The variable step‐size LMS/F algorithm using nonparametric method for adaptive system identification
Summary A fundamental challenge affecting the performance of a system is the undesired effect of noise on the system. Practically, real‐time systems are influenced by Gaussian noise and impulsive noise. Identification of these nonlinear physical systems in the presence of noise offers broader applic...
        Saved in:
      
    
          | Published in | International journal of adaptive control and signal processing Vol. 34; no. 12; pp. 1799 - 1811 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.12.2020
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0890-6327 1099-1115  | 
| DOI | 10.1002/acs.3185 | 
Cover
| Abstract | Summary
A fundamental challenge affecting the performance of a system is the undesired effect of noise on the system. Practically, real‐time systems are influenced by Gaussian noise and impulsive noise. Identification of these nonlinear physical systems in the presence of noise offers broader applications than linear system identification. Hence, this article introduces a variable step‐size technique to solve the conflicting requirement of rapid convergence and low mean square error (MSE) in the presence of both Gaussian and impulsive noise. Moreover, to avoid over parameterized equations existing in the variable step‐size equation, this article proposes the nonparametric variable step‐size (NPVSS), which depends on error estimates at instants of time and is used with the least mean square/fourth (LMS/F) algorithm. The computational complexity analysis, computer simulations, and implementation in real‐time setup validate that the proposed NPVSS‐LMS/F algorithm provides superior performance in terms of convergence time and MSE compared to the existing algorithms for both linear and nonlinear system identification in the presence of noise. | 
    
|---|---|
| AbstractList | A fundamental challenge affecting the performance of a system is the undesired effect of noise on the system. Practically, real‐time systems are influenced by Gaussian noise and impulsive noise. Identification of these nonlinear physical systems in the presence of noise offers broader applications than linear system identification. Hence, this article introduces a variable step‐size technique to solve the conflicting requirement of rapid convergence and low mean square error (MSE) in the presence of both Gaussian and impulsive noise. Moreover, to avoid over parameterized equations existing in the variable step‐size equation, this article proposes the nonparametric variable step‐size (NPVSS), which depends on error estimates at instants of time and is used with the least mean square/fourth (LMS/F) algorithm. The computational complexity analysis, computer simulations, and implementation in real‐time setup validate that the proposed NPVSS‐LMS/F algorithm provides superior performance in terms of convergence time and MSE compared to the existing algorithms for both linear and nonlinear system identification in the presence of noise. Summary A fundamental challenge affecting the performance of a system is the undesired effect of noise on the system. Practically, real‐time systems are influenced by Gaussian noise and impulsive noise. Identification of these nonlinear physical systems in the presence of noise offers broader applications than linear system identification. Hence, this article introduces a variable step‐size technique to solve the conflicting requirement of rapid convergence and low mean square error (MSE) in the presence of both Gaussian and impulsive noise. Moreover, to avoid over parameterized equations existing in the variable step‐size equation, this article proposes the nonparametric variable step‐size (NPVSS), which depends on error estimates at instants of time and is used with the least mean square/fourth (LMS/F) algorithm. The computational complexity analysis, computer simulations, and implementation in real‐time setup validate that the proposed NPVSS‐LMS/F algorithm provides superior performance in terms of convergence time and MSE compared to the existing algorithms for both linear and nonlinear system identification in the presence of noise.  | 
    
| Author | Patnaik, Ansuman Nanda, Sarita  | 
    
| Author_xml | – sequence: 1 givenname: Ansuman orcidid: 0000-0002-2554-3736 surname: Patnaik fullname: Patnaik, Ansuman organization: KIIT University – sequence: 2 givenname: Sarita orcidid: 0000-0002-1671-5946 surname: Nanda fullname: Nanda, Sarita email: sarita22579@rediffmail.com organization: KIIT University  | 
    
| BookMark | eNp1kMFOAjEYhBuDiYAmPkITL14W2u526R4JETXBeADPTbfbQsmyXduCwZOP4DP6JBbwZPQ0h_-bmT_TA53GNgqAa4wGGCEyFNIPUszoGehiVBQJxph2QBexAiV5SkYXoOf9GqF4w2kX6MVKwZ1wRpS1gj6o9uvj05t3BWdP8-EUinppnQmrDdx60yxhbGuFExsVnJEwyspWUFsHRSXaYHYxYx9TNtBUqglGGymCsc0lONei9urqR_vgZXq3mDwks-f7x8l4lkiCGE2Y1kLpvGBlngld0Sqj-YhlWJSkpKXGimBZIcVokea4IKokNJekSEkkMaVl2gc3p9zW2det8oGv7dY1sZKTLKcsZyijkRqcKOms905pLk04_hmcMDXHiB-25HFLftgyGm5_GVpnNsLt_0KTE_pmarX_l-PjyfzIfwP3n4ao | 
    
| CitedBy_id | crossref_primary_10_1016_j_phycom_2024_102482 crossref_primary_10_1007_s42417_023_00885_w crossref_primary_10_3390_machines10080670 crossref_primary_10_1007_s11760_024_03024_4 crossref_primary_10_1002_acs_3375 crossref_primary_10_1007_s00202_021_01438_8 crossref_primary_10_1007_s11760_023_02729_2 crossref_primary_10_1121_10_0006787 crossref_primary_10_1016_j_apacoust_2023_109668 crossref_primary_10_1109_JESTPE_2022_3146210  | 
    
| Cites_doi | 10.1007/s00034-016-0356-x 10.1109/5.75086 10.1109/TNNLS.2011.2178446 10.1016/j.sigpro.2013.06.018 10.1049/el:19970311 10.1109/LSP.2003.821722 10.1109/ICASSP.2006.1660624 10.1109/TCSI.2016.2572091 10.1016/j.sigpro.2014.05.018 10.1109/78.934136 10.1109/ICDSP.2015.7251952 10.1002/9780470740156 10.1109/79.127998 10.1109/TCSII.2016.2531159 10.1109/PROC.1976.10286 10.1109/5.231338 10.1109/TIT.1984.1056886 10.1016/j.phycom.2012.04.002 10.1016/j.sigpro.2014.10.037 10.1109/97.554469 10.1109/LSP.2006.876323 10.1109/TASLP.2014.2324175 10.1109/LSP.2014.2325495 10.1002/dac.2517 10.1016/j.amc.2011.02.026  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/acs.3185 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1099-1115 | 
    
| EndPage | 1811 | 
    
| ExternalDocumentID | 10_1002_acs_3185 ACS3185  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AMVHM CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c2085-8ffaef698b64afd5d4567841ab2b5bf1e21cd0e85936192eb256c29325d4155b3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0890-6327 | 
    
| IngestDate | Fri Jul 25 12:07:01 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Wed Oct 01 04:19:57 EDT 2025 Wed Jan 22 16:59:32 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2085-8ffaef698b64afd5d4567841ab2b5bf1e21cd0e85936192eb256c29325d4155b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1671-5946 0000-0002-2554-3736  | 
    
| PQID | 2465868045 | 
    
| PQPubID | 996374 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2465868045 crossref_citationtrail_10_1002_acs_3185 crossref_primary_10_1002_acs_3185 wiley_primary_10_1002_acs_3185_ACS3185  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2020 2020-12-00 20201201  | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis  | 
    
| PublicationTitle | International journal of adaptive control and signal processing | 
    
| PublicationYear | 2020 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 1976; 64 2011; 217 1991; 79 2006; 13 1993; 81 2014; 27 2008 1996 2006 2015; 109 2011; 34 2001; 49 1997; 4 1991; 8 2014; 22 2014; 21 2004; 11 1984; 30 2014; 105 1997; 33 2017; 36 2016; 63 2017 2015 2011; 23 2014; 94 2012; 5 Chambers J (e_1_2_9_15_1) 1997; 4 Chen B (e_1_2_9_7_1) 2011; 23 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Zhao H (e_1_2_9_18_1) 2014; 105 Saat MSM (e_1_2_9_4_1) 2017 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_19_1 Fu X‐Z (e_1_2_9_20_1) 2011; 34 e_1_2_9_22_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 Wang P (e_1_2_9_21_1) 2012; 5 e_1_2_9_9_1 e_1_2_9_26_1 Zayyani H (e_1_2_9_16_1) 2014; 21 Liu J‐c (e_1_2_9_24_1) 2011; 217 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1  | 
    
| References_xml | – volume: 79 start-page: 278 issue: 3 year: 1991 end-page: 305 article-title: Tutorial on higher‐order statistics (spectra) in signal processing and system theory: theoretical results and some applications publication-title: Proc IEEE – volume: 217 start-page: 7365 issue: 17 year: 2011 end-page: 7371 article-title: A nonparametric variable step‐size NLMS algorithm for transversal filters publication-title: Appl Math Comput – volume: 23 start-page: 22 issue: 1 year: 2011 end-page: 32 article-title: Quantized kernel least mean square algorithm publication-title: IEEE Trans Neural Netw Learn Syst – volume: 4 start-page: 46 issue: 2 year: 1997 end-page: 48 article-title: A robust mixed‐norm adaptive filter algorithm publication-title: IEEE Sig Process Lett – volume: 94 start-page: 183 year: 2014 end-page: 194 article-title: Fourier nonlinear filters publication-title: Sig Process – volume: 5 start-page: 280 issue: 3 year: 2012 end-page: 286 article-title: An automatic step size adjustment algorithm for LMS adaptive filters, and an application to channel estimation publication-title: Phys Commun – volume: 63 start-page: 1434 issue: 9 year: 2016 end-page: 1442 article-title: Design of adaptive exponential functional link network‐based nonlinear filters publication-title: IEEE Trans Circ Syst I – year: 1996 – volume: 33 start-page: 467 issue: 6 year: 1997 end-page: 468 article-title: Combined LMS/f algorithm publication-title: Electron Lett – volume: 81 start-page: 986 issue: 7 year: 1993 end-page: 1010 article-title: Signal processing with fractional lower‐order moments: stable processes and their applications publication-title: Proc IEEE – volume: 13 start-page: 581 issue: 10 year: 2006 end-page: 584 article-title: A nonparametric VSS‐NLMS algorithm publication-title: IEEE Sig Process Lett – volume: 64 start-page: 1151 issue: 8 year: 1976 end-page: 1162 article-title: Stationary and nonstationary learning characteristics of the LMS adaptive filter publication-title: Proc IEEE – volume: 22 start-page: 1172 issue: 7 year: 2014 end-page: 1183 article-title: Nonlinear acoustic echo cancellation based on sparse functional link representations publication-title: IEEE/ACM Trans Audio Speech Lang Process – volume: 34 start-page: 6 year: 2011 article-title: Anti‐interference performance improvement for sigmoid function variable step‐size LMS adaptive algorithm publication-title: J Beijing Univ Post Telecommun – year: 2008 – year: 2006 – volume: 109 start-page: 84 year: 2015 end-page: 94 article-title: Legendre nonlinear filters publication-title: Sig Process – volume: 21 start-page: 1108 issue: 9 year: 2014 end-page: 1110 article-title: Continuous mixed ‐norm adaptive algorithm for system identification publication-title: IEEE Sig Process Lett – volume: 49 start-page: 1667 issue: 8 year: 2001 end-page: 1676 article-title: Adaptive Volterra filters for active control of nonlinear noise processes publication-title: IEEE Trans Sig Process – volume: 11 start-page: 132 issue: 2 year: 2004 end-page: 135 article-title: Variable step‐size NLMS and affine projection algorithms publication-title: IEEE Sig Process Lett – year: 2017 – volume: 8 start-page: 10 issue: 3 year: 1991 end-page: 26 article-title: Adaptive polynomial filters publication-title: IEEE Sig Process Mag – volume: 30 start-page: 275 issue: 2 year: 1984 end-page: 283 article-title: The least mean fourth (LMF) adaptive algorithm and it's family publication-title: IEEE Trans Inform Theor – volume: 63 start-page: 588 issue: 6 year: 2016 end-page: 592 article-title: Improved‐variable‐forgetting‐factor recursive algorithm based on the logarithmic cost for Volterra system identification publication-title: IEEE Trans Circ Syst II Exp Brief – year: 2015 – volume: 27 start-page: 2956 issue: 11 year: 2014 end-page: 2963 article-title: Adaptive system identification using a robust LMS/F algorithm publication-title: Int J Commun Syst – volume: 105 start-page: 399 year: 2014 end-page: 409 article-title: A new normalized LMAT algorithm and its performance analysis publication-title: Sig Process – volume: 36 start-page: 1322 issue: 3 year: 2017 end-page: 1339 article-title: Nonparametric variable step size LMAT algorithm publication-title: Circ Syst Sig Process – ident: e_1_2_9_23_1 doi: 10.1007/s00034-016-0356-x – ident: e_1_2_9_11_1 doi: 10.1109/5.75086 – volume-title: Analysis and Synthesis of Polynomial Discrete‐Time Systems: An SOS Approach year: 2017 ident: e_1_2_9_4_1 – volume: 23 start-page: 22 issue: 1 year: 2011 ident: e_1_2_9_7_1 article-title: Quantized kernel least mean square algorithm publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2011.2178446 – ident: e_1_2_9_17_1 – ident: e_1_2_9_6_1 doi: 10.1016/j.sigpro.2013.06.018 – ident: e_1_2_9_12_1 doi: 10.1049/el:19970311 – ident: e_1_2_9_19_1 doi: 10.1109/LSP.2003.821722 – ident: e_1_2_9_25_1 doi: 10.1109/ICASSP.2006.1660624 – ident: e_1_2_9_27_1 doi: 10.1109/TCSI.2016.2572091 – volume: 105 start-page: 399 year: 2014 ident: e_1_2_9_18_1 article-title: A new normalized LMAT algorithm and its performance analysis publication-title: Sig Process doi: 10.1016/j.sigpro.2014.05.018 – ident: e_1_2_9_26_1 doi: 10.1109/78.934136 – volume: 34 start-page: 6 year: 2011 ident: e_1_2_9_20_1 article-title: Anti‐interference performance improvement for sigmoid function variable step‐size LMS adaptive algorithm publication-title: J Beijing Univ Post Telecommun – ident: e_1_2_9_2_1 doi: 10.1109/ICDSP.2015.7251952 – ident: e_1_2_9_3_1 doi: 10.1002/9780470740156 – ident: e_1_2_9_5_1 doi: 10.1109/79.127998 – ident: e_1_2_9_29_1 doi: 10.1109/TCSII.2016.2531159 – ident: e_1_2_9_9_1 doi: 10.1109/PROC.1976.10286 – ident: e_1_2_9_14_1 doi: 10.1109/5.231338 – ident: e_1_2_9_10_1 doi: 10.1109/TIT.1984.1056886 – volume: 5 start-page: 280 issue: 3 year: 2012 ident: e_1_2_9_21_1 article-title: An automatic step size adjustment algorithm for LMS adaptive filters, and an application to channel estimation publication-title: Phys Commun doi: 10.1016/j.phycom.2012.04.002 – ident: e_1_2_9_8_1 doi: 10.1016/j.sigpro.2014.10.037 – volume: 4 start-page: 46 issue: 2 year: 1997 ident: e_1_2_9_15_1 article-title: A robust mixed‐norm adaptive filter algorithm publication-title: IEEE Sig Process Lett doi: 10.1109/97.554469 – ident: e_1_2_9_22_1 doi: 10.1109/LSP.2006.876323 – ident: e_1_2_9_28_1 doi: 10.1109/TASLP.2014.2324175 – volume: 21 start-page: 1108 issue: 9 year: 2014 ident: e_1_2_9_16_1 article-title: Continuous mixed p‐norm adaptive algorithm for system identification publication-title: IEEE Sig Process Lett doi: 10.1109/LSP.2014.2325495 – ident: e_1_2_9_13_1 doi: 10.1002/dac.2517 – volume: 217 start-page: 7365 issue: 17 year: 2011 ident: e_1_2_9_24_1 article-title: A nonparametric variable step‐size NLMS algorithm for transversal filters publication-title: Appl Math Comput doi: 10.1016/j.amc.2011.02.026  | 
    
| SSID | ssj0009913 | 
    
| Score | 2.3288224 | 
    
| Snippet | Summary
A fundamental challenge affecting the performance of a system is the undesired effect of noise on the system. Practically, real‐time systems are... A fundamental challenge affecting the performance of a system is the undesired effect of noise on the system. Practically, real‐time systems are influenced by...  | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1799 | 
    
| SubjectTerms | Adaptive algorithms Adaptive systems Algorithms Convergence Gaussian noise impulsive noise Noise Nonlinear systems nonparametric Nonparametric statistics Random noise System identification variable step‐size Volterra modeling  | 
    
| Title | The variable step‐size LMS/F algorithm using nonparametric method for adaptive system identification | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3185 https://www.proquest.com/docview/2465868045  | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1099-1115 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009913 issn: 0890-6327 databaseCode: AMVHM dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0890-6327 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009913 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz34FuujRBA9bdvN7sbssRRLEevBFwUPS15bi1qLrR48-RP8jf4SZ7K7bRUF8bSXCWQzk-SbzMw3hOzj25rhynhxaIwX8sD3hAy1p4QykbZaChcxbZ_x1lV40ok6eVYl1sJk_BDjBzfcGe68xg0u1bA6IQ2VeljB0l84fv2AO2_qfMIcBbDHBZdFDN5RwI4K3tkaqxYDv95EE3g5DVLdLdNcIjfF_LLkkrvK80hV9Os36sb__cAyWczBJ61n1rJCZmx_lSxMURKukRTshr6AA40lVRRMYPDx9j7svVp62r6oNqm87z4-9Ua3DxQz5ru0_9hH9vAHbMyladaPmgIQptLIAR6lNOOKpj2T5yU5U1gnV83jy0bLy3sxeBq7eHoiTaVNeSwUD2VqIgPAC0OWUjEVqdS3zNemZpE9DV0y8NcjrgFKMJAEyKKCDTILM7KbhAJgipQRNg5UHB5ZKa3hQrHUr8Ua4JQpkcNCL4nOicqxX8Z9klEsswRWLsGVK5G9seQgI-f4QWanUG2Sb89hwkIAXlwAnC2RA6ejX8cn9cYFfrf-KrhN5hn65C7lZYfMjp6e7S4Al5Eqk7l6-7rVLjtT_QSspu6R | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ25TgMxEIZHHAVQcCPCaSQE1eZwdo1XVAgRBUgoOCQKpJWvDREQIhIoqHgEnpEnYWYPAggkRLWNLXntsf2NPf4HYJPO1qzQ1gt9az1fVCueVL7xtNQ2MM4omdyYNk9E_cI_ugwuh2A3fwuT6kN8HLjRzEjWa5rgdCBdGqiGKtMr0tvfYRj1BbopRESnA-0oBJ_kelmG6B9V-U6uPFvmpbzm171oAJifMTXZZ2pTcJW3MA0vuSk-9nXRPH8Tb_znL0zDZMafbC81mBkYcp1ZmPikSjgHMZoOe0Ifml5VMbSC7tvLa6_97FijeVaqMXXbun9o96_vGAXNt1jnvkMC4neUm8uwNCU1QxZmyqouraYslYtmbZuFJiXWMA8XtYPz_bqXpWPwDCXy9GQcKxeLUGrhq9gGFtmLbi2V5jrQccXxirFlRwJq5JWhyx4IgzTBsSRSi64uwAi2yC0CQ2YKtJUurOrQ33FKOSuk5nGlHBokKluA7XxgIpNplVPKjNsoVVnmEfZcRD1XgI2Pkt1Un-OHMiv52EbZDO1F3Ef2EhKJtgBbySD9Wj_a2z-j79JfC67DWP282YgahyfHyzDOyUVPImBWYKT_8OhWkWP6ei2x13cQmfEW | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC1cQPTgLsa1BdHTZOnMTHrwJGqIWxBjwIMw9DYa1BhM4sGTn-A3-iVWzWJUFMTTXKqhp6uq-1V31SuATbpbM74yTuAa47h-ueQI6WpHCWU8bbUU8Yvpad2vNd2jS-9yCHayWpiEH-Ljwo08I96vycFtx0SFAWuo1N081f4Ow6jrBYLy-fbPB9xRCHzi52URYHxU5pWMebbIC9nIr2fRAGB-hqnxOVOdgqtshkl6yW2-31N5_fyNvPGfvzANkyn-ZLuJwczAkG3PwsQnVsI5iNB02BPG0FRVxdAKOm8vr93Ws2Unp41Clcm764fHVu_mnlHS_DVrP7SJQPyeenNplrSkZoiFmTSyQ7spS-iiWcukqUmxNcxDs3pwsVdz0nYMjqZGno6IImkjPxDKd2VkPIPYi14tpeLKU1HJ8pI2RUsEahSVYcju-RrRBEdJRC2qvAAjOCO7CAwxk6eMsEFZBW7FSmmNLxSPSsVAI6IyOdjOFBPqlKucWmbchQnLMg9x5UJauRxsfEh2En6OH2RWMt2GqYd2Q-4i9vIFItocbMVK-nV8uLvXoO_SXwXXYexsvxqeHNaPl2GcU4QeJ8CswEjvsW9XEcb01Fpsru_N9_Ca | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+variable+step%E2%80%90size+LMS%2FF+algorithm+using+nonparametric+method+for+adaptive+system+identification&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Patnaik%2C+Ansuman&rft.au=Nanda%2C+Sarita&rft.date=2020-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=34&rft.issue=12&rft.spage=1799&rft.epage=1811&rft_id=info:doi/10.1002%2Facs.3185&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |