Nanoscale MOSFET Modeling: Part 1: The Simplified EKV Model for the Design of Low-Power Analog Circuits
This article presents the s implified charge-based Enz-Krummenacher-Vittoz (EKV) [11] metal-oxide-semiconductor field-effect transistor (MOSFET) model and shows that it can be used for advanced complementary metal-oxide-semiconductor (CMOS) processes despite its very few parameters. The concept of a...
Saved in:
Published in | IEEE solid state circuits magazine Vol. 9; no. 3; pp. 26 - 35 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1943-0582 1943-0590 |
DOI | 10.1109/MSSC.2017.2712318 |
Cover
Abstract | This article presents the s implified charge-based Enz-Krummenacher-Vittoz (EKV) [11] metal-oxide-semiconductor field-effect transistor (MOSFET) model and shows that it can be used for advanced complementary metal-oxide-semiconductor (CMOS) processes despite its very few parameters. The concept of an inversion coefficient (IC) is first introduced as an essential design parameter that replaces the overdrive voltage V G -V T0 and spans the entire range of operating points from weak via moderate to strong inversion (SI), including the effect of velocity saturation (VS). The simplified model in saturation is then presented and validated for different 40- and 28-nm bulk CMOS processes. A very simple expression of the normalized transconductance in saturation, valid from weak to SI and requiring only the VS parameter mc, is described. The normalized transconductance efficiency G m /I D , which is a key figure-of-merit (FoM) for the design of low-power analog circuits, is then derived as a function of IC including the effect of VS. It is then successfully validated from weak to SI with data measured on a 40-nm and two 28-nm bulk CMOS processes. It is then shown that the normalized output conductance G ds /I D follows a similar dependence with IC than the normalized G m /I D characteristic but with different parameters accounting for drain induced barrier lowering (DIBL). The methodology for extracting the few parameters from the measured I D -V G and I D -V D characteristics is then detailed. Finally, it is shown that the simplified EKV model can also be used for a fully depleted silicon on insulator (FDSOI) and Fin-FET 28-nm processes. |
---|---|
AbstractList | This article presents the s implified charge-based Enz-Krummenacher-Vittoz (EKV) [11] metal-oxide-semiconductor field-effect transistor (MOSFET) model and shows that it can be used for advanced complementary metal-oxide-semiconductor (CMOS) processes despite its very few parameters. The concept of an inversion coefficient (IC) is first introduced as an essential design parameter that replaces the overdrive voltage V G -V T0 and spans the entire range of operating points from weak via moderate to strong inversion (SI), including the effect of velocity saturation (VS). The simplified model in saturation is then presented and validated for different 40- and 28-nm bulk CMOS processes. A very simple expression of the normalized transconductance in saturation, valid from weak to SI and requiring only the VS parameter mc, is described. The normalized transconductance efficiency G m /I D , which is a key figure-of-merit (FoM) for the design of low-power analog circuits, is then derived as a function of IC including the effect of VS. It is then successfully validated from weak to SI with data measured on a 40-nm and two 28-nm bulk CMOS processes. It is then shown that the normalized output conductance G ds /I D follows a similar dependence with IC than the normalized G m /I D characteristic but with different parameters accounting for drain induced barrier lowering (DIBL). The methodology for extracting the few parameters from the measured I D -V G and I D -V D characteristics is then detailed. Finally, it is shown that the simplified EKV model can also be used for a fully depleted silicon on insulator (FDSOI) and Fin-FET 28-nm processes. This article presents the s implified charge-based Enz-Krummenacher-Vittoz (EKV) [11] metal-oxide-semiconductor field-effect transistor (MOSFET) model and shows that it can be used for advanced complementary metal-oxide-semiconductor (CMOS) processes despite its very few parameters. The concept of an inversion coefficient (IC) is first introduced as an essential design parameter that replaces the overdrive voltage VG-VT0 and spans the entire range of operating points from weak via moderate to strong inversion (SI), including the effect of velocity saturation (VS). The simplified model in saturation is then presented and validated for different 40- and 28-nm bulk CMOS processes. A very simple expression of the normalized transconductance in saturation, valid from weak to SI and requiring only the VS parameter mc, is described. The normalized transconductance efficiency Gm/ID, which is a key figure-of-merit (FoM) for the design of low-power analog circuits, is then derived as a function of IC including the effect of VS. It is then successfully validated from weak to SI with data measured on a 40-nm and two 28-nm bulk CMOS processes. It is then shown that the normalized output conductance Gds/ID follows a similar dependence with IC than the normalized Gm/ID characteristic but with different parameters accounting for drain induced barrier lowering (DIBL). The methodology for extracting the few parameters from the measured ID-VG and ID-VD characteristics is then detailed. Finally, it is shown that the simplified EKV model can also be used for a fully depleted silicon on insulator (FDSOI) and Fin-FET 28-nm processes. |
Author | Pezzotta, Alessandro Enz, Christian Chicco, Francesco |
Author_xml | – sequence: 1 givenname: Christian surname: Enz fullname: Enz, Christian email: christian.enz@epfl.ch organization: Swiss Federal Institute of Technology (EPFL), Neuchatel, Switzerland – sequence: 2 givenname: Francesco surname: Chicco fullname: Chicco, Francesco organization: Swiss Federal Institute of Technology (EPFL), Neuchatel, Switzerland – sequence: 3 givenname: Alessandro surname: Pezzotta fullname: Pezzotta, Alessandro organization: Swiss Federal Institute of Technology (EPFL), Neuchatel, Switzerland |
BookMark | eNp9kM9PwjAUxxuDiYD-AcZLE8_DvnZbO24E8UcEIQG9Lt3WzpKxYjtC_O8dgXDwYC-vyft83nv59lCntrVC6BbIAIAkD7PlcjygBPiAcqAMxAXqQhKygEQJ6Zz_gl6hnvdrQuIojGgXle-ytj6XlcKz-fJpssIzW6jK1OUQL6RrMAzx6kvhpdlsK6ONKvDk7fMIYW0dbtrmo_KmrLHVeGr3wcLulcOjWla2xGPj8p1p_DW61LLy6uZU--ijXTZ-Cabz59fxaBrklIgmkEwIFUpGNeNC8jzkTMc0Iu0TRa5lATrmheIgNJCMR5JCpnSWyayQGUjO-uj-OHfr7PdO-SZd251rb_EpJCwkgiYhaSl-pHJnvXdKp7lpZGNs3ThpqhRIekg1PaSaHlJNT6m2Jvwxt85spPv517k7OkYpdeYFgTgUEfsFytODWA |
CODEN | SMCOCC |
CitedBy_id | crossref_primary_10_1109_TCSI_2018_2868387 crossref_primary_10_1002_jnm_2700 crossref_primary_10_1109_ACCESS_2022_3198644 crossref_primary_10_1109_OJCAS_2022_3179046 crossref_primary_10_1109_TED_2019_2911485 crossref_primary_10_1016_j_sse_2022_108403 crossref_primary_10_1007_s13369_021_05495_w crossref_primary_10_1145_3416946 crossref_primary_10_3390_jlpea14010013 crossref_primary_10_1109_TCSII_2023_3242209 crossref_primary_10_1016_j_sse_2023_108608 crossref_primary_10_1088_1748_0221_19_06_P06045 crossref_primary_10_1016_j_aeue_2019_05_033 crossref_primary_10_1109_MSSC_2017_2745838 crossref_primary_10_1109_TED_2021_3101186 crossref_primary_10_1109_TNS_2018_2878105 crossref_primary_10_1002_jnm_3081 crossref_primary_10_1016_j_sse_2025_109080 crossref_primary_10_1109_TCSI_2024_3399001 crossref_primary_10_1109_TED_2020_3041438 crossref_primary_10_3390_app15052855 crossref_primary_10_1109_TCSII_2024_3443459 crossref_primary_10_1002_mmce_22513 crossref_primary_10_1007_s11071_020_06152_x crossref_primary_10_1134_S1063739721020074 crossref_primary_10_1109_JSEN_2022_3230849 crossref_primary_10_1109_TCAD_2020_3025068 crossref_primary_10_1166_jno_2024_3697 crossref_primary_10_1166_jno_2024_3695 crossref_primary_10_1109_TCSI_2020_3036683 crossref_primary_10_1016_j_sse_2020_107951 crossref_primary_10_1109_ACCESS_2022_3175584 crossref_primary_10_1109_JEDS_2018_2817458 crossref_primary_10_1109_MSSC_2018_2844607 crossref_primary_10_1109_TED_2018_2877594 crossref_primary_10_1016_j_sse_2019_03_033 crossref_primary_10_3390_electronics14061162 crossref_primary_10_1109_ACCESS_2024_3417316 crossref_primary_10_3390_s24082646 |
Cites_doi | 10.1109/TED.2013.2283084 10.1109/ISSCC.2015.7062848 10.1109/ETLPDS.1996.508872 10.1109/T-ED.1977.18993 10.1109/JSSC.1977.1050882 10.1109/ICECS.2013.6815423 10.1007/978-3-7091-9247-4 10.1109/MIXDES.2016.7529693 10.1109/ESSCIRC.2015.7313863 10.1109/16.249429 10.1002/9780470033715 10.1002/0470855460 10.1016/j.mejo.2013.02.022 10.1007/BF01239381 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/MSSC.2017.2712318 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-0590 |
EndPage | 35 |
ExternalDocumentID | 10_1109_MSSC_2017_2712318 8016485 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD L7M RIG |
ID | FETCH-LOGICAL-c208t-a388e4a32f378a7c473f62500008dcfad1f67de718f10b75a21befbbabdab1a73 |
IEDL.DBID | RIE |
ISSN | 1943-0582 |
IngestDate | Mon Jun 30 08:36:48 EDT 2025 Wed Oct 01 03:50:46 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Wed Aug 27 02:49:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c208t-a388e4a32f378a7c473f62500008dcfad1f67de718f10b75a21befbbabdab1a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1934082940 |
PQPubID | 85511 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_MSSC_2017_2712318 ieee_primary_8016485 crossref_primary_10_1109_MSSC_2017_2712318 proquest_journals_1934082940 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 20170101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE solid state circuits magazine |
PublicationTitleAbbrev | MSSC |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref14 sansen (ref3) 2006 ref11 ref10 chalkiadaki (ref20) 2016 ref2 mangla (ref16) 2014 ref17 bahai (ref1) 0 ref19 ref18 ref8 ref7 ref9 ref4 heim (ref12) 0 ref6 ref5 mangla (ref15) 0 |
References_xml | – start-page: 9 year: 0 ident: ref12 article-title: Technology-independent biasing technique for CMOS analogue micropower implementations of neural networks publication-title: Proc Sixth Australian Conf Neural Networks – ident: ref5 doi: 10.1109/TED.2013.2283084 – ident: ref8 doi: 10.1109/ISSCC.2015.7062848 – year: 2014 ident: ref16 publication-title: Modeling nanoscale quasiballistic MOS transistors – ident: ref13 doi: 10.1109/ETLPDS.1996.508872 – ident: ref17 doi: 10.1109/T-ED.1977.18993 – ident: ref14 doi: 10.1109/JSSC.1977.1050882 – ident: ref9 doi: 10.1109/ICECS.2013.6815423 – ident: ref18 doi: 10.1007/978-3-7091-9247-4 – ident: ref7 doi: 10.1109/MIXDES.2016.7529693 – ident: ref6 doi: 10.1109/ESSCIRC.2015.7313863 – start-page: 85 year: 0 ident: ref15 article-title: Figure-of-merit for optimizing the current-efficiency of low-power RF circuits publication-title: Proc Int Conf Mixed Design of Integrated Circuits and System – ident: ref19 doi: 10.1109/16.249429 – year: 2016 ident: ref20 publication-title: Characterization and modeling of nanoscale MOSFET for ultralow power RF IC design – ident: ref2 doi: 10.1002/9780470033715 – start-page: 3 year: 0 ident: ref1 article-title: Ultra-low energy systems: Analog to information publication-title: Proc European Solid-State Circ Conf – ident: ref10 doi: 10.1002/0470855460 – ident: ref4 doi: 10.1016/j.mejo.2013.02.022 – year: 2006 ident: ref3 publication-title: Analog Design Essentials – ident: ref11 doi: 10.1007/BF01239381 |
SSID | ssj0065452 |
Score | 1.9599625 |
Snippet | This article presents the s implified charge-based Enz-Krummenacher-Vittoz (EKV) [11] metal-oxide-semiconductor field-effect transistor (MOSFET) model and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | Analog circuits Circuit design CMOS CMOS process Design parameters Field effect transistors Integrated circuit modeling Integrated circuits Mathematical models MOSFETs Resistance Saturation Semiconductor device modeling Semiconductor devices Silicon Transconductance Transistors Voltage measurement |
Title | Nanoscale MOSFET Modeling: Part 1: The Simplified EKV Model for the Design of Low-Power Analog Circuits |
URI | https://ieeexplore.ieee.org/document/8016485 https://www.proquest.com/docview/1934082940 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1943-0590 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065452 issn: 1943-0582 databaseCode: RIE dateStart: 20090101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz34FuuLHDyJW_edXW9SFVGrhVrxtiTZpBSlK-0WwV_vTHZbREW85ZCEwDeZ-ZJM5gM4MsJVuQykk-BZ2QkxYGELAYlypbiONZWQomyL-_i6H948R88LcDL_C6O1tslnukVN-5afF2pKV2WnCdWDSqJFWOQ8rf5qzbxuTFrZ9gU5pHy0xK9fMD03Pe30em1K4uItn6OjJn2PLzHIiqr88MQ2vFytQme2sCqr5KU1LWVLfXyr2fjfla_BSs0z2XllGOuwoEcbsPyl-uAmDNCzFhPESLPOQ-_q8pGRMBp9Tz9jXbQo5p0xtCLWG1LWuUGuyi5vn6pODLkuQ-7ILmwGCCsMuyvenS5prjEqdFIMWHs4VtNhOdmCPk7evnZq3QVH-W5SOgLB0qEIfBPwRHAV8sDgMcnSy1wZkXsm5rnGqGY8V_JI-J7URkohcyE9wYNtaIyKkd4BpnKXc8lNLDi6ZF-JSIjEl75RaZhyEzXBnSGRqbooOWljvGb2cOKmGYGXEXhZDV4TjudD3qqKHH913iQw5h1rHJqwP4M7q_fsJEMqa9W3Q3f391F7sERzVxcw-9Aox1N9gJSklIfWFj8Bmf3bPA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBCpGR3yg0VUIEWkAqIW2Q7dlWBGkRTIfH1zDhphQAhbj44iaU3mcUevwdwYISrMhlIJ8Fa2QkxYOEIAYkypbiONVFIUbfFTdx6CK-eoqcpOJrchdFa2-YzXaehPcvPcjWirbLjhPigkmgaZiOsKnh5W2vsd2NSy7ZnyCF1pCV-dYbpuY3jTrfbpDYuXvc5umpS-PgShaysyg9fbAPMxRJ0xksr-0qe66NC1tXHN9bG_659GRarTJOdlqaxAlN6sAoLX_gH16CHvjUfIkqadW67F-f3jKTR6IL6CbtDm2LeCUM7Yt0-9Z0bzFbZ-fVjOYlhtsswe2RntgeE5Ya183fnjlTXGFGd5D3W7L-pUb8YrsMDvrzZcirlBUf5blI4AuHSoQh8E_BEcBXywGChZBPMTBmReSbmmca4ZjxX8kj4ntRGSiEzIT3Bgw2YGeQDvQlMZS7nkptYcHTKvhKREIkvfaMaYYObqAbuGIlUVbTkpI7xktryxG2kBF5K4KUVeDU4nDzyWnJy_DV5jcCYTKxwqMHOGO60-muHKSazVn87dLd-f2of5lr3nXbavry53oZ5-k65HbMDM8XbSO9iglLIPWuXn0md3o0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+MOSFET+Modeling%3A+Part+1%3A+The+Simplified+EKV+Model+for+the+Design+of+Low-Power+Analog+Circuits&rft.jtitle=IEEE+solid+state+circuits+magazine&rft.au=Enz%2C+Christian&rft.au=Chicco%2C+Francesco&rft.au=Pezzotta%2C+Alessandro&rft.date=2017-01-01&rft.issn=1943-0582&rft.volume=9&rft.issue=3&rft.spage=26&rft.epage=35&rft_id=info:doi/10.1109%2FMSSC.2017.2712318&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MSSC_2017_2712318 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0582&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0582&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0582&client=summon |