10.1016/j.infoh.2025.06.001_bib30 article-title: Walking the interactome for prioritization of candidate disease genes publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.02.013 – volume: 38 start-page: W508 year: 2010 ident: 10.1016/j.infoh.2025.06.001_bib25 article-title: Struct2net: a web service to predict protein-protein interactions using a structure-based approach publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq481 – volume: 54 start-page: 2645 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib29 article-title: Semi-supervised classification of graph convolutional networks with laplacian rank constraints publication-title: Neural Process Lett doi: 10.1007/s11063-020-10404-7 – volume: 8 start-page: 15107 year: 2018 ident: 10.1016/j.infoh.2025.06.001_bib26 article-title: Gogo: an improved algorithm to measure the semantic similarity between gene ontology terms publication-title: Sci Rep doi: 10.1038/s41598-018-33219-y – start-page: 1025 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib33 article-title: Inductive representation learning on large graphs – volume: 13 start-page: 90 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib52 article-title: The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with alzheimer’s disease: crosstalk between autophagy and apoptosis publication-title: Stem Cell Res amp Ther doi: 10.1186/s13287-022-02765-8 – volume: 7 start-page: 1043 year: 2008 ident: 10.1016/j.infoh.2025.06.001_bib10 article-title: Princess, a protein interaction confidence evaluation system with multiple data sources publication-title: Mol Cell Proteom doi: 10.1074/mcp.M700287-MCP200 – volume: 145 year: 2023 ident: 10.1016/j.infoh.2025.06.001_bib4 article-title: Graph embedding-based link prediction for literature-based discovery in alzheimer’s disease publication-title: J Biomed Inform doi: 10.1016/j.jbi.2023.104464 – volume: 174 start-page: 1477 year: 2018 ident: 10.1016/j.infoh.2025.06.001_bib42 article-title: Tbk1 suppresses ripk1-driven apoptosis and inflammation during development and in aging publication-title: Cell doi: 10.1016/j.cell.2018.07.041 – volume: 2023 start-page: 21 year: 2023 ident: 10.1016/j.infoh.2025.06.001_bib54 article-title: Predicting coronary artery disease utilizing support vector machines: optimizing predictive model publication-title: Mesop J Artif Intell Health – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib21 article-title: Link prediction based on non-negative matrix factorization publication-title: PLOS ONE – volume: 19 start-page: 575 year: 2018 ident: 10.1016/j.infoh.2025.06.001_bib44 article-title: Gene co-expression analysis for functional classification and gene-disease predictions publication-title: Brief Bioinforma – volume: 50 start-page: D648 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib24 article-title: The intact database: efficient access to fine-grained molecular interaction data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1006 – start-page: 1263 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib32 article-title: Neural message passing for quantum chemistry – volume: 14 year: 2024 ident: 10.1016/j.infoh.2025.06.001_bib7 article-title: Weighted gene co-expression network analysis based on stimulation by lipopolysaccharides and polyi- nosinic:polycytidylic acid provides a core set of genes for understanding hemolymph immune response mechanisms of amphioctopus fangsiao publication-title: Animals – volume: 2074 start-page: 1 year: 2020 ident: 10.1016/j.infoh.2025.06.001_bib8 article-title: Predicting protein-protein interactions using sprint publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-9873-9_1 – volume: 14 start-page: 667 year: 2023 ident: 10.1016/j.infoh.2025.06.001_bib43 article-title: Sirt1 and hsp90 feed-forward circuit safeguards chromosome segregation integrity in diffuse large b cell lymphomas publication-title: Cell death amp Dis doi: 10.1038/s41419-023-06186-0 – volume: 47 start-page: 205 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib51 article-title: Research progress on mechanism of neuroprotective roles of apelin-13 in prevention and treatment of Alzheimer’s disease publication-title: Neurochem Res doi: 10.1007/s11064-021-03448-1 – volume: 2 year: 2024 ident: 10.1016/j.infoh.2025.06.001_bib5 article-title: Transcriptome analysis provides preliminary insights into the response of sepia esculenta to high salinity stress publication-title: Agric Commun – volume: 162 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib48 article-title: Small molecule modulation of trkb and trkc neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer’s disease mouse model at an advanced pathological stage publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2021.105563 – volume: 34 start-page: i802 year: 2018 ident: 10.1016/j.infoh.2025.06.001_bib12 article-title: Predicting protein-protein interactions through sequence-based deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty573 – volume: 11 year: 2020 ident: 10.1016/j.infoh.2025.06.001_bib37 article-title: Brain amyloid burden and resting-state functional connectivity in late middle-aged hispanics publication-title: Front Neurol doi: 10.3389/fneur.2020.529930 – volume: 324 start-page: 10 year: 2019 ident: 10.1016/j.infoh.2025.06.001_bib18 article-title: Protein–protein interactions prediction based on ensemble deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.097 – volume: 13 start-page: 37 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib50 article-title: The cause of alzheimer’s disease: the theory of multipathology convergence to chronic neuronal stress publication-title: Aging Dis doi: 10.14336/AD.2021.0529 – start-page: 157 year: 2020 ident: 10.1016/j.infoh.2025.06.001_bib9 – volume: 16 start-page: 737 year: 2019 ident: 10.1016/j.infoh.2025.06.001_bib38 article-title: Epic: software toolkit for elution profile-based inference of protein complexes publication-title: Nat Methods doi: 10.1038/s41592-019-0461-4 – volume: 13 start-page: 369 year: 2012 ident: 10.1016/j.infoh.2025.06.001_bib40 article-title: The kinase btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils publication-title: Nat Immunol doi: 10.1038/ni.2234 – volume: 10 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib46 article-title: Electrochemical detection of alzheimer’s disease biomarker, -secretase enzyme (bace1), with one-step synthesized reduced graphene oxide publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.873811 – volume: 22 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib2 article-title: Protein-protein interaction networks as miners of biological discovery publication-title: Proteomics doi: 10.1002/pmic.202100190 – volume: 47 start-page: 635 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib39 article-title: Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein imd to initiate drosophila nf-b signaling publication-title: Immunity doi: 10.1016/j.immuni.2017.09.011 – volume: 278 start-page: 13595 year: 2003 ident: 10.1016/j.infoh.2025.06.001_bib45 article-title: Direct interactions between hif-1 alpha and mdm2 modulate p53 function publication-title: J Biol Chem doi: 10.1074/jbc.C200694200 – volume: 49 start-page: D389 year: 2021 ident: 10.1016/j.infoh.2025.06.001_bib11 article-title: Orthodb in 2020: evolutionary and functional annotations of orthologs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1009 – volume: 57 start-page: 1499 year: 2017 ident: 10.1016/j.infoh.2025.06.001_bib14 article-title: Deepppi: boosting prediction of protein-protein interactions with deep neural networks publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00028 – volume: 12 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib49 article-title: Association of plasma apolipoproteins and levels of inflammation-related factors with different stages of Alzheimer’s disease: a cross-sectional study publication-title: BMJ Open – volume: 7 year: 2021 ident: 10.1016/j.infoh.2025.06.001_bib23 article-title: Survey on graph embeddings and their applications to machine learning problems on graphs publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.357 – volume: 11 start-page: 79 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib19 article-title: Improving link prediction in social networks using local and global features: a clustering-based approach publication-title: Prog Artif Intell doi: 10.1007/s13748-021-00261-3 – start-page: 322 year: 2007 ident: 10.1016/j.infoh.2025.06.001_bib20 article-title: Local probabilistic models for link prediction – volume: 6 start-page: 15 year: 2012 ident: 10.1016/j.infoh.2025.06.001_bib17 article-title: A new essential protein discovery method based on the integration of protein- protein interaction and gene expression data publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-15 – volume: 43 start-page: 200 year: 2010 ident: 10.1016/j.infoh.2025.06.001_bib28 article-title: Measuring prediction capacity of individual verbs for the identification of protein interactions publication-title: J Biomed Inform doi: 10.1016/j.jbi.2009.09.007 – volume: 11 start-page: 132 year: 2022 ident: 10.1016/j.infoh.2025.06.001_bib47 article-title: Protection against amyloid- oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia publication-title: Antioxidants doi: 10.3390/antiox11010132 – volume: 21 start-page: 250 year: 2020 ident: 10.1016/j.infoh.2025.06.001_bib15 article-title: Literature mining for context-specific molecular relations using multimodal representations (commodar publication-title: BMC Bioinforma doi: 10.1186/s12859-020-3396-y |
| SSID | ssj0003321009 |
| Score | 2.3045058 |
| Snippet | Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease. However, to date,... Background: Studying the protein interactions associated with Alzheimer’s disease can provide insights into the pathogenesis of this confounding disease.... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 119 |
| SubjectTerms | Alzheimer’s disease Link prediction Literature Multi-feature fusion Protein-protein interaction network |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLXKzKIrHmpRBwHygmU98iS2Yy8HBEIsEIuONF1FflzToUMYzUNVWfEb_B5fgu0kiKlQBbsochzr-ib32PfcY4SOXFE4amlOBPWShPWGIUpoTpgPaBmE99IktsWlOB-xizEfNzrbsRZmLX-feFjR0DFrkPF-nTjYQF3BA_DuoO7o8mr4Mx4fp5iKiUjW6gq9_eRa7EkS_Wsh6POqmum_f_R0-irEnG3VtduLpEwYmSW_-6ul6dv7f3Qb3zn6bbTZQE08rH1jB32C6gu6u4rCDJMKR52IeV3VgGfzmK5JlwHD4uH0_hdMbmH-9PC4wE0KB0eG_DXWOFEQSb3pj2dNbx6SQOgC-9UiddNyvr6i0dnpj5Nz0hy6QGwWsAORZkC1cKLwJqfSQQZWCkeFs5KZzBfKamoYC0ihUBSygJ6sdAoUNaoAHwDdLupUdxV8Q9i7bGAKkNZyYI7mmvHwm3fcS8-VhbyHvrfTUc5qbY2yJZ3dlMlyZbRcWVPveug4TtlL0yiMnW4Ei5fNd1bqwoucxYpaFpauYa3n_AAAKDOOS6N5D4l2wssGY9TYIXQ1-f_byYt7vGe0ex9sv486y_kKDgLEWZrDxrWfAe44_Lg priority: 102 providerName: Unpaywall |
| Title | Protein interaction prediction for Alzheimer’s disease using a multi-source protein features fusion framework |
| URI | https://dx.doi.org/10.1016/j.infoh.2025.06.001 https://doi.org/10.1016/j.infoh.2025.06.001 https://doaj.org/article/a7f63405904840148df1eee04bd58ba5 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemgvCNSiLo-VDxzr4k0cxz4uCIQqseLQlegp8mMMi5bsah-qygHxN_h7_BL8SNDuBXroJYoia2LNRJ7PmW8-I3Roy9JSQ3PCqRPE7zc0kVwVhDmPloE7J3RkWwz4-ZD9vCquVo76CpywJA-cHHekSsdzFlokmd-LePBuXQ8AKNO2EFpF9VIq5MpmKqzBeWhNobKVGYqErhCxUH7Iih-pArGWiqJi_1pG-rSsp-rvHzUer2Scsy202UBF3E9T3EYfoP6CJpdBWGFU46DzMEtdCXg6C-WWeOsxKO6P729gdAez58enOW5KMDgw3K-xwpFCSNJPezxtrDmIAp9z7JbzaKblbH1Fw7PTXyfnpDk0gZjM534idI8qbnnpdE6FhQyM4JZyawTTmSulUVQz5jN9KSlkHv0YYSVIqmUJzgOyHbRRT2r4hrCzWU-XIIwpgFmaK1b4ZdoWTrhCGsg76Hvrv2qatDGqljR2W0V3V8HdVaLOddBx8PHr0CBsHR_4cFdNuKv3wt1BvI1Q1WCElPu9qdHbbyev8fyX2e7-j9nuoc_BZOKk7aONxWwJBx7ELHQ3fq_-evFw2kUfh4PL_u8XxKT1fA |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFLXKzKIrHmpRBwHygmU98iS2Yy8HBEIsEIuONF1FflzToUMYzUNVWfEb_B5fgu0kiKlQBbsochzr-ib32PfcY4SOXFE4amlOBPWShPWGIUpoTpgPaBmE99IktsWlOB-xizEfNzrbsRZmLX-feFjR0DFrkPF-nTjYQF3BA_DuoO7o8mr4Mx4fp5iKiUjW6gq9_eRa7EkS_Wsh6POqmum_f_R0-irEnG3VtduLpEwYmSW_-6ul6dv7f3Qb3zn6bbTZQE08rH1jB32C6gu6u4rCDJMKR52IeV3VgGfzmK5JlwHD4uH0_hdMbmH-9PC4wE0KB0eG_DXWOFEQSb3pj2dNbx6SQOgC-9UiddNyvr6i0dnpj5Nz0hy6QGwWsAORZkC1cKLwJqfSQQZWCkeFs5KZzBfKamoYC0ihUBSygJ6sdAoUNaoAHwDdLupUdxV8Q9i7bGAKkNZyYI7mmvHwm3fcS8-VhbyHvrfTUc5qbY2yJZ3dlMlyZbRcWVPveug4TtlL0yiMnW4Ei5fNd1bqwoucxYpaFpauYa3n_AAAKDOOS6N5D4l2wssGY9TYIXQ1-f_byYt7vGe0ex9sv486y_kKDgLEWZrDxrWfAe44_Lg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+interaction+prediction+for+Alzheimer%E2%80%99s+disease+using+a+multi-source+protein+features+fusion+framework&rft.jtitle=Informatics+and+Health&rft.au=Shi-Rui+Yu&rft.au=Xue-Mei+Yang&rft.au=Yi-Nan+Sun&rft.au=Yong-Jie+Li&rft.date=2025-09-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9534&rft.volume=2&rft.issue=2&rft.spage=119&rft.epage=129&rft_id=info:doi/10.1016%2Fj.infoh.2025.06.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7f63405904840148df1eee04bd58ba5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon |