A Machine Learning Method for Stackelberg Mean Field Games

We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents plays a noncooperative game and chooses their controls to optimize their individual objectives while interacting with the principal and other age...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research
Main Authors Dayanıklı, Gökçe, Laurière, Mathieu
Format Journal Article
LanguageEnglish
Published 02.12.2024
Online AccessGet full text
ISSN0364-765X
1526-5471
DOI10.1287/moor.2023.0065

Cover

Abstract We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents plays a noncooperative game and chooses their controls to optimize their individual objectives while interacting with the principal and other agents through the population distribution. The principal can influence the mean field Nash equilibrium at the population level through policies, and she optimizes her own objective, which depends on the population distribution. This leads to a bilevel problem between the principal and mean field of agents that cannot be solved using traditional methods for MFGs. We propose a reformulation of this problem as a single-level mean field optimal control problem through a penalization approach. We prove convergence of the reformulated problem to the original problem. We propose a machine learning method based on (feed-forward and recurrent) neural networks and illustrate it on several examples from the literature. We also give a modified example to show the scalability of the proposed method and show its efficiency by comparing its performance with an alternative bilevel approach.
AbstractList We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents plays a noncooperative game and chooses their controls to optimize their individual objectives while interacting with the principal and other agents through the population distribution. The principal can influence the mean field Nash equilibrium at the population level through policies, and she optimizes her own objective, which depends on the population distribution. This leads to a bilevel problem between the principal and mean field of agents that cannot be solved using traditional methods for MFGs. We propose a reformulation of this problem as a single-level mean field optimal control problem through a penalization approach. We prove convergence of the reformulated problem to the original problem. We propose a machine learning method based on (feed-forward and recurrent) neural networks and illustrate it on several examples from the literature. We also give a modified example to show the scalability of the proposed method and show its efficiency by comparing its performance with an alternative bilevel approach.
Author Laurière, Mathieu
Dayanıklı, Gökçe
Author_xml – sequence: 1
  givenname: Gökçe
  orcidid: 0000-0002-4984-7574
  surname: Dayanıklı
  fullname: Dayanıklı, Gökçe
  organization: Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820
– sequence: 2
  givenname: Mathieu
  orcidid: 0000-0002-4380-1399
  surname: Laurière
  fullname: Laurière, Mathieu
  organization: Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU-ECNU Institute of Mathematical Sciences, NYU Shanghai, Shanghai 200126, People’s Republic of China
BookMark eNp1j01LxDAURYOMYGd06zp_oDXfad0NgzMKHVyo4K6k6YsTbRNJu_Hf26IrwdXjPu65cNZoFWIAhK4pKSgr9c0QYyoYYbwgRMkzlFHJVC6FpiuUEa5ErpV8vUDrcXwnhEpNRYZut_ho7MkHwDWYFHx4w0eYTrHDLib8NBn7AX0LaXmbgPce-g4fzADjJTp3ph_h6vdu0Mv-7nl3n9ePh4fdts4tI3rKwTLWKq4rwnTJpbOVYB23Ws_JiLnSCu1KUTFmlSRgeUWdckTQVpSgWMs3SPzs2hTHMYFrrJ_M5GOYkvF9Q0mz-DeLf7P4N4v_jBV_sM_kB5O-_gO-AaPdXd4
CitedBy_id crossref_primary_10_1016_j_cie_2025_111016
Cites_doi 10.1016/j.ejor.2021.08.031
10.1002/asjc.3007
10.1137/090758477
10.1051/proc/201965084
10.1214/21-AAP1715
10.1109/TAC.2012.2195797
10.1017/S0962492900002919
10.1016/j.automatica.2018.08.008
10.1609/aaai.v36i9.21173
10.1016/j.crma.2006.09.019
10.1007/s13235-021-00422-y
10.1080/17442508.2022.2125808
10.1111/mafi.12291
10.1016/j.crma.2018.06.001
10.1137/120902987
10.1007/BF02551274
10.1137/120889496
10.1007/s00285-022-01736-0
10.1287/moor.2018.0931
10.4310/CIS.2006.v6.n3.a5
10.1137/19M1241878
10.1006/aama.1995.1008
10.1137/15M1052937
10.1111/j.1467-937X.2008.00486.x
10.1137/20M1377862
10.1137/110841217
10.1007/978-1-4614-8508-7
10.1007/s00498-021-00300-3
10.1109/TAC.2018.2814959
10.1016/0893-6080(90)90005-6
10.1137/23M1615188
10.1017/CBO9781139060011.005
10.1287/mnsc.2020.3760
10.1007/978-3-319-56436-4
10.1007/s00245-023-10002-8
10.1016/0893-6080(91)90009-T
10.1007/s00245-015-9309-1
10.3389/fams.2020.00011
10.1214/15-AAP1125
10.1142/S0219198921500249
10.1137/16M1095615
10.1007/s10915-022-01796-w
10.1214/18-AAP1429
10.1016/j.crma.2006.09.018
10.1007/s00245-017-9430-4
10.1090/proc/15135
10.1007/s00780-017-0344-4
10.1137/140958906
10.1137/080735370
10.1007/978-3-030-59837-2_4
10.1137/100790069
10.1137/16M1063010
10.1109/TAC.2007.904450
10.2307/1913238
10.1137/140993399
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1287/moor.2023.0065
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1526-5471
ExternalDocumentID 10_1287_moor_2023_0065
GroupedDBID -~X
.DC
18M
4.4
5GY
7WY
85S
8FL
8VB
AAWTO
AAYXX
ABDNZ
ABEFU
ABFAN
ABKVW
ABPPZ
ABYRZ
ABYWD
ABYYQ
ACGFO
ACIWK
ACMTB
ACNCT
ACTMH
ACVFL
AEGXH
AEILP
AELLO
AEMOZ
AENEX
AFVYC
AHAJD
AHQJS
AIAGR
AKBRZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BKOMP
CITATION
CS3
EBA
EBE
EBO
EBR
EBS
EBU
HCIFZ
H~9
IAO
IEA
IOF
JAA
JST
K60
K6~
MV1
N95
NIEAY
P2P
QWB
RPU
RXW
TAE
TH9
TN5
U5U
WH7
Y99
ZL0
ID FETCH-LOGICAL-c207t-ec22b6379027835fc942d3c77783a4207b47f84922c650ec391f6f041b48e62b3
ISSN 0364-765X
IngestDate Tue Jul 01 02:11:05 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c207t-ec22b6379027835fc942d3c77783a4207b47f84922c650ec391f6f041b48e62b3
ORCID 0000-0002-4984-7574
0000-0002-4380-1399
ParticipantIDs crossref_citationtrail_10_1287_moor_2023_0065
crossref_primary_10_1287_moor_2023_0065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationTitle Mathematics of operations research
PublicationYear 2024
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B27
B28
B32
B33
B34
B35
B36
B37
B39
B1
B2
B3
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B49
Oner A (B60) 2018
B50
B51
B52
B10
B54
B11
B12
B56
B13
B57
Carmona R (B18) 2018; 83
B58
B15
B59
B16
B17
B19
B61
B62
References_xml – ident: B64
  doi: 10.1016/j.ejor.2021.08.031
– volume: 83
  volume-title: Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games,
  year: 2018
  ident: B18
– ident: B68
  doi: 10.1002/asjc.3007
– ident: B1
  doi: 10.1137/090758477
– ident: B5
  doi: 10.1051/proc/201965084
– ident: B20
  doi: 10.1214/21-AAP1715
– year: 2018
  ident: B60
  publication-title: Appl. Comput. Math.
– ident: B59
  doi: 10.1109/TAC.2012.2195797
– ident: B62
  doi: 10.1017/S0962492900002919
– ident: B56
  doi: 10.1016/j.automatica.2018.08.008
– ident: B61
  doi: 10.1609/aaai.v36i9.21173
– ident: B49
  doi: 10.1016/j.crma.2006.09.019
– ident: B24
  doi: 10.1007/s13235-021-00422-y
– ident: B43
  doi: 10.1080/17442508.2022.2125808
– ident: B33
  doi: 10.1111/mafi.12291
– ident: B51
  doi: 10.1016/j.crma.2018.06.001
– ident: B16
  doi: 10.1137/120902987
– ident: B28
  doi: 10.1007/BF02551274
– ident: B58
  doi: 10.1137/120889496
– ident: B47
  doi: 10.1007/s00285-022-01736-0
– ident: B32
  doi: 10.1287/moor.2018.0931
– ident: B46
  doi: 10.4310/CIS.2006.v6.n3.a5
– ident: B35
  doi: 10.1137/19M1241878
– ident: B54
  doi: 10.1006/aama.1995.1008
– ident: B11
  doi: 10.1137/15M1052937
– ident: B65
  doi: 10.1111/j.1467-937X.2008.00486.x
– ident: B6
  doi: 10.1137/20M1377862
– ident: B57
  doi: 10.1137/110841217
– ident: B10
  doi: 10.1007/978-1-4614-8508-7
– ident: B39
  doi: 10.1007/s00498-021-00300-3
– ident: B52
  doi: 10.1109/TAC.2018.2814959
– ident: B42
  doi: 10.1016/0893-6080(90)90005-6
– ident: B12
  doi: 10.1137/23M1615188
– ident: B66
  doi: 10.1017/CBO9781139060011.005
– ident: B22
  doi: 10.1287/mnsc.2020.3760
– ident: B19
  doi: 10.1007/978-3-319-56436-4
– ident: B37
  doi: 10.1007/s00245-023-10002-8
– ident: B41
  doi: 10.1016/0893-6080(91)90009-T
– ident: B8
  doi: 10.1007/s00245-015-9309-1
– ident: B34
  doi: 10.3389/fams.2020.00011
– ident: B23
  doi: 10.1214/15-AAP1125
– ident: B17
  doi: 10.1142/S0219198921500249
– ident: B13
  doi: 10.1137/16M1095615
– ident: B36
  doi: 10.1007/s10915-022-01796-w
– ident: B25
  doi: 10.1214/18-AAP1429
– ident: B50
  doi: 10.1016/j.crma.2006.09.018
– ident: B21
  doi: 10.1007/s00245-017-9430-4
– ident: B15
  doi: 10.1090/proc/15135
– ident: B27
  doi: 10.1007/s00780-017-0344-4
– ident: B9
  doi: 10.1137/140958906
– ident: B44
  doi: 10.1137/080735370
– ident: B2
  doi: 10.1007/978-3-030-59837-2_4
– ident: B3
  doi: 10.1137/100790069
– ident: B67
  doi: 10.1137/16M1063010
– ident: B45
  doi: 10.1109/TAC.2007.904450
– ident: B40
  doi: 10.2307/1913238
– ident: B7
  doi: 10.1137/140993399
SSID ssj0015714
Score 2.4103446
Snippet We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In the Stackelberg MFG, an infinite population of agents...
SourceID crossref
SourceType Enrichment Source
Index Database
Title A Machine Learning Method for Stackelberg Mean Field Games
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRarKgce2iLd8QOqhSpvYjr3htjwW1JaqB6j2FsVeRyBgF6HlAL-eGccJoQWJcsnuWrYV7Zexv4xnvgHYNrJMpJEy0rhdR9JmaHNxZiPhRllSigKXQMp3Pv6ljk7l92E6rMuyh-ySqflq75_NK3kLqtiGuFKW7H8g20yKDfgd8cUrIozXV2Hcp7pBZ8QTf9YejmNfEdoHDyKPRBP1GlbYjHY8oGi1L4dFnfRRF3JqlFt9WMfk2t2E-LigBNR4jPeLu2JM9HM3ubisPr1fnU7bd9WFP3TXzZNCKdfnvq0X_N8U6ehu244G7uUM47bvUSiEVKXDausI6yVXUSqrKir_rMac_BmDq8mEhFc5SclWdSGeyl7_tR01QYL0eoIz5DQ-p_E5jX8Hs1wjTerAbP_Hn73fzZFRqpOgFVbdZVDoxBm-Pb2DFgNpUYmTRZgP7wCsXwG6BDNu3IX3dQpCFxbqUhssrLxdmGvpRn6EnT4LwLMaeFYBzxB41gKeEfDMA8888J_gdHBwsncUhSIYkeWxnkbOcm6U0BkdEYu0tJnkI2G1xl9oSbE2Upc9mXFukWw7K9DEVBnLxMieU9yIZeiMJ2O3AixOTdLLrBs5Q5pFukgMTwpRqlSMkHaaVYjqPya3QSGeCpVc5s9DsQqfm_7XlTbKCz3XXt1zHT48Pnsb0Jne3LpNpH1TsxUAfwBheFDB
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Method+for+Stackelberg+Mean+Field+Games&rft.jtitle=Mathematics+of+operations+research&rft.au=Dayan%C4%B1kl%C4%B1%2C+G%C3%B6k%C3%A7e&rft.au=Lauri%C3%A8re%2C+Mathieu&rft.date=2024-12-02&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287%2Fmoor.2023.0065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_moor_2023_0065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon