Explainability enhanced liver disease diagnosis technique using tree selection and stacking ensemble-based random forest model
Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. This researc...
Saved in:
| Published in | Informatics and Health Vol. 2; no. 1; pp. 17 - 40 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2025
KeAi Communications Co., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2949-9534 2949-9534 |
| DOI | 10.1016/j.infoh.2025.01.001 |
Cover
| Abstract | Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability.
This research systematically analyzes two distinct datasets encompassing liver health indicators. A combination of preprocessing techniques, including feature optimization methods such as Forward Feature Selection (FFS), Backward Feature Selection (BFS), and Recursive Feature Elimination (RFE), is applied to enhance data quality. After that, ML models, namely Support Vector Machines (SVM), Naive Bayes (NB), Random Forest (RF), K-nearest neighbors (KNN), Decision Trees (DT), and a novel Tree Selection and Stacking Ensemble-based RF (TSRF), are assessed in the dataset to diagnose LD. Finally, the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy, precision, specificity, etc., and efficient XAI methods express the ultimate model's interoperability.
The analysis reveals TSRF as the most effective model, achieving a peak accuracy of 99.92 % on Dataset-1 without feature optimization and 88.88 % on Dataset-2 with RFE optimization. XAI techniques, including SHAP and LIME plots, highlight key features influencing model predictions, providing insights into the reasoning behind classification outcomes.
The findings highlight TSRF's potential in improving LD diagnosis, using XAI to enhance transparency and trust in ML models. Despite high accuracy and interpretability, limitations such as dataset bias and lack of clinical validation remain. Future work focuses on integrating advanced XAI, diversifying datasets, and applying the approach in clinical settings for reliable diagnostics.
•Performance comparison of different ML models for the prediction of LD using multiple datasets.•Analysis of the effect of different feature optimization techniques for ML-based LD diagnosis.•Developing a novel hybrid ML model namely TSRF for diagnosis of LD.•Exploring the reasoning behind the model's decision through XAI. |
|---|---|
| AbstractList | Background: Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. Methods: This research systematically analyzes two distinct datasets encompassing liver health indicators. A combination of preprocessing techniques, including feature optimization methods such as Forward Feature Selection (FFS), Backward Feature Selection (BFS), and Recursive Feature Elimination (RFE), is applied to enhance data quality. After that, ML models, namely Support Vector Machines (SVM), Naive Bayes (NB), Random Forest (RF), K-nearest neighbors (KNN), Decision Trees (DT), and a novel Tree Selection and Stacking Ensemble-based RF (TSRF), are assessed in the dataset to diagnose LD. Finally, the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy, precision, specificity, etc., and efficient XAI methods express the ultimate model's interoperability. Findings: The analysis reveals TSRF as the most effective model, achieving a peak accuracy of 99.92 % on Dataset-1 without feature optimization and 88.88 % on Dataset-2 with RFE optimization. XAI techniques, including SHAP and LIME plots, highlight key features influencing model predictions, providing insights into the reasoning behind classification outcomes. Interpretation: The findings highlight TSRF's potential in improving LD diagnosis, using XAI to enhance transparency and trust in ML models. Despite high accuracy and interpretability, limitations such as dataset bias and lack of clinical validation remain. Future work focuses on integrating advanced XAI, diversifying datasets, and applying the approach in clinical settings for reliable diagnostics. Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. This research systematically analyzes two distinct datasets encompassing liver health indicators. A combination of preprocessing techniques, including feature optimization methods such as Forward Feature Selection (FFS), Backward Feature Selection (BFS), and Recursive Feature Elimination (RFE), is applied to enhance data quality. After that, ML models, namely Support Vector Machines (SVM), Naive Bayes (NB), Random Forest (RF), K-nearest neighbors (KNN), Decision Trees (DT), and a novel Tree Selection and Stacking Ensemble-based RF (TSRF), are assessed in the dataset to diagnose LD. Finally, the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy, precision, specificity, etc., and efficient XAI methods express the ultimate model's interoperability. The analysis reveals TSRF as the most effective model, achieving a peak accuracy of 99.92 % on Dataset-1 without feature optimization and 88.88 % on Dataset-2 with RFE optimization. XAI techniques, including SHAP and LIME plots, highlight key features influencing model predictions, providing insights into the reasoning behind classification outcomes. The findings highlight TSRF's potential in improving LD diagnosis, using XAI to enhance transparency and trust in ML models. Despite high accuracy and interpretability, limitations such as dataset bias and lack of clinical validation remain. Future work focuses on integrating advanced XAI, diversifying datasets, and applying the approach in clinical settings for reliable diagnostics. •Performance comparison of different ML models for the prediction of LD using multiple datasets.•Analysis of the effect of different feature optimization techniques for ML-based LD diagnosis.•Developing a novel hybrid ML model namely TSRF for diagnosis of LD.•Exploring the reasoning behind the model's decision through XAI. |
| Author | Mamun, Mohammad Hossain, Muhammad Minoar Iqbal, Sadiq Chowdhury, Safiul Haque Khatun, M.R. |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Mamun fullname: Mamun, Mohammad email: abdullah.mamun@bu.edu.bd organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh – sequence: 2 givenname: Safiul Haque surname: Chowdhury fullname: Chowdhury, Safiul Haque email: safiul.haque@bu.edu.bd organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh – sequence: 3 givenname: Muhammad Minoar surname: Hossain fullname: Hossain, Muhammad Minoar email: minoar.hossain@bu.edu.bd organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh – sequence: 4 givenname: M.R. surname: Khatun fullname: Khatun, M.R. email: rokeya.khatun@bu.edu.bd organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh – sequence: 5 givenname: Sadiq surname: Iqbal fullname: Iqbal, Sadiq email: sadiq.iqbal@bu.edu.bd organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh |
| BookMark | eNqNkc9uEzEQh1eoSJTSJ-DiF9gw_pPd-MABVQUqVeJSztbYnk0cHDvYm0IuPDtOgxAn1NNYM_q-seb3urtIOVHXveWw4MCHd9tFSFPeLASI5QL4AoC_6C6FVrrXS6ku_nm_6q5r3QKAlIID6Mvu1-3PfcSQ0IYY5iOjtMHkyLMYHqkwHyphpVZxnXINlc3kNil8PxA71JDWbC5ErFIkN4ecGCbP6ozu22lGqdLORuptc3hW2jDv2JQL1Zntsqf4pns5Yax0_adedV8_3j7cfO7vv3y6u_lw3zsBmvejRAcOcAVSw6TtiN4Kx2ESnBQNWlpUVvhRe3CDGoblChQKpHGaLDnh5FV3d_b6jFuzL2GH5WgyBvPUyGVtsMzBRTK2bdErpeSkuRr4YGmUILxbDWLppRPNpc6uQ9rj8QfG-FfIwZwiMVvzFIk5RWKAmxZJw-QZcyXXWmh6JvX-TFG7zmOgYqoLdEoolHby9v3wX_43VASrBQ |
| Cites_doi | 10.1613/jair.1.11192 10.1093/bioinformatics/btq134 10.1007/s00158-008-0338-0 10.9734/ajrcos/2024/v17i6467 10.1016/j.jhep.2023.03.017 10.1056/NEJM200004273421707 10.1016/j.artint.2018.07.007 10.1016/j.jbi.2005.02.008 10.1023/A:1007413511361 10.21037/jtd.2017.09.14 10.4258/hir.2021.27.3.189 10.1007/s12553-022-00713-3 10.1145/2939672.2939778 10.18801/jstei.050117.38 10.4097/kjae.2015.68.3.220 10.1016/j.mpaic.2009.03.012 10.2214/AJR.09.2601 10.5121/ijdkp.2018.8201 10.1016/j.patrec.2005.10.010 10.1055/s-2007-1007196 10.6029/smartcr.2014.03.007 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.infoh.2025.01.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-9534 |
| EndPage | 40 |
| ExternalDocumentID | oai_doaj_org_article_ba8098443f914616be7302dc8625d3c2 10.1016/j.infoh.2025.01.001 10_1016_j_infoh_2025_01_001 S2949953425000025 |
| GroupedDBID | 0R~ 6I. AAFTH AAXUO ADVLN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ FDB M41 M~E ROL AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION GROUPED_DOAJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2091-73ac0c0a80390f9b7adb2c10f21e4e693ba4b2d79d0c64665804a2ae7ffbec2c3 |
| IEDL.DBID | UNPAY |
| ISSN | 2949-9534 |
| IngestDate | Fri Oct 03 12:44:12 EDT 2025 Tue Aug 19 23:49:40 EDT 2025 Wed Oct 01 06:26:10 EDT 2025 Sat Apr 05 15:40:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Diagnosis Explainable artificial intelligence (XAI) Feature optimization Liver disease Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2091-73ac0c0a80390f9b7adb2c10f21e4e693ba4b2d79d0c64665804a2ae7ffbec2c3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.infoh.2025.01.001 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ba8098443f914616be7302dc8625d3c2 unpaywall_primary_10_1016_j_infoh_2025_01_001 crossref_primary_10_1016_j_infoh_2025_01_001 elsevier_sciencedirect_doi_10_1016_j_infoh_2025_01_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatics and Health |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Ghosh, Waheed (bib6) 2017; 5 Gupta, Karanth, Pentapati, Prasad (bib8) 2020 https://deepchecks.com/question/how-does-the-size-of-the-training-data-affect-the-accuracy/#:∼:text=If%20the%20dataset%20is%20large,amount%20of%20available%20dat%20increases. LEARNING, U.M. (n.d.). Zhang (bib45) 2004; 1 Lee, In, Lee (bib52) 2015; 68 Devarbhavi, Asrani, Arab, Nartey, Pose, Kamath (bib4) 2023 Provost, Fawcett (bib26) 2013 Friedman, Keeffe (bib16) 2007 Priya, Juliet, Tamilselvi (bib10) 2018; 5 Retrieved from Kaggle: https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset.[Last accessed on November 2023]. Giannini, Testa (bib19) 2005; 37 Gonçalves, Oliveira (bib18) 2008; 42 Altmann, Toloşi, Sander, Lengauer (bib27) 2010; 26 Breiman (bib34) 2001; 45 Platias, Petasis (bib29) 2020 Wilk, Gnanadesikan (bib25) 1968; 55 Hastie, Tibshirani, Friedman, Friedman (bib35) 2009; 2 Pratt, Kaplan (bib17) 2000; 342 Fawcett (bib38) 2006; 27 Lasko, Bhagwat, Zou, Ohno-Machado (bib39) 2005; 38 Marshall, K. (2024, April 27). Tougui, Jilbab, El Mhamdi (bib51) 2021; 27 Room (bib37) 2019; 6 Shrivastava, A. (n.d.). Darst, Malecki, Engelman (bib31) 2018; 19 Hazra (bib53) 2017; 9 Streamlined plot theme and plot annotations for ‘ggplot2, 1. Cortes, Vapnik (bib32) 1995; 20 Lewis (bib33) 1998, April Taouli, Ehman, Reeder (bib5) 2009; 193 Miller (bib40) 2019; 267 Mahadevan (bib1) 2020; 38 Nahar, Ara (bib9) 2018; 8 Jo (bib28) 2021 Wilke, C.O., Wickham, H., & Wilke, M.C.O. (2019). Fernández, Garcia, Herrera, Chawla (bib54) 2018; 61 Tiwari, Tiwari, Kassab, Roy, Edeh, Onyema (bib46) 2020; 29 Ginés, P., Fernández-Esparrach, G., Arroyo, V., & Rodés, J. (1997). Pathogenesis of ascites in cirrhosis. In Mitra, Metcalf (bib2) 2009; 10 Viana, Haftka, Steffen (bib12) 2009; 39 Ribeiro, Singh, Guestrin (bib42) 2016, August Azam, Rahman, Iqbal, Ahmed (bib11) 2020; 2 Velu, Ravi, Tabianan (bib49) 2022; 12 Khera, Khera (bib22) 2011; 6 Modhugu, Ponnusamy (bib48) 2024; 17 Tukey (bib24) 1977; 2 Lundberg, Lee (bib41) 2017; 30 Ganie, Pramanik (bib50) 2024; 5 Hasnain, Gude, Edeh, Masood, Khan, Imad, Fidelia (bib47) 2024 Burtis, Ashwood (bib15) 1999 (Vol. 17, No. 03, pp. 175-189). © 1997 by Thieme Medical Publishers, Inc. Kumar, Minz (bib30) 2014; 4 Rahman, Shamrat, Tasnim, Roy, Hossain (bib7) 2019; 8 Delanghe, Speeckaert (bib20) 2019; 493 Domingos, Pazzani (bib44) 1997; 29 Quinlan (bib36) 1986; 1 Nahar, Ara (bib3) 2018; 8 Retrieved from Kaggle: https://www.kaggle.com/datasets/uciml/indian-liver-patient-records.[Last Accessed on 31 December 2023]. Platias (10.1016/j.infoh.2025.01.001_bib29) 2020 Room (10.1016/j.infoh.2025.01.001_bib37) 2019; 6 Lee (10.1016/j.infoh.2025.01.001_bib52) 2015; 68 Jo (10.1016/j.infoh.2025.01.001_bib28) 2021 Ganie (10.1016/j.infoh.2025.01.001_bib50) 2024; 5 Friedman (10.1016/j.infoh.2025.01.001_bib16) 2007 10.1016/j.infoh.2025.01.001_bib14 Khera (10.1016/j.infoh.2025.01.001_bib22) 2011; 6 10.1016/j.infoh.2025.01.001_bib13 Devarbhavi (10.1016/j.infoh.2025.01.001_bib4) 2023 Tiwari (10.1016/j.infoh.2025.01.001_bib46) 2020; 29 Darst (10.1016/j.infoh.2025.01.001_bib31) 2018; 19 Cortes (10.1016/j.infoh.2025.01.001_bib32) 1995; 20 Ghosh (10.1016/j.infoh.2025.01.001_bib6) 2017; 5 Rahman (10.1016/j.infoh.2025.01.001_bib7) 2019; 8 Nahar (10.1016/j.infoh.2025.01.001_bib9) 2018; 8 Miller (10.1016/j.infoh.2025.01.001_bib40) 2019; 267 Burtis (10.1016/j.infoh.2025.01.001_bib15) 1999 Mahadevan (10.1016/j.infoh.2025.01.001_bib1) 2020; 38 Modhugu (10.1016/j.infoh.2025.01.001_bib48) 2024; 17 10.1016/j.infoh.2025.01.001_bib23 Lewis (10.1016/j.infoh.2025.01.001_bib33) 1998 10.1016/j.infoh.2025.01.001_bib21 Gonçalves (10.1016/j.infoh.2025.01.001_bib18) 2008; 42 Wilk (10.1016/j.infoh.2025.01.001_bib25) 1968; 55 Lasko (10.1016/j.infoh.2025.01.001_bib39) 2005; 38 Tukey (10.1016/j.infoh.2025.01.001_bib24) 1977; 2 Nahar (10.1016/j.infoh.2025.01.001_bib3) 2018; 8 Velu (10.1016/j.infoh.2025.01.001_bib49) 2022; 12 Delanghe (10.1016/j.infoh.2025.01.001_bib20) 2019; 493 Lundberg (10.1016/j.infoh.2025.01.001_bib41) 2017; 30 Fernández (10.1016/j.infoh.2025.01.001_bib54) 2018; 61 Ribeiro (10.1016/j.infoh.2025.01.001_bib42) 2016 Priya (10.1016/j.infoh.2025.01.001_bib10) 2018; 5 Breiman (10.1016/j.infoh.2025.01.001_bib34) 2001; 45 Gupta (10.1016/j.infoh.2025.01.001_bib8) 2020 Azam (10.1016/j.infoh.2025.01.001_bib11) 2020; 2 Hazra (10.1016/j.infoh.2025.01.001_bib53) 2017; 9 Domingos (10.1016/j.infoh.2025.01.001_bib44) 1997; 29 Pratt (10.1016/j.infoh.2025.01.001_bib17) 2000; 342 Fawcett (10.1016/j.infoh.2025.01.001_bib38) 2006; 27 Giannini (10.1016/j.infoh.2025.01.001_bib19) 2005; 37 Quinlan (10.1016/j.infoh.2025.01.001_bib36) 1986; 1 Zhang (10.1016/j.infoh.2025.01.001_bib45) 2004; 1 Tougui (10.1016/j.infoh.2025.01.001_bib51) 2021; 27 Mitra (10.1016/j.infoh.2025.01.001_bib2) 2009; 10 Hastie (10.1016/j.infoh.2025.01.001_bib35) 2009; 2 Hasnain (10.1016/j.infoh.2025.01.001_bib47) 2024 Viana (10.1016/j.infoh.2025.01.001_bib12) 2009; 39 Taouli (10.1016/j.infoh.2025.01.001_bib5) 2009; 193 Altmann (10.1016/j.infoh.2025.01.001_bib27) 2010; 26 Kumar (10.1016/j.infoh.2025.01.001_bib30) 2014; 4 10.1016/j.infoh.2025.01.001_bib43 Provost (10.1016/j.infoh.2025.01.001_bib26) 2013 |
| References_xml | – volume: 19 start-page: 1 year: 2018 end-page: 6 ident: bib31 article-title: Using recursive feature elimination in random forest to account for correlated variables in high dimensional data publication-title: BMC Genet – volume: 17 start-page: 188 year: 2024 end-page: 201 ident: bib48 article-title: Comparative analysis of machine learning algorithms for liver disease prediction: SVM, logistic regression, and decision tree publication-title: Asian J Res Comput Sci – volume: 5 start-page: 361 year: 2017 end-page: 370 ident: bib6 article-title: Analysis of classification models for LD diagnosis publication-title: J Sci Technol Environ Inf – start-page: 421 year: 2020 end-page: 428 ident: bib8 article-title: A web-based framework for LD diagnosis using combined ML models publication-title: 2020 International Conference on Smart Electronics and Communication (ICOSEC) – volume: 8 start-page: 01 year: 2018 end-page: 09 ident: bib3 article-title: LD prediction by using different decision tree techniques publication-title: Int J Data Min Knowl Manag Process – reference: Wilke, C.O., Wickham, H., & Wilke, M.C.O. (2019). – reference: LEARNING, U.M. (n.d.). – volume: 6 start-page: 27 year: 2019 ident: bib37 article-title: Confusion matrix publication-title: Mach Learn – reference: Marshall, K. (2024, April 27). – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib36 article-title: Induction of decision trees publication-title: ML – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib38 article-title: An introduction to ROC analysis publication-title: Pattern Recognit Lett – volume: 29 start-page: 103 year: 1997 end-page: 130 ident: bib44 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Mach Learn – reference: . Retrieved from Kaggle: https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset.[Last accessed on November 2023]. – volume: 42 start-page: 973 year: 2008 end-page: 987 ident: bib18 article-title: Ascitic fluid analysis publication-title: J Clin Gastroenterol – start-page: 328 year: 2024 end-page: 341 ident: bib47 article-title: Cloud-enhanced machine learning for handwritten character recognition in dementia patients publication-title: Driving Transformative Technology Trends With Cloud Computing – volume: 2 start-page: 85 year: 2020 end-page: 90 ident: bib11 article-title: Prediction of LDs by using few ML based approaches publication-title: Aust J Eng Innov Technol – volume: 4 start-page: 211 year: 2014 end-page: 229 ident: bib30 article-title: Feature selection publication-title: SmartCR – volume: 68 start-page: 220 year: 2015 end-page: 223 ident: bib52 article-title: Standard deviation and standard error of the mean publication-title: Korean J Anesthesiol – volume: 61 start-page: 863 year: 2018 end-page: 905 ident: bib54 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J Artif Intell Res – reference: Shrivastava, A. (n.d.). – volume: 30 year: 2017 ident: bib41 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – volume: 2 start-page: 1 year: 2009 end-page: 758 ident: bib35 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 38 start-page: 404 year: 2005 end-page: 415 ident: bib39 article-title: The use of receiver operating characteristic curves in biomedical informatics publication-title: J Biomed Inform – volume: 1 start-page: 3 year: 2004 ident: bib45 article-title: The optimality of naive Bayes publication-title: Aa – year: 2023 ident: bib4 article-title: Global burden of LD: 2023 update publication-title: J Hepatol – year: 2007 ident: bib16 article-title: Handbook of LD – volume: 267 start-page: 1 year: 2019 end-page: 38 ident: bib40 article-title: Explanation in artificial intelligence: insights from the social sciences publication-title: Artif Intell – volume: 27 start-page: 189 year: 2021 end-page: 199 ident: bib51 article-title: Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications publication-title: Healthc Inform Res – volume: 37 start-page: 498 year: 2005 end-page: 503 ident: bib19 article-title: Serum alanine aminotransferase levels in tissue injuries: a clinical appraisal publication-title: Dig LD – year: 2013 ident: bib26 article-title: Data Science for Business: What you Need to Know about Data Mining and Data-analytic Thinking – volume: 342 start-page: 1266 year: 2000 end-page: 1271 ident: bib17 article-title: Evaluation of abnormal liver-enzyme results in asymptomatic patients publication-title: N Engl J Med – reference: : https://deepchecks.com/question/how-does-the-size-of-the-training-data-affect-the-accuracy/#:∼:text=If%20the%20dataset%20is%20large,amount%20of%20available%20dat%20increases. – volume: 39 start-page: 439 year: 2009 end-page: 457 ident: bib12 article-title: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor publication-title: Struct Multidiscip Optim – reference: Ginés, P., Fernández-Esparrach, G., Arroyo, V., & Rodés, J. (1997). Pathogenesis of ascites in cirrhosis. In – volume: 5 year: 2024 ident: bib50 article-title: A comparative analysis of boosting algorithms for chronic liver disease prediction publication-title: Healthc Anal – reference: (Vol. 17, No. 03, pp. 175-189). © 1997 by Thieme Medical Publishers, Inc. – start-page: 150 year: 2020 end-page: 159 ident: bib29 article-title: A comparison of machine learning methods for data imputation publication-title: 11th Hell Conf Artif Intell – volume: 55 start-page: 1 year: 1968 end-page: 17 ident: bib25 article-title: Probability plotting methods for the analysis for the analysis of data publication-title: Biometrika – year: 2021 ident: bib28 article-title: ML Foundations. Supervised, Unsupervised, and Advanced Learning – volume: 12 start-page: 1211 year: 2022 end-page: 1235 ident: bib49 article-title: Data mining in predicting liver patients using classification model publication-title: Health Technol – reference: . Streamlined plot theme and plot annotations for ‘ggplot2, 1. – volume: 8 start-page: 419 year: 2019 end-page: 422 ident: bib7 article-title: A comparative study on LD prediction using supervised ML models publication-title: Int J Sci Technol Res – volume: 5 start-page: 206 year: 2018 end-page: 211 ident: bib10 article-title: Performance analysis of LD prediction using ML models publication-title: Int Res J Eng Technol – volume: 26 start-page: 1340 year: 2010 end-page: 1347 ident: bib27 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics – volume: 29 start-page: 2861 year: 2020 end-page: 2866 ident: bib46 article-title: Detection of coronavirus disease in human body using convolutional neural network publication-title: Int J Adv Sci Technol – year: 1999 ident: bib15 article-title: Tietz Textbook of Clinical Chemistry and Molecular Diagnostics – volume: 193 start-page: 14 year: 2009 ident: bib5 article-title: Advanced MRI methods for assessment of chronic LD publication-title: Ajr Am J Roentgenol – volume: 493 start-page: 125 year: 2019 end-page: 132 ident: bib20 article-title: Prealbumin: a clinical review publication-title: Clin Chim Acta – volume: 6 start-page: 7 year: 2011 end-page: 16 ident: bib22 article-title: Albumin and its efficacy in various clinical conditions publication-title: Biomark Insights – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib32 article-title: Support-vector networks publication-title: ML – volume: 9 start-page: 4125 year: 2017 ident: bib53 article-title: Using the confidence interval confidently publication-title: J Thorac Dis – reference: . Retrieved from Kaggle: https://www.kaggle.com/datasets/uciml/indian-liver-patient-records.[Last Accessed on 31 December 2023]. – volume: 2 start-page: 131 year: 1977 end-page: 160 ident: bib24 publication-title: Explor Data Anal – volume: 10 start-page: 332 year: 2009 end-page: 333 ident: bib2 article-title: Functional anatomy and blood supply of the liver publication-title: Anaesth Intensive Care Med – start-page: 4 year: 1998, April end-page: 15 ident: bib33 article-title: Naive (Bayes) at forty: the independence assumption in information retrieval publication-title: European Conference on ML – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib34 article-title: Random forests publication-title: ML – volume: 8 start-page: 01 year: 2018 end-page: 09 ident: bib9 article-title: LD prediction by using different decision tree techniques publication-title: Int J Data Min Knowl Manag Process – start-page: 1135 year: 2016, August end-page: 1144 ident: bib42 article-title: Why should i trust you?" Explaining the predictions of any classifier publication-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min – volume: 38 start-page: 427 year: 2020 end-page: 431 ident: bib1 article-title: Anatomy of the liver publication-title: Surgery – volume: 61 start-page: 863 year: 2018 ident: 10.1016/j.infoh.2025.01.001_bib54 article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary publication-title: J Artif Intell Res doi: 10.1613/jair.1.11192 – start-page: 421 year: 2020 ident: 10.1016/j.infoh.2025.01.001_bib8 article-title: A web-based framework for LD diagnosis using combined ML models – volume: 26 start-page: 1340 issue: 10 year: 2010 ident: 10.1016/j.infoh.2025.01.001_bib27 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 – volume: 29 start-page: 2861 issue: 8 year: 2020 ident: 10.1016/j.infoh.2025.01.001_bib46 article-title: Detection of coronavirus disease in human body using convolutional neural network publication-title: Int J Adv Sci Technol – start-page: 328 year: 2024 ident: 10.1016/j.infoh.2025.01.001_bib47 article-title: Cloud-enhanced machine learning for handwritten character recognition in dementia patients – volume: 39 start-page: 439 year: 2009 ident: 10.1016/j.infoh.2025.01.001_bib12 article-title: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-008-0338-0 – volume: 493 start-page: 125 year: 2019 ident: 10.1016/j.infoh.2025.01.001_bib20 article-title: Prealbumin: a clinical review publication-title: Clin Chim Acta – volume: 30 year: 2017 ident: 10.1016/j.infoh.2025.01.001_bib41 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – volume: 17 start-page: 188 issue: 6 year: 2024 ident: 10.1016/j.infoh.2025.01.001_bib48 article-title: Comparative analysis of machine learning algorithms for liver disease prediction: SVM, logistic regression, and decision tree publication-title: Asian J Res Comput Sci doi: 10.9734/ajrcos/2024/v17i6467 – year: 2021 ident: 10.1016/j.infoh.2025.01.001_bib28 – year: 2023 ident: 10.1016/j.infoh.2025.01.001_bib4 article-title: Global burden of LD: 2023 update publication-title: J Hepatol doi: 10.1016/j.jhep.2023.03.017 – volume: 2 start-page: 131 year: 1977 ident: 10.1016/j.infoh.2025.01.001_bib24 publication-title: Explor Data Anal – volume: 342 start-page: 1266 issue: 17 year: 2000 ident: 10.1016/j.infoh.2025.01.001_bib17 article-title: Evaluation of abnormal liver-enzyme results in asymptomatic patients publication-title: N Engl J Med doi: 10.1056/NEJM200004273421707 – year: 2007 ident: 10.1016/j.infoh.2025.01.001_bib16 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.infoh.2025.01.001_bib31 article-title: Using recursive feature elimination in random forest to account for correlated variables in high dimensional data publication-title: BMC Genet – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.infoh.2025.01.001_bib34 article-title: Random forests publication-title: ML – volume: 267 start-page: 1 year: 2019 ident: 10.1016/j.infoh.2025.01.001_bib40 article-title: Explanation in artificial intelligence: insights from the social sciences publication-title: Artif Intell doi: 10.1016/j.artint.2018.07.007 – volume: 38 start-page: 404 issue: 5 year: 2005 ident: 10.1016/j.infoh.2025.01.001_bib39 article-title: The use of receiver operating characteristic curves in biomedical informatics publication-title: J Biomed Inform doi: 10.1016/j.jbi.2005.02.008 – volume: 29 start-page: 103 year: 1997 ident: 10.1016/j.infoh.2025.01.001_bib44 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Mach Learn doi: 10.1023/A:1007413511361 – volume: 5 year: 2024 ident: 10.1016/j.infoh.2025.01.001_bib50 article-title: A comparative analysis of boosting algorithms for chronic liver disease prediction publication-title: Healthc Anal – ident: 10.1016/j.infoh.2025.01.001_bib43 – volume: 9 start-page: 4125 issue: 10 year: 2017 ident: 10.1016/j.infoh.2025.01.001_bib53 article-title: Using the confidence interval confidently publication-title: J Thorac Dis doi: 10.21037/jtd.2017.09.14 – volume: 8 start-page: 419 issue: 11 year: 2019 ident: 10.1016/j.infoh.2025.01.001_bib7 article-title: A comparative study on LD prediction using supervised ML models publication-title: Int J Sci Technol Res – volume: 5 start-page: 206 issue: 1 year: 2018 ident: 10.1016/j.infoh.2025.01.001_bib10 article-title: Performance analysis of LD prediction using ML models publication-title: Int Res J Eng Technol – start-page: 4 year: 1998 ident: 10.1016/j.infoh.2025.01.001_bib33 article-title: Naive (Bayes) at forty: the independence assumption in information retrieval – volume: 27 start-page: 189 issue: 3 year: 2021 ident: 10.1016/j.infoh.2025.01.001_bib51 article-title: Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications publication-title: Healthc Inform Res doi: 10.4258/hir.2021.27.3.189 – volume: 6 start-page: 27 year: 2019 ident: 10.1016/j.infoh.2025.01.001_bib37 article-title: Confusion matrix publication-title: Mach Learn – year: 1999 ident: 10.1016/j.infoh.2025.01.001_bib15 – volume: 12 start-page: 1211 issue: 6 year: 2022 ident: 10.1016/j.infoh.2025.01.001_bib49 article-title: Data mining in predicting liver patients using classification model publication-title: Health Technol doi: 10.1007/s12553-022-00713-3 – volume: 38 start-page: 427 issue: 8 year: 2020 ident: 10.1016/j.infoh.2025.01.001_bib1 article-title: Anatomy of the liver publication-title: Surgery – start-page: 1135 year: 2016 ident: 10.1016/j.infoh.2025.01.001_bib42 article-title: Why should i trust you?" Explaining the predictions of any classifier publication-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min doi: 10.1145/2939672.2939778 – volume: 55 start-page: 1 issue: 1 year: 1968 ident: 10.1016/j.infoh.2025.01.001_bib25 article-title: Probability plotting methods for the analysis for the analysis of data publication-title: Biometrika – ident: 10.1016/j.infoh.2025.01.001_bib23 – year: 2013 ident: 10.1016/j.infoh.2025.01.001_bib26 – volume: 5 start-page: 361 issue: 1 year: 2017 ident: 10.1016/j.infoh.2025.01.001_bib6 article-title: Analysis of classification models for LD diagnosis publication-title: J Sci Technol Environ Inf doi: 10.18801/jstei.050117.38 – volume: 1 start-page: 3 issue: 2 year: 2004 ident: 10.1016/j.infoh.2025.01.001_bib45 article-title: The optimality of naive Bayes publication-title: Aa – volume: 68 start-page: 220 issue: 3 year: 2015 ident: 10.1016/j.infoh.2025.01.001_bib52 article-title: Standard deviation and standard error of the mean publication-title: Korean J Anesthesiol doi: 10.4097/kjae.2015.68.3.220 – volume: 10 start-page: 332 issue: 7 year: 2009 ident: 10.1016/j.infoh.2025.01.001_bib2 article-title: Functional anatomy and blood supply of the liver publication-title: Anaesth Intensive Care Med doi: 10.1016/j.mpaic.2009.03.012 – volume: 193 start-page: 14 issue: 1 year: 2009 ident: 10.1016/j.infoh.2025.01.001_bib5 article-title: Advanced MRI methods for assessment of chronic LD publication-title: Ajr Am J Roentgenol doi: 10.2214/AJR.09.2601 – volume: 8 start-page: 01 issue: 2 year: 2018 ident: 10.1016/j.infoh.2025.01.001_bib9 article-title: LD prediction by using different decision tree techniques publication-title: Int J Data Min Knowl Manag Process doi: 10.5121/ijdkp.2018.8201 – ident: 10.1016/j.infoh.2025.01.001_bib13 – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.infoh.2025.01.001_bib35 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.infoh.2025.01.001_bib38 article-title: An introduction to ROC analysis publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.infoh.2025.01.001_bib32 article-title: Support-vector networks publication-title: ML – volume: 8 start-page: 01 issue: 2 year: 2018 ident: 10.1016/j.infoh.2025.01.001_bib3 article-title: LD prediction by using different decision tree techniques publication-title: Int J Data Min Knowl Manag Process doi: 10.5121/ijdkp.2018.8201 – volume: 1 start-page: 81 year: 1986 ident: 10.1016/j.infoh.2025.01.001_bib36 article-title: Induction of decision trees publication-title: ML – volume: 6 start-page: 7 year: 2011 ident: 10.1016/j.infoh.2025.01.001_bib22 article-title: Albumin and its efficacy in various clinical conditions publication-title: Biomark Insights – ident: 10.1016/j.infoh.2025.01.001_bib21 doi: 10.1055/s-2007-1007196 – start-page: 150 year: 2020 ident: 10.1016/j.infoh.2025.01.001_bib29 article-title: A comparison of machine learning methods for data imputation publication-title: 11th Hell Conf Artif Intell – volume: 4 start-page: 211 issue: 3 year: 2014 ident: 10.1016/j.infoh.2025.01.001_bib30 article-title: Feature selection publication-title: SmartCR doi: 10.6029/smartcr.2014.03.007 – volume: 42 start-page: 973 issue: 8 year: 2008 ident: 10.1016/j.infoh.2025.01.001_bib18 article-title: Ascitic fluid analysis publication-title: J Clin Gastroenterol – volume: 2 start-page: 85 issue: 5 year: 2020 ident: 10.1016/j.infoh.2025.01.001_bib11 article-title: Prediction of LDs by using few ML based approaches publication-title: Aust J Eng Innov Technol – volume: 37 start-page: 498 issue: 7 year: 2005 ident: 10.1016/j.infoh.2025.01.001_bib19 article-title: Serum alanine aminotransferase levels in tissue injuries: a clinical appraisal publication-title: Dig LD – ident: 10.1016/j.infoh.2025.01.001_bib14 |
| SSID | ssj0003321009 |
| Score | 2.2869961 |
| Snippet | Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction... Background: Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Diagnosis Explainable artificial intelligence (XAI) Feature optimization Liver disease Machine learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si15EUbG-yMGji2mSfeSoYimCniz0tmTz0Mp2W2yL9OJvdya7W-pFPXhaCJtsmC9kvux8mSHkUqfKMGtE5GJl4IDiZKR9LCJpM2Gd8sKFkiyPT8lgKB9G8Wij1Bdqwur0wLXhrgudMZVJKbzCEtRJ4WBNcmuAicdWmLD7skxtHKZwDxZ4NYWpNs1QEHQhYhh-4HWizqYMTOuKQsb-bx5pe1nN9OpDl-WGx-nvkd2GKtKbeor7ZMtVB-QTRXPhxhOKWlfUVa8hhk9LFFjQJt4Cz6CgG8_pOkkrRYn7C8UoNJ2H6jcACdWVpUAQDf4xh8HmblKULkLfZim4MTudUKC14DpoqJlzSIb9--e7QdTUUIgMByoQpUIbZhgYUSjmVZFqW3DTY573nHSJEoWWBbepsswkMgE-wqTm2qXeA7rciCPSqaaVOyY0Zpq72FiOXQXPtPMpimhiDS1c6i65as2Zz-pUGXmrIXvLg_VztH7Oeqik65JbNPn6VcxzHRoA_bxBP_8N_S5JWsDyhjLUVACGGv_89WgN719me_Ifsz0lOzhkLWE7I53F-9KdA6dZFBdh-X4BxPr1nw priority: 102 providerName: Directory of Open Access Journals |
| Title | Explainability enhanced liver disease diagnosis technique using tree selection and stacking ensemble-based random forest model |
| URI | https://dx.doi.org/10.1016/j.infoh.2025.01.001 https://doi.org/10.1016/j.infoh.2025.01.001 https://doaj.org/article/ba8098443f914616be7302dc8625d3c2 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yHTz5AxUnKjl4tJIl6Y8cVTaGoHhwoKeSJqlOZx12Q-Zhf7vvpd1wIjIvLZQkDXlp35e8L98j5ETHyjBrROBCZWCB4mSg81AE0ibCOpUL51OyXN9Evb68ug_va51tPAuzFL_3PCwcaIwa8EpfE89qNaMQgHeDNPs3t-cPmD5OSYWBSDnXFfq95pLv8RL9Sy5ofVKM9PRDD4ffXEx3szq7XXplQmSWvJxNxtmZ-fyh27hi77fIRg016Xk1N7bJmit2yAxJd_7EFJJip9QVT54DQIdI0KB1vAbunoE3KOlC5JUiRf6RYhSblj57DpiU6sJSAJgGd9yhsdK9ZkMXoG-0FNygfXulAIvB9VCfc2eX9Ludu8teUOdgCAwHKBHEQhtmmE6YUCxXWaxtxk2b5bztpIuUyLTMuI2VZSaSEeAZJjXXLs5zmB3ciD3SKN4Kt09oyDR3obEcqwqeaJfHSMIJNTzhUrfI6dw66aiS2kjnHLTn1A9kigOZsjYy8VrkAi24KIo62f4BGCCtPzuAAglTiZQiV5jAPMoc_NG4NbCOC60wvEWiuf3TGnJUUAKaGvz99mAxW1bp7cE_yx-Sxvh94o4A8YyzY79TANfrWee4nvVfCUMCoA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ye_DkAxVXVHLwaCWbpI8cVVxEUDy4oKeSJqmvbnexu4ge_O3OpO3iioieCiFJSybtfOl88w0hBzpWhlkjAhcqAwcUJwOdhyKQNhHWqVw4X5Ll8io6H8qL2_C20dnGXJiF-L3nYeFCY9SA1_qamKvVjUIA3h3SHV5dH99h-TglFQYiZasr9PPIBd_jJfoXXNDyrJzot1ddFF9czGC1zt2uvDIhMkuej2bT7Mi8f9Nt_OPTr5GVBmrS43pvrJMlV26QDyTd-YwpJMW-UVc-eA4ALZCgQZt4DVw9A--xonORV4oU-XuKUWxa-eo5YFKqS0sBYBr84w6TVW6UFS5A32gpuEE7HlGAxeB6qK-5s0mGg7Ob0_OgqcEQGA5QIoiFNswwnTChWK6yWNuMmz7Led9JFymRaZlxGyvLTCQjwDNMaq5dnOewO7gRW6RTjku3TWjINHehsRyHCp5ol8dIwgk1tHCpe-SwtU46qaU20paD9pT6hUxxIVPWRyZej5ygBeddUSfbN4AB0ua1AyiQMJVIKXKFBcyjzMEXjVsD57jQCsN7JGrtnzaQo4YSMNXj73cP5rvlL0-788_-u6QzfZm5PUA802y_2emf-3sAeg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainability+enhanced+liver+disease+diagnosis+technique+using+tree+selection+and+stacking+ensemble-based+random+forest+model&rft.jtitle=Informatics+and+Health&rft.au=Mamun%2C+Mohammad&rft.au=Chowdhury%2C+Safiul+Haque&rft.au=Hossain%2C+Muhammad+Minoar&rft.au=Khatun%2C+M.R.&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2949-9534&rft.eissn=2949-9534&rft.volume=2&rft.issue=1&rft.spage=17&rft.epage=40&rft_id=info:doi/10.1016%2Fj.infoh.2025.01.001&rft.externalDocID=S2949953425000025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon |