Porous MnO2/ carbon Hybrid Material with Improved Electrochemical Performance

In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some sele...

Full description

Saved in:
Bibliographic Details
Published inKorean Journal of Metals and Materials Vol. 59; no. 9; pp. 670 - 676
Main Author Nulu, Venugopal
Format Journal Article
LanguageEnglish
Published 대한금속·재료학회 01.09.2021
Subjects
Online AccessGet full text
ISSN1738-8228
2288-8241
DOI10.3365/KJMM.2021.59.9.670

Cover

Abstract In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some selective nanoparticles coated with carbon. The structural feature was identified by transmission electron microscopy (TEM). The surface area and pore size distribution of the materials were investigated by N2 adsorption/desorption isotherms, and demonstrated a high surface area of about 80 m2 g-1. AC is a readily available carbon source that can easily form a composite with MnO2 nanoparticles, forming a distinctive porous morphology. When employed as an anode material for lithium-ion batteries (LIB), the composite electrode demonstrated high specific capacities with an initial discharge capacity of 2500 mAh g-1 and maintained about 1391 mAh g-1 after fifty cycles. It also demonstrated excellent high rate performance, delivering more than 500 mAh g-1 of specific capacity at 3000 mA g-1, which is a higher capacity than a conventional graphite anode. Overall, the MnO2/ carbon composite electrode delivered superior anode performance, which was attributed to the improved surface area of the carbon hybridized MnO2 nanoparticles. The porous composite has benefits for lithium storage performance.
AbstractList In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some selective nanoparticles coated with carbon. The structural feature was identified by transmission electron microscopy (TEM). The surface area and pore size distribution of the materials were investigated by N2 adsorption/desorption isotherms, and demonstrated a high surface area of about 80 m2 g-1. AC is a readily available carbon source that can easily form a composite with MnO2 nanoparticles, forming a distinctive porous morphology. When employed as an anode material for lithium-ion batteries (LIB), the composite electrode demonstrated high specific capacities with an initial discharge capacity of 2500 mAh g-1 and maintained about 1391 mAh g-1 after fifty cycles. It also demonstrated excellent high rate performance, delivering more than 500 mAh g-1 of specific capacity at 3000 mA g-1, which is a higher capacity than a conventional graphite anode. Overall, the MnO2/ carbon composite electrode delivered superior anode performance, which was attributed to the improved surface area of the carbon hybridized MnO2 nanoparticles. The porous composite has benefits for lithium storage performance. KCI Citation Count: 0
In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature annealing, with activated carbon (AC) as the carbon source in the composite preparation. The porous MnO2/carbon structures contained some selective nanoparticles coated with carbon. The structural feature was identified by transmission electron microscopy (TEM). The surface area and pore size distribution of the materials were investigated by N2 adsorption/desorption isotherms, and demonstrated a high surface area of about 80 m2 g-1. AC is a readily available carbon source that can easily form a composite with MnO2 nanoparticles, forming a distinctive porous morphology. When employed as an anode material for lithium-ion batteries (LIB), the composite electrode demonstrated high specific capacities with an initial discharge capacity of 2500 mAh g-1 and maintained about 1391 mAh g-1 after fifty cycles. It also demonstrated excellent high rate performance, delivering more than 500 mAh g-1 of specific capacity at 3000 mA g-1, which is a higher capacity than a conventional graphite anode. Overall, the MnO2/ carbon composite electrode delivered superior anode performance, which was attributed to the improved surface area of the carbon hybridized MnO2 nanoparticles. The porous composite has benefits for lithium storage performance.
Author Nulu, Venugopal
Author_xml – sequence: 1
  givenname: Venugopal
  surname: Nulu
  fullname: Nulu, Venugopal
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743145$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkEFPwjAcxRuDiYh8AU-7etho_9269kgICsoCMXhu2q6TBraSbmr49m7i6b2X9_IOv3s0anxjEXokOKGUZbO316JIAANJMpGIhOX4Bo0BOI85pGSExiSngwd-h6Zt6zTGDBhkKR6jYueD_2qjotnCLDIqaN9Eq4sOrowK1dng1Cn6cd0hWtfn4L9tGS1P1nTBm4OtnenbnQ2VD7VqjH1At5U6tXb6rxP08bzcL1bxZvuyXsw3sQHMupilTJfEQsV1KtKU21JnJeNUE5tRkguRK2NEb2xuNBEEeM5AGdwnMGAyOkFP198mVPJonPTK_emnl8cg5-_7tRS8_xa038J1a4Jv22AreQ6uVuEiCZYDPznwkwM_mQkpZM-P_gL-V2Sw
Cites_doi 10.1039/c2ee21892e
10.3390/catal10020256
10.1021/ic051715b
10.1039/c0jm00759e
10.1021/cm051294w
10.1016/j.jpowsour.2006.10.040
10.1002/adma.200701231
10.1016/j.jpowsour.2012.11.056
10.1016/S2095-4956(13)60010-8
10.1039/C9SE01048C
10.1351/pac200880112327
10.1039/C5TA01508A
10.1149/1.1838307
10.1002/celc.202001130
10.1016/j.snb.2011.12.080
10.1007/s10854-015-4250-2
10.3365/KJMM.2020.58.12.896
10.1016/j.cej.2019.04.202
10.1021/jz200836h
10.1002/cssc.201500200
10.1016/j.jpowsour.2016.02.049
10.1007/s10800-013-0614-6
10.3365/KJMM.2020.58.12.863
10.1016/j.jpowsour.2003.12.054
10.20964/2018.06.14
10.1016/j.electacta.2014.07.089
10.1039/c3ta14372d
10.1007/s10008-009-0856-8
10.1039/C4TA03924F
10.1039/C5RA16624A
10.1063/1.4884391
10.1016/j.jallcom.2018.11.107
10.1039/C9TA00353C
10.1039/a907614j
10.1007/s12540-019-00456-3
10.1039/C5NR05011A
10.1166/nnl.2012.1377
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.3365/KJMM.2021.59.9.670
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2288-8241
EndPage 676
ExternalDocumentID oai_kci_go_kr_ARTI_9849493
10_3365_KJMM_2021_59_9_670
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ACYCR
ID FETCH-LOGICAL-c206t-646bd1e2f8b49448edb5d683b1e5317997acc9179e7cb19128762ac07cb2c2c53
ISSN 1738-8228
IngestDate Tue Nov 21 21:39:34 EST 2023
Tue Jul 01 02:39:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c206t-646bd1e2f8b49448edb5d683b1e5317997acc9179e7cb19128762ac07cb2c2c53
OpenAccessLink http://kjmm.org/upload/pdf/kjmm-2021-59-9-670.pdf
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9849493
crossref_primary_10_3365_KJMM_2021_59_9_670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Korean Journal of Metals and Materials
PublicationYear 2021
Publisher 대한금속·재료학회
Publisher_xml – name: 대한금속·재료학회
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Yanhong (ref33) 2016
Hongdong (ref34) 2016
ref24
ref23
ref26
ref25
Wang (ref28) 2015
ref20
ref41
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref20
  doi: 10.1039/c2ee21892e
– ident: ref26
  doi: 10.3390/catal10020256
– start-page: 2525
  year: 2016
  ident: ref33
– ident: ref32
  doi: 10.1021/ic051715b
– ident: ref1
  doi: 10.1039/c0jm00759e
– ident: ref13
  doi: 10.1021/cm051294w
– ident: ref10
  doi: 10.1016/j.jpowsour.2006.10.040
– ident: ref12
  doi: 10.1002/adma.200701231
– ident: ref3
  doi: 10.1016/j.jpowsour.2012.11.056
– ident: ref4
  doi: 10.1016/S2095-4956(13)60010-8
– ident: ref5
  doi: 10.1039/C9SE01048C
– ident: ref2
  doi: 10.1351/pac200880112327
– ident: ref23
  doi: 10.1039/C5TA01508A
– ident: ref15
  doi: 10.1149/1.1838307
– year: 2015
  ident: ref28
– ident: ref31
  doi: 10.1002/celc.202001130
– ident: ref11
  doi: 10.1016/j.snb.2011.12.080
– ident: ref35
  doi: 10.1007/s10854-015-4250-2
– ident: ref7
  doi: 10.3365/KJMM.2020.58.12.896
– ident: ref30
  doi: 10.1016/j.cej.2019.04.202
– ident: ref40
  doi: 10.1021/jz200836h
– ident: ref37
  doi: 10.1002/cssc.201500200
– ident: ref39
  doi: 10.1016/j.jpowsour.2016.02.049
– ident: ref19
  doi: 10.1007/s10800-013-0614-6
– ident: ref21
  doi: 10.1016/j.jpowsour.2016.02.049
– ident: ref6
  doi: 10.3365/KJMM.2020.58.12.863
– ident: ref16
  doi: 10.1016/j.jpowsour.2003.12.054
– ident: ref9
  doi: 10.20964/2018.06.14
– ident: ref41
  doi: 10.1016/j.electacta.2014.07.089
– ident: ref22
  doi: 10.1039/c3ta14372d
– ident: ref18
  doi: 10.1007/s10008-009-0856-8
– ident: ref36
  doi: 10.1039/C4TA03924F
– ident: ref27
  doi: 10.1039/C5RA16624A
– ident: ref25
  doi: 10.1063/1.4884391
– ident: ref17
  doi: 10.1016/j.jallcom.2018.11.107
– ident: ref24
  doi: 10.1039/C9TA00353C
– ident: ref14
  doi: 10.1039/a907614j
– start-page: 2525
  year: 2016
  ident: ref34
– ident: ref8
  doi: 10.1007/s12540-019-00456-3
– ident: ref38
  doi: 10.1039/C5NR05011A
– ident: ref29
  doi: 10.1166/nnl.2012.1377
SSID ssib006262540
ssib022232341
ssib044734076
ssib023167440
ssib036264765
ssib001148846
ssib002806993
ssib014806100
ssib005195854
Score 2.198611
Snippet In this work, MnO2 nanoparticles were embedded in a carbon matrix as a porous composite, fabricated using a simple chemical route followed by low-temperature...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 670
SubjectTerms 재료공학
Title Porous MnO2/ carbon Hybrid Material with Improved Electrochemical Performance
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002743145
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한금속·재료학회지, 2021, 59(9), 578, pp.670-676
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-8241
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044734076
  issn: 1738-8228
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLa6ceGCQIAYMBQhfJrS5Zcd-5hmgTGWbocV7WbFrgvTpHaqugM78Mfxl_FenDRpAWkgLpHt1FH83tfn7zl-z4S8q2Q8Y3wqfKGN9hMJHE6zEB3XyAazRCfCYqBwOebHk-Tkkl0OBj96u5ZuV3po7n4bV_IvWoU20CtGyf6FZtcPhQYog37hChqG6710fL5Y4g7Wcn6G-U0xy7QGZX79hlFYB0BF63dwS61X9eIBsMvm3BvTJgq46SIH-kSVFiMqctwHURxRyajMaZHRkaBC0ALaORVHNI_oKMWqLGiWY5csxl5NF1kXsrolp1mKTwONMgmsVvaWIMaT08nnYjz5cHaenfaXIaJwvc_KAef_vlXPIKdgkIHEOBtt6zaoYZtLmNUYXu6OH2nmcO7OlNmeHuKYYyaNTydlOcQxDJkcyuG6az8X99YcuZGN-9pcqS8Ldb1U4HN8VFJghp94hzyIUs7xFI3ye9FRUvA3RbL5JVtu2ETJRI_SgYMJPvvahkJvYFxdCsUIMxck3X3MJpSk3ZfqJElj8NHroLpWdC5WDAd_-OvQN_jYznw569Gri8fkUeMXeZkD-RMysPOnpHQA9xDgh56Dt-fg7bXw9hDeXgtvbwveXg_ez8jkfXGRH_vN-R--iQK-8nnC9TS00UxokDBYjalmUy5iHVqYOVIp08oYCQWbGh1KYFows1cmgFpkIsPi52R3vpjbF8RDQdvAxMxi8B6vpIWSxU0IszANKrZHDlopqBuX5kWBe4wyUygzhTJTTCqpQGZ75C0IqsbBn_Hw8j4_ekUedn-m12R3tby1-8ByV_pNDaOfC7-Cxg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+MnO2%2F+carbon+hybrid+material+with+improved+electrochemical+performance&rft.jtitle=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C%EC%A7%80%2C+59%289%29&rft.au=NULUVENUGOPAL&rft.date=2021-09-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1738-8228&rft.eissn=2288-8241&rft.spage=670&rft.epage=676&rft_id=info:doi/10.3365%2FKJMM.2021.59.9.670&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9849493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8228&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8228&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8228&client=summon