P258 Combining tDCS with prismatic adaptation for non invasive neuromodulation of the motor cortex

Prismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested that prismatic goggles are also able to modulate brain excitability (Magnani, 2014), with cognitive after-effects documented even in tasks not necessarily...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 128; no. 3; p. e139
Main Authors Bracco, M., Mangano, R.G., Turriziani, P., Smirni, D., Oliveri, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2017
Subjects
Online AccessGet full text
ISSN1388-2457
1872-8952
DOI10.1016/j.clinph.2016.10.371

Cover

Abstract Prismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested that prismatic goggles are also able to modulate brain excitability (Magnani, 2014), with cognitive after-effects documented even in tasks not necessarily spatial in nature (Oliveri, 2013). The aim of the present study was to test whether prisms can modulate motor cortical excitability similarly as anodal transcranial direct current stimulation (tDCS) does; to test whether neuromodulatory effects obtained from tDCS and prismatic goggles could interact and induce homeostatic changes in brain excitability. Twenty-four subjects were submitted to single-pulse transcranial magnetic stimulation (TMS) over the right M1 to measure their Input–Output (IO) curve as a measure of cortical excitability (Carroll, 2011). Assessment was made in three experimental groups: before and after rightward PA; before and after atDCS of the right M1; before and after rightward PA and atDCS of the right M1. A significant increase of the steepness of the IO curve slope on the right motor cortex was found following either rightward PA or atDCS; on the other hand, a decrease of the steepness of the IO curve slope was found after the combination of rightward PA and atDCS. These findings suggest that PA could be an additional tool to modulate cortical plasticity in motor cortices and that an increase or a decrease in corticospinal excitability depends on the functional state of the M1 before or at the time of conditioning (Lang, 2004).
AbstractList IntroductionPrismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested that prismatic goggles are also able to modulate brain excitability ( Magnani, 2014), with cognitive after-effects documented even in tasks not necessarily spatial in nature ( Oliveri, 2013). ObjectivesThe aim of the present study was to test whether prisms can modulate motor cortical excitability similarly as anodal transcranial direct current stimulation (tDCS) does; to test whether neuromodulatory effects obtained from tDCS and prismatic goggles could interact and induce homeostatic changes in brain excitability. Materials and methodsTwenty-four subjects were submitted to single-pulse transcranial magnetic stimulation (TMS) over the right M1 to measure their Input–Output (IO) curve as a measure of cortical excitability ( Carroll, 2011). Assessment was made in three experimental groups: before and after rightward PA; before and after atDCS of the right M1; before and after rightward PA and atDCS of the right M1. ResultsA significant increase of the steepness of the IO curve slope on the right motor cortex was found following either rightward PA or atDCS; on the other hand, a decrease of the steepness of the IO curve slope was found after the combination of rightward PA and atDCS. ConclusionThese findings suggest that PA could be an additional tool to modulate cortical plasticity in motor cortices and that an increase or a decrease in corticospinal excitability depends on the functional state of the M1 before or at the time of conditioning ( Lang, 2004).
Prismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested that prismatic goggles are also able to modulate brain excitability (Magnani, 2014), with cognitive after-effects documented even in tasks not necessarily spatial in nature (Oliveri, 2013). The aim of the present study was to test whether prisms can modulate motor cortical excitability similarly as anodal transcranial direct current stimulation (tDCS) does; to test whether neuromodulatory effects obtained from tDCS and prismatic goggles could interact and induce homeostatic changes in brain excitability. Twenty-four subjects were submitted to single-pulse transcranial magnetic stimulation (TMS) over the right M1 to measure their Input–Output (IO) curve as a measure of cortical excitability (Carroll, 2011). Assessment was made in three experimental groups: before and after rightward PA; before and after atDCS of the right M1; before and after rightward PA and atDCS of the right M1. A significant increase of the steepness of the IO curve slope on the right motor cortex was found following either rightward PA or atDCS; on the other hand, a decrease of the steepness of the IO curve slope was found after the combination of rightward PA and atDCS. These findings suggest that PA could be an additional tool to modulate cortical plasticity in motor cortices and that an increase or a decrease in corticospinal excitability depends on the functional state of the M1 before or at the time of conditioning (Lang, 2004).
Author Bracco, M.
Smirni, D.
Oliveri, M.
Mangano, R.G.
Turriziani, P.
Author_xml – sequence: 1
  givenname: M.
  surname: Bracco
  fullname: Bracco, M.
– sequence: 2
  givenname: R.G.
  surname: Mangano
  fullname: Mangano, R.G.
– sequence: 3
  givenname: P.
  surname: Turriziani
  fullname: Turriziani, P.
– sequence: 4
  givenname: D.
  surname: Smirni
  fullname: Smirni, D.
– sequence: 5
  givenname: M.
  surname: Oliveri
  fullname: Oliveri, M.
BookMark eNqVUdtKAzEQDVLBWv0DH_IDW5PsJbsggtQrFBSqzyGbzNqs3aQk22r_3izrq4hPc-HMOTNnTtHEOgsIXVAyp4QWl-1cbYzdrucsVrE1Tzk9QlNacpaUVc4mMU_LMmFZzk_QaQgtIYSTjE1R_cLyEi9cVxtr7Dvubxcr_Gn6Nd56EzrZG4Wllts-Zs7ixnkcxbGxexnMHrCFnXed07vNCHAN7teAO9dHpHK-h68zdNzITYDznzhDb_d3r4vHZPn88LS4WSaKkZImOQVeA2GpBp1Snqey0YRUqmo4B6CcUd3oJpOa0lTXUrG6BsgLlWlOuK5YOkPZyKu8C8FDI-IJnfQHQYkYfBKtGH0Sg09DN_oUx67HMYi77Q14EZQBq0AbD6oX2pn_Egwgo-TmAw4QWrfzNt4tqAhMELEaXjF8ghYpqTJeRIKr3wn-1v8G_x6gFw
Cites_doi 10.1016/j.biopsych.2004.07.017
10.1016/j.brs.2014.03.005
10.1016/j.cortex.2011.11.010
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.clinph.2016.10.371
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage e139
ExternalDocumentID 10_1016_j_clinph_2016_10_371
S1388245716309476
1_s2_0_S1388245716309476
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFMIJ
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
VQA
ZA5
AAYXX
ACLOT
CITATION
~HD
ID FETCH-LOGICAL-c2081-51e7be023ded31753afd009c9f77ee1721dfdf4ad113dbac2bbee56c4d707d923
IEDL.DBID .~1
ISSN 1388-2457
IngestDate Wed Oct 01 03:34:25 EDT 2025
Fri Feb 23 02:12:25 EST 2024
Sat Aug 23 01:30:49 EDT 2025
Tue Aug 26 16:35:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2081-51e7be023ded31753afd009c9f77ee1721dfdf4ad113dbac2bbee56c4d707d923
ParticipantIDs crossref_primary_10_1016_j_clinph_2016_10_371
elsevier_sciencedirect_doi_10_1016_j_clinph_2016_10_371
elsevier_clinicalkeyesjournals_1_s2_0_S1388245716309476
elsevier_clinicalkey_doi_10_1016_j_clinph_2016_10_371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2017
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationTitle Clinical neurophysiology
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lang (b0010) 2004; 56
Oliveri (b0020) 2013; 1
Carroll (b0005) 2011; 12
Magnani (b0015) 2014; 7
Oliveri (10.1016/j.clinph.2016.10.371_b0020) 2013; 1
Lang (10.1016/j.clinph.2016.10.371_b0010) 2004; 56
Carroll (10.1016/j.clinph.2016.10.371_b0005) 2011; 12
Magnani (10.1016/j.clinph.2016.10.371_b0015) 2014; 7
References_xml – volume: 1
  start-page: 120
  year: 2013
  end-page: 130
  ident: b0020
  article-title: Prismatic adaptation effects on spatial representation of time in neglect patients
  publication-title: Cortex
– volume: 7
  start-page: 573
  year: 2014
  end-page: 579
  ident: b0015
  article-title: Prismatic adaptation as a novel tool to directionally modulate motor cortex excitability: evidence from paired-pulse TMS
  publication-title: Brain Stim
– volume: 12
  start-page: 193
  year: 2011
  end-page: 202
  ident: b0005
  article-title: Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation
  publication-title: J Neurosci Methods
– volume: 56
  start-page: 634
  year: 2004
  end-page: 639
  ident: b0010
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects
  publication-title: Biol Psychiatry
– volume: 56
  start-page: 634
  year: 2004
  ident: 10.1016/j.clinph.2016.10.371_b0010
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2004.07.017
– volume: 7
  start-page: 573
  year: 2014
  ident: 10.1016/j.clinph.2016.10.371_b0015
  article-title: Prismatic adaptation as a novel tool to directionally modulate motor cortex excitability: evidence from paired-pulse TMS
  publication-title: Brain Stim
  doi: 10.1016/j.brs.2014.03.005
– volume: 12
  start-page: 193
  year: 2011
  ident: 10.1016/j.clinph.2016.10.371_b0005
  article-title: Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation
  publication-title: J Neurosci Methods
– volume: 1
  start-page: 120
  year: 2013
  ident: 10.1016/j.clinph.2016.10.371_b0020
  article-title: Prismatic adaptation effects on spatial representation of time in neglect patients
  publication-title: Cortex
  doi: 10.1016/j.cortex.2011.11.010
SSID ssj0007042
Score 2.2003248
Snippet Prismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested that prismatic...
IntroductionPrismatic adaptation (PA) shifts visual field laterally and induces lateralized deviations of spatial attention. Recently, it has been suggested...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e139
SubjectTerms Neurology
Title P258 Combining tDCS with prismatic adaptation for non invasive neuromodulation of the motor cortex
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245716309476
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245716309476
https://dx.doi.org/10.1016/j.clinph.2016.10.371
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20180430
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AIKHN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20180430
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: ACRLP
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: .~1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8952
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AKRWK
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lgngRn1gfJQev2-477bFUS1VahFroLeQJFWwXW8WTv92ZbBYrFgSvIZMNk8nMN5t5EHLNhImVSbIgF1KCg6JkALg5C3TIrIxN2u2kmI08GufDaXo_y2Y10q9yYTCs0uv-Uqc7be1H2p6b7WI-b0-iBNBhmgHgT8BHYVh2G6t_gUy3Pr_DPFjoGujg5ABnV-lzLsYLsw8LfJKI8hb6ryzabp42TM7ggOx7rEh75XYOSc0sjsjuyL-GHxP5GGcdCjdaui4PdH3Tn1D8sUpdcUOsxUqFFkX52k4BnlJw9ul88S4waJ26WpYvS-07eNGlpQAHKRwezFQYhftxQqaD26f-MPA9EwIVg3UPssgwacAQa6MRGiTCaoBRqmsZMwb9PW21TYWOokRLoWIpjclylWoWMg1o75TUYSvmjNBcqlxZWAbODZw4uPs6gfUMODy5SLq2QYKKVbwoS2PwKmbsmZes5chaHAXWNkhW8ZNXaZ-gqDjo7j_o2DY6s_K3bcUjvop5yH9JxCblD6H685vn_6a8IHsxWn4XpnZJ6uvXN3MFuGUtm04wm2Snd_cwHH8BJLLueg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB5qC-qLeGI98-Dr2u6RTftYqqW1B0Jb6FvItVDBdrFV_PlOdrOiWCj4GjLZMElmvtm5AO6YMIEyIfViISUaKEp6iJupp-sskYGJmo3IZiMPR3F3Gj3N6KwE7SIXxoZVOtmfy_RMWruRmuNmLZ3Pa2M_RHQYUQT8IdooLN6BSkRRJpeh0ur1u6NvgczqWQ8dO9-zBEUGXRbmZRMQU-uV8ON7a8Iyf7OG-qF1Oodw4OAiaeU7OoKSWRzD7tA5xE9APge0QfBRy6zRA1k_tMfE_lslWX1DW46VCC3S3OFOEKEStPfJfPEhbNw6ycpZvi61a-JFlglBREjw_HCmsoG4n6cw7TxO2l3PtU3wVIAK3qO-YdKgLtZGW3QQikQjklLNhDFjrMmnE51EQvt-qKVQgZTG0FhFmtWZRsB3BmXcijkHEksVqwSXwaNDOw6fvw5xPYM2TyzCZlIFr2AVT_PqGLwIG3vhOWu5Za0dRdZWgRb85EXmJ8oqjuJ7Cx3bRGdW7sGtuM9XAa_zP5fiJ-Wve7X1mxf_pryFve5kOOCD3qh_CfuBBQJZ1NoVlNdv7-YaYcxa3rhr-gVA-vEl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P258+Combining+tDCS+with+prismatic+adaptation+for+non+invasive+neuromodulation+of+the+motor+cortex&rft.jtitle=Clinical+neurophysiology&rft.au=Bracco%2C+M.&rft.au=Mangano%2C+R.G.&rft.au=Turriziani%2C+P.&rft.au=Smirni%2C+D.&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=1388-2457&rft.volume=128&rft.issue=3&rft.spage=e139&rft.epage=e139&rft_id=info:doi/10.1016%2Fj.clinph.2016.10.371&rft.externalDocID=S1388245716309476
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245717X00023%2Fcov150h.gif