Porous MnO2/ carbon Hybrid Material with Improved Electrochemical Performance
In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some sele...
Saved in:
Published in | Korean Journal of Metals and Materials Vol. 59; no. 9; pp. 670 - 676 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
대한금속·재료학회
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1738-8228 2288-8241 |
DOI | 10.3365/KJMM.2021.59.9.670 |
Cover
Abstract | In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some selective nanoparticles coated with carbon. The structural feature was identified by transmission electron microscopy (TEM). The surface area and pore size distribution of the materials were investigated by N2 adsorption/desorption isotherms, and demonstrated a high surface area of about 80 m2 g-1. AC is a readily available carbon source that can easily form a composite with MnO2 nanoparticles, forming a distinctive porous morphology. When employed as an anode material for lithium-ion batteries (LIB), the composite electrode demonstrated high specific capacities with an initial discharge capacity of 2500 mAh g-1 and maintained about 1391 mAh g-1 after fifty cycles. It also demonstrated excellent high rate performance, delivering more than 500 mAh g-1 of specific capacity at 3000 mA g-1, which is a higher capacity than a conventional graphite anode. Overall, the MnO2/ carbon composite electrode delivered superior anode performance, which was attributed to the improved surface area of the carbon hybridized MnO2 nanoparticles. The porous composite has benefits for lithium storage performance. |
---|---|
AbstractList | In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some selective nanoparticles coated with carbon. The structural feature was identified by transmission electron microscopy (TEM). The surface area and pore size distribution of the materials were investigated by N2 adsorption/desorption isotherms, and demonstrated a high surface area of about 80 m2 g-1. AC is a readily available carbon source that can easily form a composite with MnO2 nanoparticles, forming a distinctive porous morphology. When employed as an anode material for lithium-ion batteries (LIB), the composite electrode demonstrated high specific capacities with an initial discharge capacity of 2500 mAh g-1 and maintained about 1391 mAh g-1 after fifty cycles. It also demonstrated excellent high rate performance, delivering more than 500 mAh g-1 of specific capacity at 3000 mA g-1, which is a higher capacity than a conventional graphite anode. Overall, the MnO2/ carbon composite electrode delivered superior anode performance, which was attributed to the improved surface area of the carbon hybridized MnO2 nanoparticles.
The porous composite has benefits for lithium storage performance. KCI Citation Count: 0 In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some selective nanoparticles coated with carbon. The structural feature was identified by transmission electron microscopy (TEM). The surface area and pore size distribution of the materials were investigated by N2 adsorption/desorption isotherms, and demonstrated a high surface area of about 80 m2 g-1. AC is a readily available carbon source that can easily form a composite with MnO2 nanoparticles, forming a distinctive porous morphology. When employed as an anode material for lithium-ion batteries (LIB), the composite electrode demonstrated high specific capacities with an initial discharge capacity of 2500 mAh g-1 and maintained about 1391 mAh g-1 after fifty cycles. It also demonstrated excellent high rate performance, delivering more than 500 mAh g-1 of specific capacity at 3000 mA g-1, which is a higher capacity than a conventional graphite anode. Overall, the MnO2/ carbon composite electrode delivered superior anode performance, which was attributed to the improved surface area of the carbon hybridized MnO2 nanoparticles. The porous composite has benefits for lithium storage performance. |
Author | Nulu, Venugopal |
Author_xml | – sequence: 1 givenname: Venugopal surname: Nulu fullname: Nulu, Venugopal |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743145$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotkEFPwjAcxRuDiYh8AU-7etho_9269kgICsoCMXhu2q6TBraSbmr49m7i6b2X9_IOv3s0anxjEXokOKGUZbO316JIAANJMpGIhOX4Bo0BOI85pGSExiSngwd-h6Zt6zTGDBhkKR6jYueD_2qjotnCLDIqaN9Eq4sOrowK1dng1Cn6cd0hWtfn4L9tGS1P1nTBm4OtnenbnQ2VD7VqjH1At5U6tXb6rxP08bzcL1bxZvuyXsw3sQHMupilTJfEQsV1KtKU21JnJeNUE5tRkguRK2NEb2xuNBEEeM5AGdwnMGAyOkFP198mVPJonPTK_emnl8cg5-_7tRS8_xa038J1a4Jv22AreQ6uVuEiCZYDPznwkwM_mQkpZM-P_gL-V2Sw |
Cites_doi | 10.1039/c2ee21892e 10.3390/catal10020256 10.1021/ic051715b 10.1039/c0jm00759e 10.1021/cm051294w 10.1016/j.jpowsour.2006.10.040 10.1002/adma.200701231 10.1016/j.jpowsour.2012.11.056 10.1016/S2095-4956(13)60010-8 10.1039/C9SE01048C 10.1351/pac200880112327 10.1039/C5TA01508A 10.1149/1.1838307 10.1002/celc.202001130 10.1016/j.snb.2011.12.080 10.1007/s10854-015-4250-2 10.3365/KJMM.2020.58.12.896 10.1016/j.cej.2019.04.202 10.1021/jz200836h 10.1002/cssc.201500200 10.1016/j.jpowsour.2016.02.049 10.1007/s10800-013-0614-6 10.3365/KJMM.2020.58.12.863 10.1016/j.jpowsour.2003.12.054 10.20964/2018.06.14 10.1016/j.electacta.2014.07.089 10.1039/c3ta14372d 10.1007/s10008-009-0856-8 10.1039/C4TA03924F 10.1039/C5RA16624A 10.1063/1.4884391 10.1016/j.jallcom.2018.11.107 10.1039/C9TA00353C 10.1039/a907614j 10.1007/s12540-019-00456-3 10.1039/C5NR05011A 10.1166/nnl.2012.1377 |
ContentType | Journal Article |
DBID | AAYXX CITATION ACYCR |
DOI | 10.3365/KJMM.2021.59.9.670 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2288-8241 |
EndPage | 676 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9849493 10_3365_KJMM_2021_59_9_670 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E ACYCR |
ID | FETCH-LOGICAL-c206t-646bd1e2f8b49448edb5d683b1e5317997acc9179e7cb19128762ac07cb2c2c53 |
ISSN | 1738-8228 |
IngestDate | Tue Nov 21 21:39:34 EST 2023 Tue Jul 01 02:39:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c206t-646bd1e2f8b49448edb5d683b1e5317997acc9179e7cb19128762ac07cb2c2c53 |
OpenAccessLink | http://kjmm.org/upload/pdf/kjmm-2021-59-9-670.pdf |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9849493 crossref_primary_10_3365_KJMM_2021_59_9_670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Korean Journal of Metals and Materials |
PublicationYear | 2021 |
Publisher | 대한금속·재료학회 |
Publisher_xml | – name: 대한금속·재료학회 |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Yanhong (ref33) 2016 Hongdong (ref34) 2016 ref24 ref23 ref26 ref25 Wang (ref28) 2015 ref20 ref41 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref20 doi: 10.1039/c2ee21892e – ident: ref26 doi: 10.3390/catal10020256 – start-page: 2525 year: 2016 ident: ref33 – ident: ref32 doi: 10.1021/ic051715b – ident: ref1 doi: 10.1039/c0jm00759e – ident: ref13 doi: 10.1021/cm051294w – ident: ref10 doi: 10.1016/j.jpowsour.2006.10.040 – ident: ref12 doi: 10.1002/adma.200701231 – ident: ref3 doi: 10.1016/j.jpowsour.2012.11.056 – ident: ref4 doi: 10.1016/S2095-4956(13)60010-8 – ident: ref5 doi: 10.1039/C9SE01048C – ident: ref2 doi: 10.1351/pac200880112327 – ident: ref23 doi: 10.1039/C5TA01508A – ident: ref15 doi: 10.1149/1.1838307 – year: 2015 ident: ref28 – ident: ref31 doi: 10.1002/celc.202001130 – ident: ref11 doi: 10.1016/j.snb.2011.12.080 – ident: ref35 doi: 10.1007/s10854-015-4250-2 – ident: ref7 doi: 10.3365/KJMM.2020.58.12.896 – ident: ref30 doi: 10.1016/j.cej.2019.04.202 – ident: ref40 doi: 10.1021/jz200836h – ident: ref37 doi: 10.1002/cssc.201500200 – ident: ref39 doi: 10.1016/j.jpowsour.2016.02.049 – ident: ref19 doi: 10.1007/s10800-013-0614-6 – ident: ref21 doi: 10.1016/j.jpowsour.2016.02.049 – ident: ref6 doi: 10.3365/KJMM.2020.58.12.863 – ident: ref16 doi: 10.1016/j.jpowsour.2003.12.054 – ident: ref9 doi: 10.20964/2018.06.14 – ident: ref41 doi: 10.1016/j.electacta.2014.07.089 – ident: ref22 doi: 10.1039/c3ta14372d – ident: ref18 doi: 10.1007/s10008-009-0856-8 – ident: ref36 doi: 10.1039/C4TA03924F – ident: ref27 doi: 10.1039/C5RA16624A – ident: ref25 doi: 10.1063/1.4884391 – ident: ref17 doi: 10.1016/j.jallcom.2018.11.107 – ident: ref24 doi: 10.1039/C9TA00353C – ident: ref14 doi: 10.1039/a907614j – start-page: 2525 year: 2016 ident: ref34 – ident: ref8 doi: 10.1007/s12540-019-00456-3 – ident: ref38 doi: 10.1039/C5NR05011A – ident: ref29 doi: 10.1166/nnl.2012.1377 |
SSID | ssib006262540 ssib022232341 ssib044734076 ssib023167440 ssib036264765 ssib001148846 ssib002806993 ssib014806100 ssib005195854 |
Score | 2.198611 |
Snippet | In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature... |
SourceID | nrf crossref |
SourceType | Open Website Index Database |
StartPage | 670 |
SubjectTerms | 재료공학 |
Title | Porous MnO2/ carbon Hybrid Material with Improved Electrochemical Performance |
URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743145 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 대한금속·재료학회지, 2021, 59(9), 578, pp.670-676 |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2288-8241 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044734076 issn: 1738-8228 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLa6ceGCQIAYMBQhfJrS5Zcd-5hmgTGWbocV7WbFrgvTpHaqugM78Mfxl_FenDRpAWkgLpHt1FH83tfn7zl-z4S8q2Q8Y3wqfKGN9hMJHE6zEB3XyAazRCfCYqBwOebHk-Tkkl0OBj96u5ZuV3po7n4bV_IvWoU20CtGyf6FZtcPhQYog37hChqG6710fL5Y4g7Wcn6G-U0xy7QGZX79hlFYB0BF63dwS61X9eIBsMvm3BvTJgq46SIH-kSVFiMqctwHURxRyajMaZHRkaBC0ALaORVHNI_oKMWqLGiWY5csxl5NF1kXsrolp1mKTwONMgmsVvaWIMaT08nnYjz5cHaenfaXIaJwvc_KAef_vlXPIKdgkIHEOBtt6zaoYZtLmNUYXu6OH2nmcO7OlNmeHuKYYyaNTydlOcQxDJkcyuG6az8X99YcuZGN-9pcqS8Ldb1U4HN8VFJghp94hzyIUs7xFI3ye9FRUvA3RbL5JVtu2ETJRI_SgYMJPvvahkJvYFxdCsUIMxck3X3MJpSk3ZfqJElj8NHroLpWdC5WDAd_-OvQN_jYznw569Gri8fkUeMXeZkD-RMysPOnpHQA9xDgh56Dt-fg7bXw9hDeXgtvbwveXg_ez8jkfXGRH_vN-R--iQK-8nnC9TS00UxokDBYjalmUy5iHVqYOVIp08oYCQWbGh1KYFows1cmgFpkIsPi52R3vpjbF8RDQdvAxMxi8B6vpIWSxU0IszANKrZHDlopqBuX5kWBe4wyUygzhTJTTCqpQGZ75C0IqsbBn_Hw8j4_ekUedn-m12R3tby1-8ByV_pNDaOfC7-Cxg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+MnO2%2F+carbon+hybrid+material+with+improved+electrochemical+performance&rft.jtitle=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C%EC%A7%80%2C+59%289%29&rft.au=NULUVENUGOPAL&rft.date=2021-09-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1738-8228&rft.eissn=2288-8241&rft.spage=670&rft.epage=676&rft_id=info:doi/10.3365%2FKJMM.2021.59.9.670&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9849493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8228&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8228&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8228&client=summon |