Explainability enhanced liver disease diagnosis technique using tree selection and stacking ensemble-based random forest model

Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. This researc...

Full description

Saved in:
Bibliographic Details
Published inInformatics and Health Vol. 2; no. 1; pp. 17 - 40
Main Authors Mamun, Mohammad, Chowdhury, Safiul Haque, Hossain, Muhammad Minoar, Khatun, M.R., Iqbal, Sadiq
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text
ISSN2949-9534
2949-9534
DOI10.1016/j.infoh.2025.01.001

Cover

Abstract Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. This research systematically analyzes two distinct datasets encompassing liver health indicators. A combination of preprocessing techniques, including feature optimization methods such as Forward Feature Selection (FFS), Backward Feature Selection (BFS), and Recursive Feature Elimination (RFE), is applied to enhance data quality. After that, ML models, namely Support Vector Machines (SVM), Naive Bayes (NB), Random Forest (RF), K-nearest neighbors (KNN), Decision Trees (DT), and a novel Tree Selection and Stacking Ensemble-based RF (TSRF), are assessed in the dataset to diagnose LD. Finally, the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy, precision, specificity, etc., and efficient XAI methods express the ultimate model's interoperability. The analysis reveals TSRF as the most effective model, achieving a peak accuracy of 99.92 % on Dataset-1 without feature optimization and 88.88 % on Dataset-2 with RFE optimization. XAI techniques, including SHAP and LIME plots, highlight key features influencing model predictions, providing insights into the reasoning behind classification outcomes. The findings highlight TSRF's potential in improving LD diagnosis, using XAI to enhance transparency and trust in ML models. Despite high accuracy and interpretability, limitations such as dataset bias and lack of clinical validation remain. Future work focuses on integrating advanced XAI, diversifying datasets, and applying the approach in clinical settings for reliable diagnostics. •Performance comparison of different ML models for the prediction of LD using multiple datasets.•Analysis of the effect of different feature optimization techniques for ML-based LD diagnosis.•Developing a novel hybrid ML model namely TSRF for diagnosis of LD.•Exploring the reasoning behind the model's decision through XAI.
AbstractList Background: Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. Methods: This research systematically analyzes two distinct datasets encompassing liver health indicators. A combination of preprocessing techniques, including feature optimization methods such as Forward Feature Selection (FFS), Backward Feature Selection (BFS), and Recursive Feature Elimination (RFE), is applied to enhance data quality. After that, ML models, namely Support Vector Machines (SVM), Naive Bayes (NB), Random Forest (RF), K-nearest neighbors (KNN), Decision Trees (DT), and a novel Tree Selection and Stacking Ensemble-based RF (TSRF), are assessed in the dataset to diagnose LD. Finally, the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy, precision, specificity, etc., and efficient XAI methods express the ultimate model's interoperability. Findings: The analysis reveals TSRF as the most effective model, achieving a peak accuracy of 99.92 % on Dataset-1 without feature optimization and 88.88 % on Dataset-2 with RFE optimization. XAI techniques, including SHAP and LIME plots, highlight key features influencing model predictions, providing insights into the reasoning behind classification outcomes. Interpretation: The findings highlight TSRF's potential in improving LD diagnosis, using XAI to enhance transparency and trust in ML models. Despite high accuracy and interpretability, limitations such as dataset bias and lack of clinical validation remain. Future work focuses on integrating advanced XAI, diversifying datasets, and applying the approach in clinical settings for reliable diagnostics.
Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction using machine learning (ML) and explainable artificial intelligence (XAI), enhancing diagnostic precision and interpretability. This research systematically analyzes two distinct datasets encompassing liver health indicators. A combination of preprocessing techniques, including feature optimization methods such as Forward Feature Selection (FFS), Backward Feature Selection (BFS), and Recursive Feature Elimination (RFE), is applied to enhance data quality. After that, ML models, namely Support Vector Machines (SVM), Naive Bayes (NB), Random Forest (RF), K-nearest neighbors (KNN), Decision Trees (DT), and a novel Tree Selection and Stacking Ensemble-based RF (TSRF), are assessed in the dataset to diagnose LD. Finally, the ultimate model is selected based on incorporating cross-validation and evaluation through performance metrics like accuracy, precision, specificity, etc., and efficient XAI methods express the ultimate model's interoperability. The analysis reveals TSRF as the most effective model, achieving a peak accuracy of 99.92 % on Dataset-1 without feature optimization and 88.88 % on Dataset-2 with RFE optimization. XAI techniques, including SHAP and LIME plots, highlight key features influencing model predictions, providing insights into the reasoning behind classification outcomes. The findings highlight TSRF's potential in improving LD diagnosis, using XAI to enhance transparency and trust in ML models. Despite high accuracy and interpretability, limitations such as dataset bias and lack of clinical validation remain. Future work focuses on integrating advanced XAI, diversifying datasets, and applying the approach in clinical settings for reliable diagnostics. •Performance comparison of different ML models for the prediction of LD using multiple datasets.•Analysis of the effect of different feature optimization techniques for ML-based LD diagnosis.•Developing a novel hybrid ML model namely TSRF for diagnosis of LD.•Exploring the reasoning behind the model's decision through XAI.
Author Mamun, Mohammad
Hossain, Muhammad Minoar
Iqbal, Sadiq
Chowdhury, Safiul Haque
Khatun, M.R.
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Mamun
  fullname: Mamun, Mohammad
  email: abdullah.mamun@bu.edu.bd
  organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh
– sequence: 2
  givenname: Safiul Haque
  surname: Chowdhury
  fullname: Chowdhury, Safiul Haque
  email: safiul.haque@bu.edu.bd
  organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh
– sequence: 3
  givenname: Muhammad Minoar
  surname: Hossain
  fullname: Hossain, Muhammad Minoar
  email: minoar.hossain@bu.edu.bd
  organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh
– sequence: 4
  givenname: M.R.
  surname: Khatun
  fullname: Khatun, M.R.
  email: rokeya.khatun@bu.edu.bd
  organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh
– sequence: 5
  givenname: Sadiq
  surname: Iqbal
  fullname: Iqbal, Sadiq
  email: sadiq.iqbal@bu.edu.bd
  organization: Department of Computer Science and Engineering, Bangladesh University, Dhaka, Bangladesh
BookMark eNqNkc9uEzEQh1eoSJTSJ-DiF9gw_pPd-MABVQUqVeJSztbYnk0cHDvYm0IuPDtOgxAn1NNYM_q-seb3urtIOVHXveWw4MCHd9tFSFPeLASI5QL4AoC_6C6FVrrXS6ku_nm_6q5r3QKAlIID6Mvu1-3PfcSQ0IYY5iOjtMHkyLMYHqkwHyphpVZxnXINlc3kNil8PxA71JDWbC5ErFIkN4ecGCbP6ozu22lGqdLORuptc3hW2jDv2JQL1Zntsqf4pns5Yax0_adedV8_3j7cfO7vv3y6u_lw3zsBmvejRAcOcAVSw6TtiN4Kx2ESnBQNWlpUVvhRe3CDGoblChQKpHGaLDnh5FV3d_b6jFuzL2GH5WgyBvPUyGVtsMzBRTK2bdErpeSkuRr4YGmUILxbDWLppRPNpc6uQ9rj8QfG-FfIwZwiMVvzFIk5RWKAmxZJw-QZcyXXWmh6JvX-TFG7zmOgYqoLdEoolHby9v3wX_43VASrBQ
Cites_doi 10.1613/jair.1.11192
10.1093/bioinformatics/btq134
10.1007/s00158-008-0338-0
10.9734/ajrcos/2024/v17i6467
10.1016/j.jhep.2023.03.017
10.1056/NEJM200004273421707
10.1016/j.artint.2018.07.007
10.1016/j.jbi.2005.02.008
10.1023/A:1007413511361
10.21037/jtd.2017.09.14
10.4258/hir.2021.27.3.189
10.1007/s12553-022-00713-3
10.1145/2939672.2939778
10.18801/jstei.050117.38
10.4097/kjae.2015.68.3.220
10.1016/j.mpaic.2009.03.012
10.2214/AJR.09.2601
10.5121/ijdkp.2018.8201
10.1016/j.patrec.2005.10.010
10.1055/s-2007-1007196
10.6029/smartcr.2014.03.007
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.infoh.2025.01.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2949-9534
EndPage 40
ExternalDocumentID oai_doaj_org_article_ba8098443f914616be7302dc8625d3c2
10.1016/j.infoh.2025.01.001
10_1016_j_infoh_2025_01_001
S2949953425000025
GroupedDBID 0R~
6I.
AAFTH
AAXUO
ADVLN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
FDB
M41
M~E
ROL
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c2091-73ac0c0a80390f9b7adb2c10f21e4e693ba4b2d79d0c64665804a2ae7ffbec2c3
IEDL.DBID UNPAY
ISSN 2949-9534
IngestDate Fri Oct 03 12:44:12 EDT 2025
Tue Aug 19 23:49:40 EDT 2025
Wed Oct 01 06:26:10 EDT 2025
Sat Apr 05 15:40:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diagnosis
Explainable artificial intelligence (XAI)
Feature optimization
Liver disease
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2091-73ac0c0a80390f9b7adb2c10f21e4e693ba4b2d79d0c64665804a2ae7ffbec2c3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.infoh.2025.01.001
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_ba8098443f914616be7302dc8625d3c2
unpaywall_primary_10_1016_j_infoh_2025_01_001
crossref_primary_10_1016_j_infoh_2025_01_001
elsevier_sciencedirect_doi_10_1016_j_infoh_2025_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Informatics and Health
PublicationYear 2025
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Ghosh, Waheed (bib6) 2017; 5
Gupta, Karanth, Pentapati, Prasad (bib8) 2020
https://deepchecks.com/question/how-does-the-size-of-the-training-data-affect-the-accuracy/#:∼:text=If%20the%20dataset%20is%20large,amount%20of%20available%20dat%20increases.
LEARNING, U.M. (n.d.).
Zhang (bib45) 2004; 1
Lee, In, Lee (bib52) 2015; 68
Devarbhavi, Asrani, Arab, Nartey, Pose, Kamath (bib4) 2023
Provost, Fawcett (bib26) 2013
Friedman, Keeffe (bib16) 2007
Priya, Juliet, Tamilselvi (bib10) 2018; 5
Retrieved from Kaggle: https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset.[Last accessed on November 2023].
Giannini, Testa (bib19) 2005; 37
Gonçalves, Oliveira (bib18) 2008; 42
Altmann, Toloşi, Sander, Lengauer (bib27) 2010; 26
Breiman (bib34) 2001; 45
Platias, Petasis (bib29) 2020
Wilk, Gnanadesikan (bib25) 1968; 55
Hastie, Tibshirani, Friedman, Friedman (bib35) 2009; 2
Pratt, Kaplan (bib17) 2000; 342
Fawcett (bib38) 2006; 27
Lasko, Bhagwat, Zou, Ohno-Machado (bib39) 2005; 38
Marshall, K. (2024, April 27).
Tougui, Jilbab, El Mhamdi (bib51) 2021; 27
Room (bib37) 2019; 6
Shrivastava, A. (n.d.).
Darst, Malecki, Engelman (bib31) 2018; 19
Hazra (bib53) 2017; 9
Streamlined plot theme and plot annotations for ‘ggplot2, 1.
Cortes, Vapnik (bib32) 1995; 20
Lewis (bib33) 1998, April
Taouli, Ehman, Reeder (bib5) 2009; 193
Miller (bib40) 2019; 267
Mahadevan (bib1) 2020; 38
Nahar, Ara (bib9) 2018; 8
Jo (bib28) 2021
Wilke, C.O., Wickham, H., & Wilke, M.C.O. (2019).
Fernández, Garcia, Herrera, Chawla (bib54) 2018; 61
Tiwari, Tiwari, Kassab, Roy, Edeh, Onyema (bib46) 2020; 29
Ginés, P., Fernández-Esparrach, G., Arroyo, V., & Rodés, J. (1997). Pathogenesis of ascites in cirrhosis. In
Mitra, Metcalf (bib2) 2009; 10
Viana, Haftka, Steffen (bib12) 2009; 39
Ribeiro, Singh, Guestrin (bib42) 2016, August
Azam, Rahman, Iqbal, Ahmed (bib11) 2020; 2
Velu, Ravi, Tabianan (bib49) 2022; 12
Khera, Khera (bib22) 2011; 6
Modhugu, Ponnusamy (bib48) 2024; 17
Tukey (bib24) 1977; 2
Lundberg, Lee (bib41) 2017; 30
Ganie, Pramanik (bib50) 2024; 5
Hasnain, Gude, Edeh, Masood, Khan, Imad, Fidelia (bib47) 2024
Burtis, Ashwood (bib15) 1999
(Vol. 17, No. 03, pp. 175-189). © 1997 by Thieme Medical Publishers, Inc.
Kumar, Minz (bib30) 2014; 4
Rahman, Shamrat, Tasnim, Roy, Hossain (bib7) 2019; 8
Delanghe, Speeckaert (bib20) 2019; 493
Domingos, Pazzani (bib44) 1997; 29
Quinlan (bib36) 1986; 1
Nahar, Ara (bib3) 2018; 8
Retrieved from Kaggle: https://www.kaggle.com/datasets/uciml/indian-liver-patient-records.[Last Accessed on 31 December 2023].
Platias (10.1016/j.infoh.2025.01.001_bib29) 2020
Room (10.1016/j.infoh.2025.01.001_bib37) 2019; 6
Lee (10.1016/j.infoh.2025.01.001_bib52) 2015; 68
Jo (10.1016/j.infoh.2025.01.001_bib28) 2021
Ganie (10.1016/j.infoh.2025.01.001_bib50) 2024; 5
Friedman (10.1016/j.infoh.2025.01.001_bib16) 2007
10.1016/j.infoh.2025.01.001_bib14
Khera (10.1016/j.infoh.2025.01.001_bib22) 2011; 6
10.1016/j.infoh.2025.01.001_bib13
Devarbhavi (10.1016/j.infoh.2025.01.001_bib4) 2023
Tiwari (10.1016/j.infoh.2025.01.001_bib46) 2020; 29
Darst (10.1016/j.infoh.2025.01.001_bib31) 2018; 19
Cortes (10.1016/j.infoh.2025.01.001_bib32) 1995; 20
Ghosh (10.1016/j.infoh.2025.01.001_bib6) 2017; 5
Rahman (10.1016/j.infoh.2025.01.001_bib7) 2019; 8
Nahar (10.1016/j.infoh.2025.01.001_bib9) 2018; 8
Miller (10.1016/j.infoh.2025.01.001_bib40) 2019; 267
Burtis (10.1016/j.infoh.2025.01.001_bib15) 1999
Mahadevan (10.1016/j.infoh.2025.01.001_bib1) 2020; 38
Modhugu (10.1016/j.infoh.2025.01.001_bib48) 2024; 17
10.1016/j.infoh.2025.01.001_bib23
Lewis (10.1016/j.infoh.2025.01.001_bib33) 1998
10.1016/j.infoh.2025.01.001_bib21
Gonçalves (10.1016/j.infoh.2025.01.001_bib18) 2008; 42
Wilk (10.1016/j.infoh.2025.01.001_bib25) 1968; 55
Lasko (10.1016/j.infoh.2025.01.001_bib39) 2005; 38
Tukey (10.1016/j.infoh.2025.01.001_bib24) 1977; 2
Nahar (10.1016/j.infoh.2025.01.001_bib3) 2018; 8
Velu (10.1016/j.infoh.2025.01.001_bib49) 2022; 12
Delanghe (10.1016/j.infoh.2025.01.001_bib20) 2019; 493
Lundberg (10.1016/j.infoh.2025.01.001_bib41) 2017; 30
Fernández (10.1016/j.infoh.2025.01.001_bib54) 2018; 61
Ribeiro (10.1016/j.infoh.2025.01.001_bib42) 2016
Priya (10.1016/j.infoh.2025.01.001_bib10) 2018; 5
Breiman (10.1016/j.infoh.2025.01.001_bib34) 2001; 45
Gupta (10.1016/j.infoh.2025.01.001_bib8) 2020
Azam (10.1016/j.infoh.2025.01.001_bib11) 2020; 2
Hazra (10.1016/j.infoh.2025.01.001_bib53) 2017; 9
Domingos (10.1016/j.infoh.2025.01.001_bib44) 1997; 29
Pratt (10.1016/j.infoh.2025.01.001_bib17) 2000; 342
Fawcett (10.1016/j.infoh.2025.01.001_bib38) 2006; 27
Giannini (10.1016/j.infoh.2025.01.001_bib19) 2005; 37
Quinlan (10.1016/j.infoh.2025.01.001_bib36) 1986; 1
Zhang (10.1016/j.infoh.2025.01.001_bib45) 2004; 1
Tougui (10.1016/j.infoh.2025.01.001_bib51) 2021; 27
Mitra (10.1016/j.infoh.2025.01.001_bib2) 2009; 10
Hastie (10.1016/j.infoh.2025.01.001_bib35) 2009; 2
Hasnain (10.1016/j.infoh.2025.01.001_bib47) 2024
Viana (10.1016/j.infoh.2025.01.001_bib12) 2009; 39
Taouli (10.1016/j.infoh.2025.01.001_bib5) 2009; 193
Altmann (10.1016/j.infoh.2025.01.001_bib27) 2010; 26
Kumar (10.1016/j.infoh.2025.01.001_bib30) 2014; 4
10.1016/j.infoh.2025.01.001_bib43
Provost (10.1016/j.infoh.2025.01.001_bib26) 2013
References_xml – volume: 19
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib31
  article-title: Using recursive feature elimination in random forest to account for correlated variables in high dimensional data
  publication-title: BMC Genet
– volume: 17
  start-page: 188
  year: 2024
  end-page: 201
  ident: bib48
  article-title: Comparative analysis of machine learning algorithms for liver disease prediction: SVM, logistic regression, and decision tree
  publication-title: Asian J Res Comput Sci
– volume: 5
  start-page: 361
  year: 2017
  end-page: 370
  ident: bib6
  article-title: Analysis of classification models for LD diagnosis
  publication-title: J Sci Technol Environ Inf
– start-page: 421
  year: 2020
  end-page: 428
  ident: bib8
  article-title: A web-based framework for LD diagnosis using combined ML models
  publication-title: 2020 International Conference on Smart Electronics and Communication (ICOSEC)
– volume: 8
  start-page: 01
  year: 2018
  end-page: 09
  ident: bib3
  article-title: LD prediction by using different decision tree techniques
  publication-title: Int J Data Min Knowl Manag Process
– reference: Wilke, C.O., Wickham, H., & Wilke, M.C.O. (2019).
– reference: LEARNING, U.M. (n.d.).
– volume: 6
  start-page: 27
  year: 2019
  ident: bib37
  article-title: Confusion matrix
  publication-title: Mach Learn
– reference: Marshall, K. (2024, April 27).
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib36
  article-title: Induction of decision trees
  publication-title: ML
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib38
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
– volume: 29
  start-page: 103
  year: 1997
  end-page: 130
  ident: bib44
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Mach Learn
– reference: . Retrieved from Kaggle: https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset.[Last accessed on November 2023].
– volume: 42
  start-page: 973
  year: 2008
  end-page: 987
  ident: bib18
  article-title: Ascitic fluid analysis
  publication-title: J Clin Gastroenterol
– start-page: 328
  year: 2024
  end-page: 341
  ident: bib47
  article-title: Cloud-enhanced machine learning for handwritten character recognition in dementia patients
  publication-title: Driving Transformative Technology Trends With Cloud Computing
– volume: 2
  start-page: 85
  year: 2020
  end-page: 90
  ident: bib11
  article-title: Prediction of LDs by using few ML based approaches
  publication-title: Aust J Eng Innov Technol
– volume: 4
  start-page: 211
  year: 2014
  end-page: 229
  ident: bib30
  article-title: Feature selection
  publication-title: SmartCR
– volume: 68
  start-page: 220
  year: 2015
  end-page: 223
  ident: bib52
  article-title: Standard deviation and standard error of the mean
  publication-title: Korean J Anesthesiol
– volume: 61
  start-page: 863
  year: 2018
  end-page: 905
  ident: bib54
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J Artif Intell Res
– reference: Shrivastava, A. (n.d.).
– volume: 30
  year: 2017
  ident: bib41
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– volume: 2
  start-page: 1
  year: 2009
  end-page: 758
  ident: bib35
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 38
  start-page: 404
  year: 2005
  end-page: 415
  ident: bib39
  article-title: The use of receiver operating characteristic curves in biomedical informatics
  publication-title: J Biomed Inform
– volume: 1
  start-page: 3
  year: 2004
  ident: bib45
  article-title: The optimality of naive Bayes
  publication-title: Aa
– year: 2023
  ident: bib4
  article-title: Global burden of LD: 2023 update
  publication-title: J Hepatol
– year: 2007
  ident: bib16
  article-title: Handbook of LD
– volume: 267
  start-page: 1
  year: 2019
  end-page: 38
  ident: bib40
  article-title: Explanation in artificial intelligence: insights from the social sciences
  publication-title: Artif Intell
– volume: 27
  start-page: 189
  year: 2021
  end-page: 199
  ident: bib51
  article-title: Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications
  publication-title: Healthc Inform Res
– volume: 37
  start-page: 498
  year: 2005
  end-page: 503
  ident: bib19
  article-title: Serum alanine aminotransferase levels in tissue injuries: a clinical appraisal
  publication-title: Dig LD
– year: 2013
  ident: bib26
  article-title: Data Science for Business: What you Need to Know about Data Mining and Data-analytic Thinking
– volume: 342
  start-page: 1266
  year: 2000
  end-page: 1271
  ident: bib17
  article-title: Evaluation of abnormal liver-enzyme results in asymptomatic patients
  publication-title: N Engl J Med
– reference: : https://deepchecks.com/question/how-does-the-size-of-the-training-data-affect-the-accuracy/#:∼:text=If%20the%20dataset%20is%20large,amount%20of%20available%20dat%20increases.
– volume: 39
  start-page: 439
  year: 2009
  end-page: 457
  ident: bib12
  article-title: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor
  publication-title: Struct Multidiscip Optim
– reference: Ginés, P., Fernández-Esparrach, G., Arroyo, V., & Rodés, J. (1997). Pathogenesis of ascites in cirrhosis. In
– volume: 5
  year: 2024
  ident: bib50
  article-title: A comparative analysis of boosting algorithms for chronic liver disease prediction
  publication-title: Healthc Anal
– reference: (Vol. 17, No. 03, pp. 175-189). © 1997 by Thieme Medical Publishers, Inc.
– start-page: 150
  year: 2020
  end-page: 159
  ident: bib29
  article-title: A comparison of machine learning methods for data imputation
  publication-title: 11th Hell Conf Artif Intell
– volume: 55
  start-page: 1
  year: 1968
  end-page: 17
  ident: bib25
  article-title: Probability plotting methods for the analysis for the analysis of data
  publication-title: Biometrika
– year: 2021
  ident: bib28
  article-title: ML Foundations. Supervised, Unsupervised, and Advanced Learning
– volume: 12
  start-page: 1211
  year: 2022
  end-page: 1235
  ident: bib49
  article-title: Data mining in predicting liver patients using classification model
  publication-title: Health Technol
– reference: . Streamlined plot theme and plot annotations for ‘ggplot2, 1.
– volume: 8
  start-page: 419
  year: 2019
  end-page: 422
  ident: bib7
  article-title: A comparative study on LD prediction using supervised ML models
  publication-title: Int J Sci Technol Res
– volume: 5
  start-page: 206
  year: 2018
  end-page: 211
  ident: bib10
  article-title: Performance analysis of LD prediction using ML models
  publication-title: Int Res J Eng Technol
– volume: 26
  start-page: 1340
  year: 2010
  end-page: 1347
  ident: bib27
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
– volume: 29
  start-page: 2861
  year: 2020
  end-page: 2866
  ident: bib46
  article-title: Detection of coronavirus disease in human body using convolutional neural network
  publication-title: Int J Adv Sci Technol
– year: 1999
  ident: bib15
  article-title: Tietz Textbook of Clinical Chemistry and Molecular Diagnostics
– volume: 193
  start-page: 14
  year: 2009
  ident: bib5
  article-title: Advanced MRI methods for assessment of chronic LD
  publication-title: Ajr Am J Roentgenol
– volume: 493
  start-page: 125
  year: 2019
  end-page: 132
  ident: bib20
  article-title: Prealbumin: a clinical review
  publication-title: Clin Chim Acta
– volume: 6
  start-page: 7
  year: 2011
  end-page: 16
  ident: bib22
  article-title: Albumin and its efficacy in various clinical conditions
  publication-title: Biomark Insights
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib32
  article-title: Support-vector networks
  publication-title: ML
– volume: 9
  start-page: 4125
  year: 2017
  ident: bib53
  article-title: Using the confidence interval confidently
  publication-title: J Thorac Dis
– reference: . Retrieved from Kaggle: https://www.kaggle.com/datasets/uciml/indian-liver-patient-records.[Last Accessed on 31 December 2023].
– volume: 2
  start-page: 131
  year: 1977
  end-page: 160
  ident: bib24
  publication-title: Explor Data Anal
– volume: 10
  start-page: 332
  year: 2009
  end-page: 333
  ident: bib2
  article-title: Functional anatomy and blood supply of the liver
  publication-title: Anaesth Intensive Care Med
– start-page: 4
  year: 1998, April
  end-page: 15
  ident: bib33
  article-title: Naive (Bayes) at forty: the independence assumption in information retrieval
  publication-title: European Conference on ML
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib34
  article-title: Random forests
  publication-title: ML
– volume: 8
  start-page: 01
  year: 2018
  end-page: 09
  ident: bib9
  article-title: LD prediction by using different decision tree techniques
  publication-title: Int J Data Min Knowl Manag Process
– start-page: 1135
  year: 2016, August
  end-page: 1144
  ident: bib42
  article-title: Why should i trust you?" Explaining the predictions of any classifier
  publication-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min
– volume: 38
  start-page: 427
  year: 2020
  end-page: 431
  ident: bib1
  article-title: Anatomy of the liver
  publication-title: Surgery
– volume: 61
  start-page: 863
  year: 2018
  ident: 10.1016/j.infoh.2025.01.001_bib54
  article-title: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.11192
– start-page: 421
  year: 2020
  ident: 10.1016/j.infoh.2025.01.001_bib8
  article-title: A web-based framework for LD diagnosis using combined ML models
– volume: 26
  start-page: 1340
  issue: 10
  year: 2010
  ident: 10.1016/j.infoh.2025.01.001_bib27
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 29
  start-page: 2861
  issue: 8
  year: 2020
  ident: 10.1016/j.infoh.2025.01.001_bib46
  article-title: Detection of coronavirus disease in human body using convolutional neural network
  publication-title: Int J Adv Sci Technol
– start-page: 328
  year: 2024
  ident: 10.1016/j.infoh.2025.01.001_bib47
  article-title: Cloud-enhanced machine learning for handwritten character recognition in dementia patients
– volume: 39
  start-page: 439
  year: 2009
  ident: 10.1016/j.infoh.2025.01.001_bib12
  article-title: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-008-0338-0
– volume: 493
  start-page: 125
  year: 2019
  ident: 10.1016/j.infoh.2025.01.001_bib20
  article-title: Prealbumin: a clinical review
  publication-title: Clin Chim Acta
– volume: 30
  year: 2017
  ident: 10.1016/j.infoh.2025.01.001_bib41
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– volume: 17
  start-page: 188
  issue: 6
  year: 2024
  ident: 10.1016/j.infoh.2025.01.001_bib48
  article-title: Comparative analysis of machine learning algorithms for liver disease prediction: SVM, logistic regression, and decision tree
  publication-title: Asian J Res Comput Sci
  doi: 10.9734/ajrcos/2024/v17i6467
– year: 2021
  ident: 10.1016/j.infoh.2025.01.001_bib28
– year: 2023
  ident: 10.1016/j.infoh.2025.01.001_bib4
  article-title: Global burden of LD: 2023 update
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2023.03.017
– volume: 2
  start-page: 131
  year: 1977
  ident: 10.1016/j.infoh.2025.01.001_bib24
  publication-title: Explor Data Anal
– volume: 342
  start-page: 1266
  issue: 17
  year: 2000
  ident: 10.1016/j.infoh.2025.01.001_bib17
  article-title: Evaluation of abnormal liver-enzyme results in asymptomatic patients
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200004273421707
– year: 2007
  ident: 10.1016/j.infoh.2025.01.001_bib16
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.infoh.2025.01.001_bib31
  article-title: Using recursive feature elimination in random forest to account for correlated variables in high dimensional data
  publication-title: BMC Genet
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.infoh.2025.01.001_bib34
  article-title: Random forests
  publication-title: ML
– volume: 267
  start-page: 1
  year: 2019
  ident: 10.1016/j.infoh.2025.01.001_bib40
  article-title: Explanation in artificial intelligence: insights from the social sciences
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.07.007
– volume: 38
  start-page: 404
  issue: 5
  year: 2005
  ident: 10.1016/j.infoh.2025.01.001_bib39
  article-title: The use of receiver operating characteristic curves in biomedical informatics
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2005.02.008
– volume: 29
  start-page: 103
  year: 1997
  ident: 10.1016/j.infoh.2025.01.001_bib44
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Mach Learn
  doi: 10.1023/A:1007413511361
– volume: 5
  year: 2024
  ident: 10.1016/j.infoh.2025.01.001_bib50
  article-title: A comparative analysis of boosting algorithms for chronic liver disease prediction
  publication-title: Healthc Anal
– ident: 10.1016/j.infoh.2025.01.001_bib43
– volume: 9
  start-page: 4125
  issue: 10
  year: 2017
  ident: 10.1016/j.infoh.2025.01.001_bib53
  article-title: Using the confidence interval confidently
  publication-title: J Thorac Dis
  doi: 10.21037/jtd.2017.09.14
– volume: 8
  start-page: 419
  issue: 11
  year: 2019
  ident: 10.1016/j.infoh.2025.01.001_bib7
  article-title: A comparative study on LD prediction using supervised ML models
  publication-title: Int J Sci Technol Res
– volume: 5
  start-page: 206
  issue: 1
  year: 2018
  ident: 10.1016/j.infoh.2025.01.001_bib10
  article-title: Performance analysis of LD prediction using ML models
  publication-title: Int Res J Eng Technol
– start-page: 4
  year: 1998
  ident: 10.1016/j.infoh.2025.01.001_bib33
  article-title: Naive (Bayes) at forty: the independence assumption in information retrieval
– volume: 27
  start-page: 189
  issue: 3
  year: 2021
  ident: 10.1016/j.infoh.2025.01.001_bib51
  article-title: Impact of the choice of cross-validation techniques on the results of machine learning-based diagnostic applications
  publication-title: Healthc Inform Res
  doi: 10.4258/hir.2021.27.3.189
– volume: 6
  start-page: 27
  year: 2019
  ident: 10.1016/j.infoh.2025.01.001_bib37
  article-title: Confusion matrix
  publication-title: Mach Learn
– year: 1999
  ident: 10.1016/j.infoh.2025.01.001_bib15
– volume: 12
  start-page: 1211
  issue: 6
  year: 2022
  ident: 10.1016/j.infoh.2025.01.001_bib49
  article-title: Data mining in predicting liver patients using classification model
  publication-title: Health Technol
  doi: 10.1007/s12553-022-00713-3
– volume: 38
  start-page: 427
  issue: 8
  year: 2020
  ident: 10.1016/j.infoh.2025.01.001_bib1
  article-title: Anatomy of the liver
  publication-title: Surgery
– start-page: 1135
  year: 2016
  ident: 10.1016/j.infoh.2025.01.001_bib42
  article-title: Why should i trust you?" Explaining the predictions of any classifier
  publication-title: Proc 22nd ACM SIGKDD Int Conf Knowl Discov Data Min
  doi: 10.1145/2939672.2939778
– volume: 55
  start-page: 1
  issue: 1
  year: 1968
  ident: 10.1016/j.infoh.2025.01.001_bib25
  article-title: Probability plotting methods for the analysis for the analysis of data
  publication-title: Biometrika
– ident: 10.1016/j.infoh.2025.01.001_bib23
– year: 2013
  ident: 10.1016/j.infoh.2025.01.001_bib26
– volume: 5
  start-page: 361
  issue: 1
  year: 2017
  ident: 10.1016/j.infoh.2025.01.001_bib6
  article-title: Analysis of classification models for LD diagnosis
  publication-title: J Sci Technol Environ Inf
  doi: 10.18801/jstei.050117.38
– volume: 1
  start-page: 3
  issue: 2
  year: 2004
  ident: 10.1016/j.infoh.2025.01.001_bib45
  article-title: The optimality of naive Bayes
  publication-title: Aa
– volume: 68
  start-page: 220
  issue: 3
  year: 2015
  ident: 10.1016/j.infoh.2025.01.001_bib52
  article-title: Standard deviation and standard error of the mean
  publication-title: Korean J Anesthesiol
  doi: 10.4097/kjae.2015.68.3.220
– volume: 10
  start-page: 332
  issue: 7
  year: 2009
  ident: 10.1016/j.infoh.2025.01.001_bib2
  article-title: Functional anatomy and blood supply of the liver
  publication-title: Anaesth Intensive Care Med
  doi: 10.1016/j.mpaic.2009.03.012
– volume: 193
  start-page: 14
  issue: 1
  year: 2009
  ident: 10.1016/j.infoh.2025.01.001_bib5
  article-title: Advanced MRI methods for assessment of chronic LD
  publication-title: Ajr Am J Roentgenol
  doi: 10.2214/AJR.09.2601
– volume: 8
  start-page: 01
  issue: 2
  year: 2018
  ident: 10.1016/j.infoh.2025.01.001_bib9
  article-title: LD prediction by using different decision tree techniques
  publication-title: Int J Data Min Knowl Manag Process
  doi: 10.5121/ijdkp.2018.8201
– ident: 10.1016/j.infoh.2025.01.001_bib13
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.infoh.2025.01.001_bib35
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.infoh.2025.01.001_bib38
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.infoh.2025.01.001_bib32
  article-title: Support-vector networks
  publication-title: ML
– volume: 8
  start-page: 01
  issue: 2
  year: 2018
  ident: 10.1016/j.infoh.2025.01.001_bib3
  article-title: LD prediction by using different decision tree techniques
  publication-title: Int J Data Min Knowl Manag Process
  doi: 10.5121/ijdkp.2018.8201
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.infoh.2025.01.001_bib36
  article-title: Induction of decision trees
  publication-title: ML
– volume: 6
  start-page: 7
  year: 2011
  ident: 10.1016/j.infoh.2025.01.001_bib22
  article-title: Albumin and its efficacy in various clinical conditions
  publication-title: Biomark Insights
– ident: 10.1016/j.infoh.2025.01.001_bib21
  doi: 10.1055/s-2007-1007196
– start-page: 150
  year: 2020
  ident: 10.1016/j.infoh.2025.01.001_bib29
  article-title: A comparison of machine learning methods for data imputation
  publication-title: 11th Hell Conf Artif Intell
– volume: 4
  start-page: 211
  issue: 3
  year: 2014
  ident: 10.1016/j.infoh.2025.01.001_bib30
  article-title: Feature selection
  publication-title: SmartCR
  doi: 10.6029/smartcr.2014.03.007
– volume: 42
  start-page: 973
  issue: 8
  year: 2008
  ident: 10.1016/j.infoh.2025.01.001_bib18
  article-title: Ascitic fluid analysis
  publication-title: J Clin Gastroenterol
– volume: 2
  start-page: 85
  issue: 5
  year: 2020
  ident: 10.1016/j.infoh.2025.01.001_bib11
  article-title: Prediction of LDs by using few ML based approaches
  publication-title: Aust J Eng Innov Technol
– volume: 37
  start-page: 498
  issue: 7
  year: 2005
  ident: 10.1016/j.infoh.2025.01.001_bib19
  article-title: Serum alanine aminotransferase levels in tissue injuries: a clinical appraisal
  publication-title: Dig LD
– ident: 10.1016/j.infoh.2025.01.001_bib14
SSID ssj0003321009
Score 2.2869961
Snippet Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for LD prediction...
Background: Liver disease (LD) significantly impacts global health, requiring accurate diagnostic methods. This study aims to develop an automated system for...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 17
SubjectTerms Diagnosis
Explainable artificial intelligence (XAI)
Feature optimization
Liver disease
Machine learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Si15EUbG-yMGji2mSfeSoYimCniz0tmTz0Mp2W2yL9OJvdya7W-pFPXhaCJtsmC9kvux8mSHkUqfKMGtE5GJl4IDiZKR9LCJpM2Gd8sKFkiyPT8lgKB9G8Wij1Bdqwur0wLXhrgudMZVJKbzCEtRJ4WBNcmuAicdWmLD7skxtHKZwDxZ4NYWpNs1QEHQhYhh-4HWizqYMTOuKQsb-bx5pe1nN9OpDl-WGx-nvkd2GKtKbeor7ZMtVB-QTRXPhxhOKWlfUVa8hhk9LFFjQJt4Cz6CgG8_pOkkrRYn7C8UoNJ2H6jcACdWVpUAQDf4xh8HmblKULkLfZim4MTudUKC14DpoqJlzSIb9--e7QdTUUIgMByoQpUIbZhgYUSjmVZFqW3DTY573nHSJEoWWBbepsswkMgE-wqTm2qXeA7rciCPSqaaVOyY0Zpq72FiOXQXPtPMpimhiDS1c6i65as2Zz-pUGXmrIXvLg_VztH7Oeqik65JbNPn6VcxzHRoA_bxBP_8N_S5JWsDyhjLUVACGGv_89WgN719me_Ifsz0lOzhkLWE7I53F-9KdA6dZFBdh-X4BxPr1nw
  priority: 102
  providerName: Directory of Open Access Journals
Title Explainability enhanced liver disease diagnosis technique using tree selection and stacking ensemble-based random forest model
URI https://dx.doi.org/10.1016/j.infoh.2025.01.001
https://doi.org/10.1016/j.infoh.2025.01.001
https://doaj.org/article/ba8098443f914616be7302dc8625d3c2
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yHTz5AxUnKjl4tJIl6Y8cVTaGoHhwoKeSJqlOZx12Q-Zhf7vvpd1wIjIvLZQkDXlp35e8L98j5ETHyjBrROBCZWCB4mSg81AE0ibCOpUL51OyXN9Evb68ug_va51tPAuzFL_3PCwcaIwa8EpfE89qNaMQgHeDNPs3t-cPmD5OSYWBSDnXFfq95pLv8RL9Sy5ofVKM9PRDD4ffXEx3szq7XXplQmSWvJxNxtmZ-fyh27hi77fIRg016Xk1N7bJmit2yAxJd_7EFJJip9QVT54DQIdI0KB1vAbunoE3KOlC5JUiRf6RYhSblj57DpiU6sJSAJgGd9yhsdK9ZkMXoG-0FNygfXulAIvB9VCfc2eX9Ludu8teUOdgCAwHKBHEQhtmmE6YUCxXWaxtxk2b5bztpIuUyLTMuI2VZSaSEeAZJjXXLs5zmB3ciD3SKN4Kt09oyDR3obEcqwqeaJfHSMIJNTzhUrfI6dw66aiS2kjnHLTn1A9kigOZsjYy8VrkAi24KIo62f4BGCCtPzuAAglTiZQiV5jAPMoc_NG4NbCOC60wvEWiuf3TGnJUUAKaGvz99mAxW1bp7cE_yx-Sxvh94o4A8YyzY79TANfrWee4nvVfCUMCoA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ye_DkAxVXVHLwaCWbpI8cVVxEUDy4oKeSJqmvbnexu4ge_O3OpO3iioieCiFJSybtfOl88w0hBzpWhlkjAhcqAwcUJwOdhyKQNhHWqVw4X5Ll8io6H8qL2_C20dnGXJiF-L3nYeFCY9SA1_qamKvVjUIA3h3SHV5dH99h-TglFQYiZasr9PPIBd_jJfoXXNDyrJzot1ddFF9czGC1zt2uvDIhMkuej2bT7Mi8f9Nt_OPTr5GVBmrS43pvrJMlV26QDyTd-YwpJMW-UVc-eA4ALZCgQZt4DVw9A--xonORV4oU-XuKUWxa-eo5YFKqS0sBYBr84w6TVW6UFS5A32gpuEE7HlGAxeB6qK-5s0mGg7Ob0_OgqcEQGA5QIoiFNswwnTChWK6yWNuMmz7Led9JFymRaZlxGyvLTCQjwDNMaq5dnOewO7gRW6RTjku3TWjINHehsRyHCp5ol8dIwgk1tHCpe-SwtU46qaU20paD9pT6hUxxIVPWRyZej5ygBeddUSfbN4AB0ua1AyiQMJVIKXKFBcyjzMEXjVsD57jQCsN7JGrtnzaQo4YSMNXj73cP5rvlL0-788_-u6QzfZm5PUA802y_2emf-3sAeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainability+enhanced+liver+disease+diagnosis+technique+using+tree+selection+and+stacking+ensemble-based+random+forest+model&rft.jtitle=Informatics+and+Health&rft.au=Mamun%2C+Mohammad&rft.au=Chowdhury%2C+Safiul+Haque&rft.au=Hossain%2C+Muhammad+Minoar&rft.au=Khatun%2C+M.R.&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2949-9534&rft.eissn=2949-9534&rft.volume=2&rft.issue=1&rft.spage=17&rft.epage=40&rft_id=info:doi/10.1016%2Fj.infoh.2025.01.001&rft.externalDocID=S2949953425000025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon