Hybrid Approach for Phishing Website Detection Using Classification Algorithms
The internet has significantly altered how we work and interact with one another.Statistics show 63.1 % of the present world population are internet users. This clearly indicates how heavily man is dependent on digital media. Digital media users are on the rise and so is the incidence of cyber crim...
Saved in:
| Published in | ParadigmPlus Vol. 3; no. 3; pp. 16 - 29 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
ITI Research Group
20.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2711-4627 2711-4627 |
| DOI | 10.55969/paradigmplus.v3n3a2 |
Cover
| Abstract | The internet has significantly altered how we work and interact with one another.Statistics show 63.1 % of the present world population are internet users. This clearly indicates how heavily man is dependent on digital media. Digital media users are on the rise and so is the incidence of cyber crimes. People who lack experience and knowledge are more vulnerable and susceptible to phishing scams.The victims experience severe consequences as their personal credentials are at stake. Phishers use publicly available sources to acquire details about the victim's professional and personal history.Countermeasures must be implemented with the highest priority. Detection of malicious websites can significantly reduce the risk of phishing attempts.In this research, a highly accurate website phishing detection method based on URL features is proposed. We investigated eight existing machine learning classification techniques for this, including extreme gradient boosting (XGBoost), random forest (RF), adaptive boosting (AdaBoost), decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), logistic regression and naïve bayes (NB) to detect malicious websites.The results show that XGboost had the best accuracy with a score of 96.71%, followed by random forest and AdaBoost.We further experimented with various hybrid combinations of the top three classifiers and observed that XGboost-Random Forest hybrid algorithms produced the best results.The hybrid model classified the websites as legitimate or phishing with an accuracy of 97.07%. |
|---|---|
| AbstractList | The internet has significantly altered how we work and interact with one another.Statistics show 63.1 % of the present world population are internet users. This clearly indicates how heavily man is dependent on digital media. Digital media users are on the rise and so is the incidence of cyber crimes. People who lack experience and knowledge are more vulnerable and susceptible to phishing scams.The victims experience severe consequences as their personal credentials are at stake. Phishers use publicly available sources to acquire details about the victim's professional and personal history.Countermeasures must be implemented with the highest priority. Detection of malicious websites can significantly reduce the risk of phishing attempts.In this research, a highly accurate website phishing detection method based on URL features is proposed. We investigated eight existing machine learning classification techniques for this, including extreme gradient boosting (XGBoost), random forest (RF), adaptive boosting (AdaBoost), decision trees (DT), K-nearest neighbors (KNN), support vector machines (SVM), logistic regression and naïve bayes (NB) to detect malicious websites.The results show that XGboost had the best accuracy with a score of 96.71%, followed by random forest and AdaBoost.We further experimented with various hybrid combinations of the top three classifiers and observed that XGboost-Random Forest hybrid algorithms produced the best results.The hybrid model classified the websites as legitimate or phishing with an accuracy of 97.07%. |
| Author | Arul Jothi, J. Angel Raj, Mukta Mithra |
| Author_xml | – sequence: 1 givenname: Mukta Mithra surname: Raj fullname: Raj, Mukta Mithra – sequence: 2 givenname: J. Angel surname: Arul Jothi fullname: Arul Jothi, J. Angel |
| BookMark | eNqNkMtOAjEYRhuDiYi8gYt5AbD3Tt0RvEBC1IXEZfPT6UDJMJ20g4a3F8EY4kZX_fMl5zQ5l6hTh9ohdE3wUAgt9U0DEQq_3DTVNg3fWc2AnqEuVYQMuKSqc3JfoH5Ka4wxzZXkIu-ip8luEX2RjZomBrCrrAwxe1n5tPL1Mntzi-Rbl9251tnWhzqbp699XEFKvvQWDuOoWobo29UmXaHzEqrk-t9vD80f7l_Hk8Hs-XE6Hs0GluKcDkoqBGfCcrbQTBU8l4oprYnmoJQqhJK60IyWjGmsrcU6V8QShxeFYo4ozHpoevQWAdamiX4DcWcCeHMYQlwaiK23lTO5o1RQokrGMS9znUsimVTgnASMidq7xNG1rRvYfUBV_QgJNofG5rSxOTbec7dHzsaQUnSlsb49BGkj-OovmP-C__XnJ1HXnCE |
| CitedBy_id | crossref_primary_10_1145_3611392 |
| Cites_doi | 10.1109/ACCESS.2022.3194672 10.3390/electronics10111285 10.1007/978-981-13-2354-6_27 10.3390/s21248281 10.1109/ICCRD54409.2022.9730579 10.1109/ICCCNT49239.2020.9225561 10.1109/ICOEI.2018.8553963 10.1007/978-3-030-16660-1_12 10.1109/BlackSeaCom52164.2021.9527806 10.1016/j.procs.2020.02.251 10.1007/978-981-15-8061-1_13 10.1109/ICAIS50930.2021.9395810 10.1108/EL-05-2019-0118 10.1016/S1361-3723(21)00082-8 10.1109/MysuruCon52639.2021.9641614 10.1007/s13278-021-00829-w 10.1109/ACCESS.2021.3124628 10.3390/s22093373 10.18421/TEM102-58 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.55969/paradigmplus.v3n3a2 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2711-4627 |
| EndPage | 29 |
| ExternalDocumentID | oai_doaj_org_article_8e225217f3404f898616367aee6a0017 10.55969/paradigmplus.v3n3a2 10_55969_paradigmplus_v3n3a2 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2082-f255435c43b937d48673799194a777d5769d932f33909cc09871c1e0bd73e1703 |
| IEDL.DBID | UNPAY |
| ISSN | 2711-4627 |
| IngestDate | Fri Oct 03 12:44:07 EDT 2025 Tue Aug 19 18:18:50 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Wed Oct 01 01:56:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2082-f255435c43b937d48673799194a777d5769d932f33909cc09871c1e0bd73e1703 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.itiud.org/index.php/paradigmplus/article/download/39/45 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8e225217f3404f898616367aee6a0017 unpaywall_primary_10_55969_paradigmplus_v3n3a2 crossref_citationtrail_10_55969_paradigmplus_v3n3a2 crossref_primary_10_55969_paradigmplus_v3n3a2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-20 |
| PublicationDateYYYYMMDD | 2022-12-20 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | ParadigmPlus |
| PublicationYear | 2022 |
| Publisher | ITI Research Group |
| Publisher_xml | – name: ITI Research Group |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1109/ACCESS.2022.3194672 – ident: ref14 doi: 10.3390/electronics10111285 – ident: ref20 – ident: ref18 doi: 10.1007/978-981-13-2354-6_27 – ident: ref13 doi: 10.3390/s21248281 – ident: ref2 doi: 10.1109/ICCRD54409.2022.9730579 – ident: ref17 doi: 10.1109/ICCCNT49239.2020.9225561 – ident: ref19 doi: 10.1109/ICOEI.2018.8553963 – ident: ref4 doi: 10.1007/978-3-030-16660-1_12 – ident: ref7 doi: 10.1109/BlackSeaCom52164.2021.9527806 – ident: ref9 doi: 10.1016/j.procs.2020.02.251 – ident: ref12 doi: 10.1007/978-981-15-8061-1_13 – ident: ref8 doi: 10.1109/ICAIS50930.2021.9395810 – ident: ref10 doi: 10.1108/EL-05-2019-0118 – ident: ref1 doi: 10.1016/S1361-3723(21)00082-8 – ident: ref3 doi: 10.1109/MysuruCon52639.2021.9641614 – ident: ref5 doi: 10.1007/s13278-021-00829-w – ident: ref0 – ident: ref15 doi: 10.1109/ACCESS.2021.3124628 – ident: ref16 doi: 10.3390/s22093373 – ident: ref6 doi: 10.18421/TEM102-58 |
| SSID | ssj0002876458 |
| Score | 1.8197206 |
| Snippet | The internet has significantly altered how we work and interact with one another.Statistics show 63.1 % of the present world population are internet users.... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 16 |
| SubjectTerms | Data Mining Hybrid Classification Algorithms Machine Learning Phishing Website Detection URL Features |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF2BAIECUlzywpk1tN47H8qgqJCoGKrpFfqUtStOqD1D_PWcnVGEqA2vkxMl3jv2dffcdQneawqpjCQ-4NAoclFgH0p25KsFIKohKRerynV_6UW_AnoftYaXUl4sJK-SBC-CasYURB7w5pSxkaSziCBhExKW1kXRTrJt9w1hUnKkPv2XEI9aOi1w5IM2RaDopbTMZTefZetn4pDmV5Nda5CX7D9H-Op_LzZfMsso60z1GRyVBxJ3ixU7Qns1PUb-3cZlVuFMqgGOgmvh1XOwf4Xer3BkwfrQrH1iVYx8IgH3BSxcK5NHHnWw0W0xW4-nyDA26T28PvaCshBBo-DgSpED8gddoRhXQCeNU8igHZieY5Jwb8BmEASKWUipCoXUowA3SLRsqw6ltwU99jmr5LLcXCMfatBhXWpHQMKOUSAk8GHiYDS2VLK4j-oNJokuZcFetIkvAXfBIJlUkkwLJOgq2d80LmYwd7e8d3Nu2TuTaXwDTJ6Xpk12mr6PG1lh_6vXyP3q9QgfEpUC0CMww16i2WqztDRCTlbr1Y_Ab0OzjOw priority: 102 providerName: Directory of Open Access Journals |
| Title | Hybrid Approach for Phishing Website Detection Using Classification Algorithms |
| URI | https://journals.itiud.org/index.php/paradigmplus/article/download/39/45 https://doaj.org/article/8e225217f3404f898616367aee6a0017 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2711-4627 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0002876458 issn: 2711-4627 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2711-4627 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002876458 issn: 2711-4627 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QE48BAgtkDlA9e8bG8cHxdotULqqgdWlFPkV9pV0-yqm4DaA7-dsZNdtVwAiUsOke3EM5bnG3vmG4D3hqHVcVREQlmNDkphIuXvXLXktJJUV7Ly-c4n83y24J_PJmd7MNvmwgwS3MTLdtnZcJUfaAM9V0Ti2bDt8vxqXXebZJBsYj2p_ErZhMmETx7Afj5BVD6C_cX8dPrN15YTGbpJORV95hxC6FzeGyr-zhqm6D3LFAj8H8PDrlmrmx-qru9YneOnsNz-bx9schl3rY7N7W9Ujv9jQs_gyQBNybRv8Bz2XPMC5rMbn9NFpgP3OEGQS04v-pMr8tVpf_tMPrk2hHQ1JIQgkFBq0wchBb2TaX2-ul62F1ebl7A4PvrycRYNNRgiQxEdRBW6HIioDGcagYz1_HxMIKaUXAkhLHor0iIErBiTqTQmleiAmcyl2grmMtxOXsGoWTXuNZDC2IwLbTRNLbday4riwIgAXeqY4sUY2Fb-pRkIyn2djLpERyVorbwrr7LX2hiiXa91T9Dxh_YfvGp3bT29dniBmikHFZSFw20OnbWK8ZRXhSxyhK25UM7lytv1McS7hfFXXz341w5v4BH1iRYZxX3sLYza6869Q_jT6sNwbIDPk59Hh8Mq_wXufhIm |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QE48BAgtjzkA9e8bG8cH5dHtUJi1QMryinyK23UNLvqJqD21zN2squWCyBxjRwnmbE83xfPfAPwzjCMOo6KSCirkaAUJlL-zFVLTitJdSUrX-_8ZZkvVvzz6ez0ABa7WpjRgtu47urehqP8IBvotSISr4Zt67PLTdNvk9GyifWi8mtlEyYTPrsHh_kMUfkEDlfLk_l331tOZEiTciqGyjmE0Lm8M1X8g7VM0TuRKQj4P4T7fbtR1z9V09yKOsePod6975BschH3nY7NzW9Sjv_jg57AoxGakvkw4CkcuPYZLBfXvqaLzEftcYIgl5ycD3-uyDen_ekz-ei6kNLVkpCCQEKrTZ-EFPxO5s3Z-qruzi-3z2F1_Onrh0U09mCIDEV0EFVIORBRGc40Ahnr9fmYQEwpuRJCWGQr0iIErBiTqTQmlUjATOZSbQVzGW4nL2DSrlv3EkhhbMaFNpqmllutZUVxYkSALnVM8WIKbGf_0owC5b5PRlMiUQleK2_bqxy8NoVof9dmEOj4w_j33rX7sV5eO1xAz5SjC8rC4TaHZK1iPOVVIYscYWsulHO58nF9CvF-YfzVU4_-9YZX8ID6QouM4j72GibdVe_eIPzp9NtxZf8CJn0QAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Approach+for+Phishing+Website+Detection+Using+Classification+Algorithms&rft.jtitle=ParadigmPlus&rft.au=Mukta+Mithra+Raj&rft.au=J.+Angel+Arul+Jothi&rft.date=2022-12-20&rft.pub=ITI+Research+Group&rft.eissn=2711-4627&rft.volume=3&rft.issue=3&rft_id=info:doi/10.55969%2Fparadigmplus.v3n3a2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8e225217f3404f898616367aee6a0017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2711-4627&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2711-4627&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2711-4627&client=summon |