A Machine Learning Method for Stackelberg Mean Field Games
We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents plays a noncooperative game and chooses their controls to optimize their individual objectives while interacting with the principal and other age...
Saved in:
Published in | Mathematics of operations research |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
02.12.2024
|
Online Access | Get full text |
ISSN | 0364-765X 1526-5471 |
DOI | 10.1287/moor.2023.0065 |
Cover
Abstract | We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents plays a noncooperative game and chooses their controls to optimize their individual objectives while interacting with the principal and other agents through the population distribution. The principal can influence the mean field Nash equilibrium at the population level through policies, and she optimizes her own objective, which depends on the population distribution. This leads to a bilevel problem between the principal and mean field of agents that cannot be solved using traditional methods for MFGs. We propose a reformulation of this problem as a single-level mean field optimal control problem through a penalization approach. We prove convergence of the reformulated problem to the original problem. We propose a machine learning method based on (feed-forward and recurrent) neural networks and illustrate it on several examples from the literature. We also give a modified example to show the scalability of the proposed method and show its efficiency by comparing its performance with an alternative bilevel approach. |
---|---|
AbstractList | We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents plays a noncooperative game and chooses their controls to optimize their individual objectives while interacting with the principal and other agents through the population distribution. The principal can influence the mean field Nash equilibrium at the population level through policies, and she optimizes her own objective, which depends on the population distribution. This leads to a bilevel problem between the principal and mean field of agents that cannot be solved using traditional methods for MFGs. We propose a reformulation of this problem as a single-level mean field optimal control problem through a penalization approach. We prove convergence of the reformulated problem to the original problem. We propose a machine learning method based on (feed-forward and recurrent) neural networks and illustrate it on several examples from the literature. We also give a modified example to show the scalability of the proposed method and show its efficiency by comparing its performance with an alternative bilevel approach. |
Author | Laurière, Mathieu Dayanıklı, Gökçe |
Author_xml | – sequence: 1 givenname: Gökçe orcidid: 0000-0002-4984-7574 surname: Dayanıklı fullname: Dayanıklı, Gökçe organization: Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820 – sequence: 2 givenname: Mathieu orcidid: 0000-0002-4380-1399 surname: Laurière fullname: Laurière, Mathieu organization: Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU-ECNU Institute of Mathematical Sciences, NYU Shanghai, Shanghai 200126, People’s Republic of China |
BookMark | eNp1j01LxDAURYOMYGd06zp_oDXfad0NgzMKHVyo4K6k6YsTbRNJu_Hf26IrwdXjPu65cNZoFWIAhK4pKSgr9c0QYyoYYbwgRMkzlFHJVC6FpiuUEa5ErpV8vUDrcXwnhEpNRYZut_ho7MkHwDWYFHx4w0eYTrHDLib8NBn7AX0LaXmbgPce-g4fzADjJTp3ph_h6vdu0Mv-7nl3n9ePh4fdts4tI3rKwTLWKq4rwnTJpbOVYB23Ws_JiLnSCu1KUTFmlSRgeUWdckTQVpSgWMs3SPzs2hTHMYFrrJ_M5GOYkvF9Q0mz-DeLf7P4N4v_jBV_sM_kB5O-_gO-AaPdXd4 |
CitedBy_id | crossref_primary_10_1016_j_cie_2025_111016 |
Cites_doi | 10.1016/j.ejor.2021.08.031 10.1002/asjc.3007 10.1137/090758477 10.1051/proc/201965084 10.1214/21-AAP1715 10.1109/TAC.2012.2195797 10.1017/S0962492900002919 10.1016/j.automatica.2018.08.008 10.1609/aaai.v36i9.21173 10.1016/j.crma.2006.09.019 10.1007/s13235-021-00422-y 10.1080/17442508.2022.2125808 10.1111/mafi.12291 10.1016/j.crma.2018.06.001 10.1137/120902987 10.1007/BF02551274 10.1137/120889496 10.1007/s00285-022-01736-0 10.1287/moor.2018.0931 10.4310/CIS.2006.v6.n3.a5 10.1137/19M1241878 10.1006/aama.1995.1008 10.1137/15M1052937 10.1111/j.1467-937X.2008.00486.x 10.1137/20M1377862 10.1137/110841217 10.1007/978-1-4614-8508-7 10.1007/s00498-021-00300-3 10.1109/TAC.2018.2814959 10.1016/0893-6080(90)90005-6 10.1137/23M1615188 10.1017/CBO9781139060011.005 10.1287/mnsc.2020.3760 10.1007/978-3-319-56436-4 10.1007/s00245-023-10002-8 10.1016/0893-6080(91)90009-T 10.1007/s00245-015-9309-1 10.3389/fams.2020.00011 10.1214/15-AAP1125 10.1142/S0219198921500249 10.1137/16M1095615 10.1007/s10915-022-01796-w 10.1214/18-AAP1429 10.1016/j.crma.2006.09.018 10.1007/s00245-017-9430-4 10.1090/proc/15135 10.1007/s00780-017-0344-4 10.1137/140958906 10.1137/080735370 10.1007/978-3-030-59837-2_4 10.1137/100790069 10.1137/16M1063010 10.1109/TAC.2007.904450 10.2307/1913238 10.1137/140993399 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1287/moor.2023.0065 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1526-5471 |
ExternalDocumentID | 10_1287_moor_2023_0065 |
GroupedDBID | -~X .DC 18M 4.4 5GY 7WY 85S 8FL 8VB AAWTO AAYXX ABDNZ ABEFU ABFAN ABKVW ABPPZ ABYRZ ABYWD ABYYQ ACGFO ACIWK ACMTB ACNCT ACTMH ACVFL AEGXH AEILP AELLO AEMOZ AENEX AFVYC AHAJD AHQJS AIAGR AKBRZ AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM BKOMP CITATION CS3 EBA EBE EBO EBR EBS EBU HCIFZ H~9 IAO IEA IOF JAA JST K60 K6~ MV1 N95 NIEAY P2P QWB RPU RXW TAE TH9 TN5 U5U WH7 Y99 ZL0 |
ID | FETCH-LOGICAL-c207t-ec22b6379027835fc942d3c77783a4207b47f84922c650ec391f6f041b48e62b3 |
ISSN | 0364-765X |
IngestDate | Tue Jul 01 02:11:05 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c207t-ec22b6379027835fc942d3c77783a4207b47f84922c650ec391f6f041b48e62b3 |
ORCID | 0000-0002-4984-7574 0000-0002-4380-1399 |
ParticipantIDs | crossref_citationtrail_10_1287_moor_2023_0065 crossref_primary_10_1287_moor_2023_0065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-02 |
PublicationDateYYYYMMDD | 2024-12-02 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics of operations research |
PublicationYear | 2024 |
References | B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B27 B28 B32 B33 B34 B35 B36 B37 B39 B1 B2 B3 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B49 Oner A (B60) 2018 B50 B51 B52 B10 B54 B11 B12 B56 B13 B57 Carmona R (B18) 2018; 83 B58 B15 B59 B16 B17 B19 B61 B62 |
References_xml | – ident: B64 doi: 10.1016/j.ejor.2021.08.031 – volume: 83 volume-title: Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games, year: 2018 ident: B18 – ident: B68 doi: 10.1002/asjc.3007 – ident: B1 doi: 10.1137/090758477 – ident: B5 doi: 10.1051/proc/201965084 – ident: B20 doi: 10.1214/21-AAP1715 – year: 2018 ident: B60 publication-title: Appl. Comput. Math. – ident: B59 doi: 10.1109/TAC.2012.2195797 – ident: B62 doi: 10.1017/S0962492900002919 – ident: B56 doi: 10.1016/j.automatica.2018.08.008 – ident: B61 doi: 10.1609/aaai.v36i9.21173 – ident: B49 doi: 10.1016/j.crma.2006.09.019 – ident: B24 doi: 10.1007/s13235-021-00422-y – ident: B43 doi: 10.1080/17442508.2022.2125808 – ident: B33 doi: 10.1111/mafi.12291 – ident: B51 doi: 10.1016/j.crma.2018.06.001 – ident: B16 doi: 10.1137/120902987 – ident: B28 doi: 10.1007/BF02551274 – ident: B58 doi: 10.1137/120889496 – ident: B47 doi: 10.1007/s00285-022-01736-0 – ident: B32 doi: 10.1287/moor.2018.0931 – ident: B46 doi: 10.4310/CIS.2006.v6.n3.a5 – ident: B35 doi: 10.1137/19M1241878 – ident: B54 doi: 10.1006/aama.1995.1008 – ident: B11 doi: 10.1137/15M1052937 – ident: B65 doi: 10.1111/j.1467-937X.2008.00486.x – ident: B6 doi: 10.1137/20M1377862 – ident: B57 doi: 10.1137/110841217 – ident: B10 doi: 10.1007/978-1-4614-8508-7 – ident: B39 doi: 10.1007/s00498-021-00300-3 – ident: B52 doi: 10.1109/TAC.2018.2814959 – ident: B42 doi: 10.1016/0893-6080(90)90005-6 – ident: B12 doi: 10.1137/23M1615188 – ident: B66 doi: 10.1017/CBO9781139060011.005 – ident: B22 doi: 10.1287/mnsc.2020.3760 – ident: B19 doi: 10.1007/978-3-319-56436-4 – ident: B37 doi: 10.1007/s00245-023-10002-8 – ident: B41 doi: 10.1016/0893-6080(91)90009-T – ident: B8 doi: 10.1007/s00245-015-9309-1 – ident: B34 doi: 10.3389/fams.2020.00011 – ident: B23 doi: 10.1214/15-AAP1125 – ident: B17 doi: 10.1142/S0219198921500249 – ident: B13 doi: 10.1137/16M1095615 – ident: B36 doi: 10.1007/s10915-022-01796-w – ident: B25 doi: 10.1214/18-AAP1429 – ident: B50 doi: 10.1016/j.crma.2006.09.018 – ident: B21 doi: 10.1007/s00245-017-9430-4 – ident: B15 doi: 10.1090/proc/15135 – ident: B27 doi: 10.1007/s00780-017-0344-4 – ident: B9 doi: 10.1137/140958906 – ident: B44 doi: 10.1137/080735370 – ident: B2 doi: 10.1007/978-3-030-59837-2_4 – ident: B3 doi: 10.1137/100790069 – ident: B67 doi: 10.1137/16M1063010 – ident: B45 doi: 10.1109/TAC.2007.904450 – ident: B40 doi: 10.2307/1913238 – ident: B7 doi: 10.1137/140993399 |
SSID | ssj0015714 |
Score | 2.4103446 |
Snippet | We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | A Machine Learning Method for Stackelberg Mean Field Games |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRarKgce2iLd8QOqhSpvYjr3htjwW1JaqB6j2FsVeRyBgF6HlAL-eGccJoQWJcsnuWrYV7Zexv4xnvgHYNrJMpJEy0rhdR9JmaHNxZiPhRllSigKXQMp3Pv6ljk7l92E6rMuyh-ySqflq75_NK3kLqtiGuFKW7H8g20yKDfgd8cUrIozXV2Hcp7pBZ8QTf9YejmNfEdoHDyKPRBP1GlbYjHY8oGi1L4dFnfRRF3JqlFt9WMfk2t2E-LigBNR4jPeLu2JM9HM3ubisPr1fnU7bd9WFP3TXzZNCKdfnvq0X_N8U6ehu244G7uUM47bvUSiEVKXDausI6yVXUSqrKir_rMac_BmDq8mEhFc5SclWdSGeyl7_tR01QYL0eoIz5DQ-p_E5jX8Hs1wjTerAbP_Hn73fzZFRqpOgFVbdZVDoxBm-Pb2DFgNpUYmTRZgP7wCsXwG6BDNu3IX3dQpCFxbqUhssrLxdmGvpRn6EnT4LwLMaeFYBzxB41gKeEfDMA8888J_gdHBwsncUhSIYkeWxnkbOcm6U0BkdEYu0tJnkI2G1xl9oSbE2Upc9mXFukWw7K9DEVBnLxMieU9yIZeiMJ2O3AixOTdLLrBs5Q5pFukgMTwpRqlSMkHaaVYjqPya3QSGeCpVc5s9DsQqfm_7XlTbKCz3XXt1zHT48Pnsb0Jne3LpNpH1TsxUAfwBheFDB |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Method+for+Stackelberg+Mean+Field+Games&rft.jtitle=Mathematics+of+operations+research&rft.au=Dayan%C4%B1kl%C4%B1%2C+G%C3%B6k%C3%A7e&rft.au=Lauri%C3%A8re%2C+Mathieu&rft.date=2024-12-02&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287%2Fmoor.2023.0065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_moor_2023_0065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |