A nonmonotone conditional gradient method for multiobjective optimization problems
This study analyzes the conditional gradient method for constrained multiobjective optimization problems, also known as the Frank–Wolfe method. We assume that the objectives are continuously differentiable, and the constraint set is convex and compact. We employ an average-type nonmonotone line sear...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 28; no. 17-18; pp. 9609 - 9630 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-024-09806-9 |
Cover
Abstract | This study analyzes the conditional gradient method for constrained multiobjective optimization problems, also known as the Frank–Wolfe method. We assume that the objectives are continuously differentiable, and the constraint set is convex and compact. We employ an average-type nonmonotone line search, which takes the average of the recent objective function values. The asymptotic convergence properties without convexity assumptions on the objective functions are established. We prove that every limit point of the sequence of iterates that is obtained by the proposed method is a Pareto critical point. An iteration-complexity bound is provided regardless of the convexity assumption on the objective functions. The effectiveness of the suggested approach is demonstrated by applying it to several benchmark test problems. In addition, the efficiency of the proposed algorithm in generating approximations of the entire Pareto front is compared to the existing Hager–Zhang conjugate gradient method, the steepest descent method, the monotone conditional gradient method, and a nonmonotone conditional gradient method. In finding empirical comparison, we utilize two commonly used performance matrices—inverted generational distance and hypervolume indicators. |
---|---|
AbstractList | This study analyzes the conditional gradient method for constrained multiobjective optimization problems, also known as the Frank–Wolfe method. We assume that the objectives are continuously differentiable, and the constraint set is convex and compact. We employ an average-type nonmonotone line search, which takes the average of the recent objective function values. The asymptotic convergence properties without convexity assumptions on the objective functions are established. We prove that every limit point of the sequence of iterates that is obtained by the proposed method is a Pareto critical point. An iteration-complexity bound is provided regardless of the convexity assumption on the objective functions. The effectiveness of the suggested approach is demonstrated by applying it to several benchmark test problems. In addition, the efficiency of the proposed algorithm in generating approximations of the entire Pareto front is compared to the existing Hager–Zhang conjugate gradient method, the steepest descent method, the monotone conditional gradient method, and a nonmonotone conditional gradient method. In finding empirical comparison, we utilize two commonly used performance matrices—inverted generational distance and hypervolume indicators. |
Author | Upadhayay, Ashutosh Jauny Zhao, Xiaopeng Ghosh, Debdas Yao, Jen-Chih |
Author_xml | – sequence: 1 givenname: Ashutosh surname: Upadhayay fullname: Upadhayay, Ashutosh organization: Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Department of Mathematics, Bareilly College – sequence: 2 givenname: Debdas orcidid: 0000-0003-2419-7082 surname: Ghosh fullname: Ghosh, Debdas email: debdas.mat@iitbhu.ac.in organization: Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University) – sequence: 3 surname: Jauny fullname: Jauny organization: Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University) – sequence: 4 givenname: Jen-Chih surname: Yao fullname: Yao, Jen-Chih organization: Center for General Education, China Medical University, Academy of Romanian Scientists – sequence: 5 givenname: Xiaopeng surname: Zhao fullname: Zhao, Xiaopeng organization: School of Mathematical Sciences, Tiangong University |
BookMark | eNp9kMtKAzEUhoNUsK2-gKu8QPTkMkmzLMUbFATRdcjMZGrKzKQkqaBPb9q6ctHVOXD-7-fwzdBkDKND6JbCHQVQ9wmgAiDABAG9AEn0BZpSwTlRQunJcWdEScGv0CylLQCjquJT9LbEpWoIY8ilETdhbH32YbQ93kTbejdmPLj8GVrchYiHfV-u9dY12X85HHbZD_7HHgi8i6Hu3ZCu0WVn--Ru_uYcfTw-vK-eyfr16WW1XJOGgdSk04wrrauWSbCCU2DAGtsxUWvKOFV8oSzTljtqZeco1HXVNoI5WbeCScv5HC1OvU0MKUXXmcbn4ys5Wt8bCubgxpzcmOLGHN0YXVD2D91FP9j4fR7iJyiV8Lhx0WzDPhZT6Rz1C3hLeg4 |
CitedBy_id | crossref_primary_10_3934_jimo_2025052 crossref_primary_10_1080_0305215X_2024_2418341 crossref_primary_10_1080_02331934_2025_2475203 crossref_primary_10_1080_02331934_2024_2373903 |
Cites_doi | 10.1287/mnsc.20.11.1442 10.1007/s001860000043 10.1007/s00500-014-1406-6 10.1080/00207729608929211 10.1080/02331934.2014.947500 10.1162/106365602760234108 10.1007/s10898-019-00802-0 10.1007/s10589-012-9501-z 10.1002/9781118341704 10.1016/j.na.2011.04.067 10.1137/S1052623496307510 10.1007/s00158-004-0465-1 10.1016/j.cam.2013.06.045 10.1023/B:COAP.0000018877.86161.8b 10.1137/S1052623403429093 10.1137/17M1126588 10.1002/nav.3800030109 10.1080/02331934.2018.1530235 10.1137/0723046 10.1007/s00500-017-2965-0 10.1007/s12597-014-0178-1 10.1137/110839072 10.1007/s101070100263 10.1016/j.cam.2013.11.007 10.1016/j.ejor.2007.05.015 10.1080/10556788.2020.1737691 10.1007/s10898-007-9265-7 10.1016/0022-247X(68)90201-1 10.1007/s10589-023-00478-z 10.1109/TEVC.2005.861417 10.1016/j.ejor.2020.11.016 10.1016/0041-5553(66)90114-5 10.1137/18M1191737 10.1137/140992382 10.1023/A:1017536311488 10.1137/08071692X 10.1016/j.cam.2004.06.018 10.1007/s11590-018-1353-8 10.1137/S1052623403428208 10.1007/s001860300327 10.1007/s10589-019-00146-1 10.1007/s10589-020-00260-5 10.1016/j.orl.2014.08.011 10.1109/ICNC.2011.6022367 10.1007/s11081-022-09747-y 10.1007/s10479-008-0420-4 10.4208/jcm.2204-m2021-0241 10.1201/9781003329039-8 10.1007/11844297_52 10.1007/978-3-540-31880-4_35 10.1155/2011/569784 10.1016/j.cor.2023.106236 10.23952/jnva.6.2022.6.06 10.1016/j.ejor.2017.05.027 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00500-024-09806-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 9630 |
ExternalDocumentID | 10_1007_s00500_024_09806_9 |
GrantInformation_xml | – fundername: SERB, India grantid: MTR/2021/000696; CRG/2022/001347 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
ID | FETCH-LOGICAL-c2069-f9237995d260a4310202caf24b912317387a29a3e1a6fe10bb5dc42e6bd426a33 |
IEDL.DBID | AGYKE |
ISSN | 1432-7643 |
IngestDate | Wed Oct 01 03:00:39 EDT 2025 Thu Apr 24 22:48:45 EDT 2025 Fri Feb 21 02:36:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17-18 |
Keywords | Pareto optimality Constraint optimization problem Conditional gradient method Pareto critical Nonmonotone line search Multiobjective optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2069-f9237995d260a4310202caf24b912317387a29a3e1a6fe10bb5dc42e6bd426a33 |
ORCID | 0000-0003-2419-7082 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1007_s00500_024_09806_9 crossref_primary_10_1007_s00500_024_09806_9 springer_journals_10_1007_s00500_024_09806_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240900 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Ghosh, Chakraborty (CR23) 2015; 52 Miglierina, Molho, Recchioni (CR44) 2008; 188 Fukuda, Drummond (CR20) 2013; 54 Fishburn (CR16) 1974; 20 Hillermeier (CR27) 2001; 110 Bhaskar, Gupta, Ray (CR5) 2000; 16 CR34 CR33 Bonnel, Iusem, Svaiter (CR6) 2005; 15 CR32 CR31 CR30 Goncalves, Prudente (CR24) 2020; 76 Lucambio Pérez, Prudente (CR41) 2018; 28 Ansary, Panda (CR1) 2015; 64 Xu, Peng, Xiao (CR55) 2015; 19 Cruz, Pérez, Melo (CR9) 2011; 74 Beck, Teboulle (CR4) 2004; 59 Povalej (CR46) 2014; 255 Griewank, Iri, Tanabe (CR25) 1989 Dai, Ni (CR10) 2003; 21 CR48 CR47 Zhang, Hager (CR57) 2004; 14 Grippo, Lampariello, Lucidi (CR26) 1986; 23 Lan, Zhou (CR38) 2016; 26 Wang, Hu, Yu, Li, Yang (CR54) 2019; 29 Kim, De Weck (CR36) 2005; 29 Geoffrion (CR21) 1968; 22 Das, Dennis (CR11) 1998; 8 Ghosh, Chakraborty (CR22) 2014; 42 Luss, Teboulle (CR42) 2013; 55 Fleige, Drummond, Svaiter (CR18) 2009; 20 Frank, Wolfe (CR19) 1956; 3 Mahdavi-Amiri, Salehi Sadaghiani (CR43) 2020; 35 Fliege, Svaiter (CR17) 2000; 51 Drummond, Svaiter (CR14) 2005; 175 Laumanns, Thiele, Deb, Zitzler (CR39) 2022; 10 CR58 CR56 Levitin, Polyak (CR40) 1966; 6 CR52 CR51 CR50 Mita, Fukuda, Yamashita (CR45) 2019; 75 Assunção, Ferreira, Prudente (CR2) 2021; 78 Khorram, Khaledian, Khaledyan (CR35) 2014; 261 Schütze, Laumanns, Coello Coello, Dellnitz, Talbi (CR49) 2008; 41 Viennet, Fonteix, Marc (CR53) 1996; 27 Konnov (CR37) 2018; 67 CR29 Fazzio, Schuverdt (CR15) 2019; 13 Chugh, Sindhya, Hakanen (CR8) 2019; 23 Dolan, Moré (CR12) 2002; 91 Audet, Bigeon, Cartier, Le Digabel, Salomon (CR3) 2021; 292 Chen, Zhao Yang (CR7) 2023; 85 Drummond, Iusem (CR13) 2004; 28 Huband, Hingston, Barone, While (CR28) 2006; 10 9806_CR33 9806_CR32 A Griewank (9806_CR25) 1989 9806_CR34 C Audet (9806_CR3) 2021; 292 J Wang (9806_CR54) 2019; 29 H Zhang (9806_CR57) 2004; 14 LR Lucambio Pérez (9806_CR41) 2018; 28 V Bhaskar (9806_CR5) 2000; 16 9806_CR31 9806_CR30 E Levitin (9806_CR40) 1966; 6 S Huband (9806_CR28) 2006; 10 E Khorram (9806_CR35) 2014; 261 D Ghosh (9806_CR22) 2014; 42 E Miglierina (9806_CR44) 2008; 188 M Frank (9806_CR19) 1956; 3 IY Kim (9806_CR36) 2005; 29 G Lan (9806_CR38) 2016; 26 AM Geoffrion (9806_CR21) 1968; 22 H Bonnel (9806_CR6) 2005; 15 J Fliege (9806_CR17) 2000; 51 O Schütze (9806_CR49) 2008; 41 EH Fukuda (9806_CR20) 2013; 54 IV Konnov (9806_CR37) 2018; 67 LMG Drummond (9806_CR13) 2004; 28 PB Assunção (9806_CR2) 2021; 78 B Xu (9806_CR55) 2015; 19 9806_CR29 J Fleige (9806_CR18) 2009; 20 R Luss (9806_CR42) 2013; 55 N Mahdavi-Amiri (9806_CR43) 2020; 35 MLN Goncalves (9806_CR24) 2020; 76 9806_CR56 9806_CR58 9806_CR51 9806_CR50 K Mita (9806_CR45) 2019; 75 9806_CR52 ED Dolan (9806_CR12) 2002; 91 R Viennet (9806_CR53) 1996; 27 PC Fishburn (9806_CR16) 1974; 20 A Beck (9806_CR4) 2004; 59 T Chugh (9806_CR8) 2019; 23 Ž Povalej (9806_CR46) 2014; 255 W Chen (9806_CR7) 2023; 85 YH Dai (9806_CR10) 2003; 21 JB Cruz (9806_CR9) 2011; 74 9806_CR48 C Hillermeier (9806_CR27) 2001; 110 9806_CR47 D Ghosh (9806_CR23) 2015; 52 M Laumanns (9806_CR39) 2022; 10 NS Fazzio (9806_CR15) 2019; 13 LMG Drummond (9806_CR14) 2005; 175 MAT Ansary (9806_CR1) 2015; 64 L Grippo (9806_CR26) 1986; 23 I Das (9806_CR11) 1998; 8 |
References_xml | – volume: 20 start-page: 1442 issue: 11 year: 1974 end-page: 1471 ident: CR16 article-title: Exceptional paper-lexicographic orders, utilities and decision rules: A survey publication-title: Manag Sci doi: 10.1287/mnsc.20.11.1442 – volume: 51 start-page: 479 issue: 3 year: 2000 end-page: 494 ident: CR17 article-title: Steepest descent methods for multicriteria optimization publication-title: Math Method Oper Res doi: 10.1007/s001860000043 – volume: 19 start-page: 2265 year: 2015 end-page: 2273 ident: CR55 article-title: Dynamic deployment of virtual machines in cloud computing using multi-objective optimization publication-title: Soft Comput doi: 10.1007/s00500-014-1406-6 – ident: CR51 – volume: 27 start-page: 255 issue: 2 year: 1996 end-page: 260 ident: CR53 article-title: Multicriteria Optimization Using Genetic Algorithm for Determining the Pareto Set publication-title: Int J Syst Sci doi: 10.1080/00207729608929211 – volume: 64 start-page: 2289 issue: 11 year: 2015 end-page: 2306 ident: CR1 article-title: A modified quasi-Newton method for vector optimization problem publication-title: Optimization doi: 10.1080/02331934.2014.947500 – volume: 10 start-page: 263 issue: 3 year: 2022 end-page: 282 ident: CR39 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol Comput doi: 10.1162/106365602760234108 – ident: CR29 – volume: 75 start-page: 63 issue: 1 year: 2019 end-page: 90 ident: CR45 article-title: Nonmonotone line searches for unconstrained multiobjective optimization problems publication-title: J Global Optim doi: 10.1007/s10898-019-00802-0 – volume: 54 start-page: 473 issue: 3 year: 2013 end-page: 493 ident: CR20 article-title: Inexact projected gradient method for vector optimization publication-title: Comput Optim Appl doi: 10.1007/s10589-012-9501-z – ident: CR58 – volume: 16 start-page: 1 issue: 1 year: 2000 end-page: 54 ident: CR5 article-title: Applications of multiobjective optimization in chemical engineering publication-title: Rev Chem Eng doi: 10.1002/9781118341704 – volume: 74 start-page: 5268 issue: 16 year: 2011 end-page: 5273 ident: CR9 article-title: Convergence of the projected gradient method for quasiconvex multiobjective optimization publication-title: Nonlinear Anal doi: 10.1016/j.na.2011.04.067 – volume: 8 start-page: 631 issue: 3 year: 1998 end-page: 657 ident: CR11 article-title: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems publication-title: SIAM J Optim doi: 10.1137/S1052623496307510 – volume: 29 start-page: 149 issue: 2 year: 2005 end-page: 158 ident: CR36 article-title: Adaptive weighted-sum method for bi-objective optimization: pareto front generation publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-004-0465-1 – volume: 255 start-page: 765 year: 2014 end-page: 777 ident: CR46 article-title: Quasi-Newton’s method for multiobjective optimization publication-title: J Comput Appl Math doi: 10.1016/j.cam.2013.06.045 – volume: 28 start-page: 5 issue: 1 year: 2004 end-page: 29 ident: CR13 article-title: A projected gradient method for vector optimization problems publication-title: Comput Optim Appl doi: 10.1023/B:COAP.0000018877.86161.8b – volume: 15 start-page: 953 issue: 4 year: 2005 end-page: 970 ident: CR6 article-title: Proximal methods in vector optimization publication-title: SIAM J Optim doi: 10.1137/S1052623403429093 – volume: 28 start-page: 2690 issue: 3 year: 2018 end-page: 2720 ident: CR41 article-title: Nonlinear conjugate gradient methods for vector optimization publication-title: SIAM J Optim doi: 10.1137/17M1126588 – volume: 3 start-page: 95 issue: 1–2 year: 1956 end-page: 110 ident: CR19 article-title: An algorithm for quadratic programming publication-title: Naval Res Logist Q doi: 10.1002/nav.3800030109 – ident: CR50 – volume: 67 start-page: 2275 issue: 12 year: 2018 end-page: 2290 ident: CR37 article-title: Simplified versions of the conditional gradient method publication-title: Optimization doi: 10.1080/02331934.2018.1530235 – volume: 23 start-page: 707 issue: 4 year: 1986 end-page: 716 ident: CR26 article-title: A nonmonotone line search technique for Newton’s method publication-title: SIAM J Numer Anal doi: 10.1137/0723046 – ident: CR32 – volume: 23 start-page: 3137 year: 2019 end-page: 3166 ident: CR8 article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms publication-title: Soft Comput doi: 10.1007/s00500-017-2965-0 – volume: 52 start-page: 340 issue: 2 year: 2015 end-page: 366 ident: CR23 article-title: A direction based classical method to obtain complete Pareto set of multi-criteria optimization problems publication-title: Opsearch doi: 10.1007/s12597-014-0178-1 – volume: 55 start-page: 65 issue: 1 year: 2013 end-page: 98 ident: CR42 article-title: Conditional gradient algorithms for rank-one matrix approximations with a sparsity constraint publication-title: SIAM Rev doi: 10.1137/110839072 – volume: 91 start-page: 201 issue: 2 year: 2002 end-page: 213 ident: CR12 article-title: Benchmarking optimization software with performance profiles publication-title: Math Prog doi: 10.1007/s101070100263 – volume: 261 start-page: 158 year: 2014 end-page: 171 ident: CR35 article-title: A numerical method for constructing the Pareto front for multi-objective optimization problems publication-title: J Comput Appl Math doi: 10.1016/j.cam.2013.11.007 – ident: CR47 – volume: 188 start-page: 662 issue: 3 year: 2008 end-page: 682 ident: CR44 article-title: Box-constrained multi-objective optimization: a gradient-like method without a priori scalarization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.05.015 – volume: 35 start-page: 1223 issue: 6 year: 2020 end-page: 1247 ident: CR43 article-title: A superlinearly convergent nonmonotone quasi-Newton method for unconstrained multiobjective optimization publication-title: Optim Methods Softw doi: 10.1080/10556788.2020.1737691 – ident: CR30 – volume: 41 start-page: 559 issue: 4 year: 2008 end-page: 577 ident: CR49 article-title: Convergence of stochastic search algorithms to finite size Pareto set approximations publication-title: J Glob Optim doi: 10.1007/s10898-007-9265-7 – ident: CR33 – volume: 22 start-page: 618 issue: 3 year: 1968 end-page: 630 ident: CR21 article-title: Proper efficiency and the theory of vector maximization publication-title: J Math Anal Appl doi: 10.1016/0022-247X(68)90201-1 – volume: 85 start-page: 857 year: 2023 end-page: 896 ident: CR7 article-title: Conditional gradient method for vector optimization publication-title: Comput Optim Appl doi: 10.1007/s10589-023-00478-z – ident: CR56 – volume: 10 start-page: 477 issue: 5 year: 2006 end-page: 506 ident: CR28 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.861417 – volume: 292 start-page: 397 issue: 2 year: 2021 end-page: 422 ident: CR3 article-title: Performance indicators in multiobjective optimization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.11.016 – volume: 6 start-page: 1 issue: 5 year: 1966 end-page: 50 ident: CR40 article-title: Constrained minimization methods publication-title: USSR Comput Math Math Phys doi: 10.1016/0041-5553(66)90114-5 – volume: 29 start-page: 2388 issue: 3 year: 2019 end-page: 2421 ident: CR54 article-title: Extended Newton methods for multiobjective optimization: majorizing function technique and convergence analysis publication-title: SIAM J Optim doi: 10.1137/18M1191737 – volume: 26 start-page: 1379 issue: 2 year: 2016 end-page: 1409 ident: CR38 article-title: Conditional gradient sliding for convex optimization publication-title: SIAM J Optim doi: 10.1137/140992382 – start-page: 83 year: 1989 end-page: 108 ident: CR25 article-title: On automatic differentiation publication-title: Mathematical programming: recent developments and applications – volume: 110 start-page: 557 issue: 3 year: 2001 end-page: 583 ident: CR27 article-title: Generalized homotopy approach to multiobjective optimization publication-title: J Optim Theory Appl doi: 10.1023/A:1017536311488 – volume: 20 start-page: 602 issue: 2 year: 2009 end-page: 626 ident: CR18 article-title: Newton’s method for multiobjective optimization publication-title: SIAM J Optim doi: 10.1137/08071692X – ident: CR48 – volume: 21 start-page: 311 issue: 3 year: 2003 end-page: 320 ident: CR10 article-title: Testing different conjugate gradient methods for large-scale unconstrained optimization publication-title: J Comput Math – ident: CR52 – ident: CR31 – volume: 175 start-page: 395 issue: 2 year: 2005 end-page: 414 ident: CR14 article-title: A steepest descent method for vector optimization publication-title: J Comput Appl Math doi: 10.1016/j.cam.2004.06.018 – volume: 13 start-page: 1365 issue: 6 year: 2019 end-page: 1379 ident: CR15 article-title: Convergence analysis of a nonmonotone projected gradient method for multiobjective optimization problems publication-title: Optim Lett doi: 10.1007/s11590-018-1353-8 – ident: CR34 – volume: 14 start-page: 1043 issue: 4 year: 2004 end-page: 1056 ident: CR57 article-title: A nonmonotone line search technique and its application to unconstrained optimization publication-title: SIAM J Optim doi: 10.1137/S1052623403428208 – volume: 59 start-page: 235 issue: 2 year: 2004 end-page: 247 ident: CR4 article-title: A conditional gradient method with linear rate of convergence for solving convex linear systems publication-title: Math Methods Oper Res doi: 10.1007/s001860300327 – volume: 76 start-page: 889 issue: 3 year: 2020 end-page: 916 ident: CR24 article-title: On the extension of the Hager-Zhang conjugate gradient method for vector optimization publication-title: Comput Optim Appl doi: 10.1007/s10589-019-00146-1 – volume: 78 start-page: 741 issue: 3 year: 2021 end-page: 768 ident: CR2 article-title: Conditional gradient method for multiobjective optimization publication-title: Comput Optim Appl doi: 10.1007/s10589-020-00260-5 – volume: 42 start-page: 514 issue: 8 year: 2014 end-page: 521 ident: CR22 article-title: A new Pareto set generating method for multi-criteria optimization problems publication-title: Oper Res Lett doi: 10.1016/j.orl.2014.08.011 – volume: 35 start-page: 1223 issue: 6 year: 2020 ident: 9806_CR43 publication-title: Optim Methods Softw doi: 10.1080/10556788.2020.1737691 – ident: 9806_CR34 doi: 10.1109/ICNC.2011.6022367 – volume: 3 start-page: 95 issue: 1–2 year: 1956 ident: 9806_CR19 publication-title: Naval Res Logist Q doi: 10.1002/nav.3800030109 – volume: 27 start-page: 255 issue: 2 year: 1996 ident: 9806_CR53 publication-title: Int J Syst Sci doi: 10.1080/00207729608929211 – volume: 21 start-page: 311 issue: 3 year: 2003 ident: 9806_CR10 publication-title: J Comput Math – volume: 41 start-page: 559 issue: 4 year: 2008 ident: 9806_CR49 publication-title: J Glob Optim doi: 10.1007/s10898-007-9265-7 – volume: 292 start-page: 397 issue: 2 year: 2021 ident: 9806_CR3 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.11.016 – ident: 9806_CR52 doi: 10.1007/s11081-022-09747-y – ident: 9806_CR29 – volume: 85 start-page: 857 year: 2023 ident: 9806_CR7 publication-title: Comput Optim Appl doi: 10.1007/s10589-023-00478-z – volume: 110 start-page: 557 issue: 3 year: 2001 ident: 9806_CR27 publication-title: J Optim Theory Appl doi: 10.1023/A:1017536311488 – volume: 28 start-page: 5 issue: 1 year: 2004 ident: 9806_CR13 publication-title: Comput Optim Appl doi: 10.1023/B:COAP.0000018877.86161.8b – volume: 51 start-page: 479 issue: 3 year: 2000 ident: 9806_CR17 publication-title: Math Method Oper Res doi: 10.1007/s001860000043 – volume: 20 start-page: 602 issue: 2 year: 2009 ident: 9806_CR18 publication-title: SIAM J Optim doi: 10.1137/08071692X – volume: 20 start-page: 1442 issue: 11 year: 1974 ident: 9806_CR16 publication-title: Manag Sci doi: 10.1287/mnsc.20.11.1442 – volume: 67 start-page: 2275 issue: 12 year: 2018 ident: 9806_CR37 publication-title: Optimization doi: 10.1080/02331934.2018.1530235 – volume: 255 start-page: 765 year: 2014 ident: 9806_CR46 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2013.06.045 – volume: 28 start-page: 2690 issue: 3 year: 2018 ident: 9806_CR41 publication-title: SIAM J Optim doi: 10.1137/17M1126588 – ident: 9806_CR56 doi: 10.1007/s10479-008-0420-4 – volume: 23 start-page: 707 issue: 4 year: 1986 ident: 9806_CR26 publication-title: SIAM J Numer Anal doi: 10.1137/0723046 – ident: 9806_CR31 doi: 10.4208/jcm.2204-m2021-0241 – ident: 9806_CR51 doi: 10.1201/9781003329039-8 – volume: 23 start-page: 3137 year: 2019 ident: 9806_CR8 publication-title: Soft Comput doi: 10.1007/s00500-017-2965-0 – ident: 9806_CR47 doi: 10.1007/11844297_52 – volume: 10 start-page: 263 issue: 3 year: 2022 ident: 9806_CR39 publication-title: Evol Comput doi: 10.1162/106365602760234108 – volume: 22 start-page: 618 issue: 3 year: 1968 ident: 9806_CR21 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(68)90201-1 – volume: 26 start-page: 1379 issue: 2 year: 2016 ident: 9806_CR38 publication-title: SIAM J Optim doi: 10.1137/140992382 – ident: 9806_CR50 doi: 10.1007/978-3-540-31880-4_35 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 9806_CR28 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.861417 – volume: 74 start-page: 5268 issue: 16 year: 2011 ident: 9806_CR9 publication-title: Nonlinear Anal doi: 10.1016/j.na.2011.04.067 – volume: 54 start-page: 473 issue: 3 year: 2013 ident: 9806_CR20 publication-title: Comput Optim Appl doi: 10.1007/s10589-012-9501-z – volume: 15 start-page: 953 issue: 4 year: 2005 ident: 9806_CR6 publication-title: SIAM J Optim doi: 10.1137/S1052623403429093 – ident: 9806_CR58 doi: 10.1155/2011/569784 – volume: 91 start-page: 201 issue: 2 year: 2002 ident: 9806_CR12 publication-title: Math Prog doi: 10.1007/s101070100263 – volume: 19 start-page: 2265 year: 2015 ident: 9806_CR55 publication-title: Soft Comput doi: 10.1007/s00500-014-1406-6 – volume: 52 start-page: 340 issue: 2 year: 2015 ident: 9806_CR23 publication-title: Opsearch doi: 10.1007/s12597-014-0178-1 – volume: 13 start-page: 1365 issue: 6 year: 2019 ident: 9806_CR15 publication-title: Optim Lett doi: 10.1007/s11590-018-1353-8 – volume: 16 start-page: 1 issue: 1 year: 2000 ident: 9806_CR5 publication-title: Rev Chem Eng doi: 10.1002/9781118341704 – volume: 55 start-page: 65 issue: 1 year: 2013 ident: 9806_CR42 publication-title: SIAM Rev doi: 10.1137/110839072 – volume: 29 start-page: 2388 issue: 3 year: 2019 ident: 9806_CR54 publication-title: SIAM J Optim doi: 10.1137/18M1191737 – ident: 9806_CR30 doi: 10.1016/j.cor.2023.106236 – volume: 78 start-page: 741 issue: 3 year: 2021 ident: 9806_CR2 publication-title: Comput Optim Appl doi: 10.1007/s10589-020-00260-5 – volume: 76 start-page: 889 issue: 3 year: 2020 ident: 9806_CR24 publication-title: Comput Optim Appl doi: 10.1007/s10589-019-00146-1 – volume: 8 start-page: 631 issue: 3 year: 1998 ident: 9806_CR11 publication-title: SIAM J Optim doi: 10.1137/S1052623496307510 – volume: 261 start-page: 158 year: 2014 ident: 9806_CR35 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2013.11.007 – volume: 6 start-page: 1 issue: 5 year: 1966 ident: 9806_CR40 publication-title: USSR Comput Math Math Phys doi: 10.1016/0041-5553(66)90114-5 – volume: 175 start-page: 395 issue: 2 year: 2005 ident: 9806_CR14 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2004.06.018 – volume: 188 start-page: 662 issue: 3 year: 2008 ident: 9806_CR44 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.05.015 – volume: 64 start-page: 2289 issue: 11 year: 2015 ident: 9806_CR1 publication-title: Optimization doi: 10.1080/02331934.2014.947500 – volume: 14 start-page: 1043 issue: 4 year: 2004 ident: 9806_CR57 publication-title: SIAM J Optim doi: 10.1137/S1052623403428208 – ident: 9806_CR33 – volume: 75 start-page: 63 issue: 1 year: 2019 ident: 9806_CR45 publication-title: J Global Optim doi: 10.1007/s10898-019-00802-0 – ident: 9806_CR32 doi: 10.23952/jnva.6.2022.6.06 – volume: 29 start-page: 149 issue: 2 year: 2005 ident: 9806_CR36 publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-004-0465-1 – volume: 59 start-page: 235 issue: 2 year: 2004 ident: 9806_CR4 publication-title: Math Methods Oper Res doi: 10.1007/s001860300327 – volume: 42 start-page: 514 issue: 8 year: 2014 ident: 9806_CR22 publication-title: Oper Res Lett doi: 10.1016/j.orl.2014.08.011 – ident: 9806_CR48 doi: 10.1016/j.ejor.2017.05.027 – start-page: 83 volume-title: Mathematical programming: recent developments and applications year: 1989 ident: 9806_CR25 |
SSID | ssj0021753 |
Score | 2.407388 |
Snippet | This study analyzes the conditional gradient method for constrained multiobjective optimization problems, also known as the Frank–Wolfe method. We assume that... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 9609 |
SubjectTerms | Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Optimization Robotics |
Title | A nonmonotone conditional gradient method for multiobjective optimization problems |
URI | https://link.springer.com/article/10.1007/s00500-024-09806-9 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-7479 dateEnd: 20241006 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: U2A dateStart: 19970404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoEDgwFiPKYcuEGnNn3m2KGNCcQOiErjVCVNinitaOsu_HrcNp0YQki7x1XkOPbnxv4McJEqKqVfVE85xTNjwBz0g9I2Uhp4vvBRzC6ak-8n3jhybqfuVDeFLepq9_pJsvTUq2a3gqrENDCmGCYLMA9mDWi5mKDgdWyFN093w1WipdknEQogesSQq5tl_v7KekBafw0tg8yoDVG9vaq25K2_zEU_-frF3Ljp_vdgV6NOElZmsg9bataBdj3RgegL3oGdH_SEB_AQklk2QzvNCsZugpmzfKl-HZLneVkqlpNqAjVB6EvK2sRMvFYulGTojD50lyfRc2sWhxCNho_XY0PPYDASanrMSBEAFpxxEvMejmAD0SVNeEodwTDmWb4d-JwybiuLe6myTCFcmThUeUJi7Oe2fQRN3Ko6BpIwmwcOSwNqC0elUlgeCnIWuLyogRVdsOqDiBNNUF7MyXiPV9TKpQpjVGFcqjBmXbhcyXxW9Bz_rr6qjybWV3Xxz_KTzZafwjatTtcwrTNo5vOlOkfEkoseGuhoMJj0tKH2oBHR8BuNoOJm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAHBgPEeObADYra9JUcJ7Qx2OOANmmcqqRpEa8Vbd2FX4_bphNDaNLuTmXFif25sT8DXMURVcrPqqec7JmRcQf9oLKNmDLPlz4us7Pm5P7A64ycx7E71k1hs7LavXySzD31otktoyoxDYwphskZ5sF8E6qOxZhbgWrz_rnbWiRamn0SoQCiRwy5ulnm_68sB6Tl19A8yLRrMCrVK2pL3m_nqbwNv_8wN66r_x7satRJmsUx2YeNaFKHWjnRgegLXoedX_SEB_DUJJNkguc0yRi7CWbO6rX4dUhepnmpWEqKCdQEoS_JaxMT-Va4UJKgM_rUXZ5Ez62ZHcKo3RredQw9g8EIqelxI0YAmHHGKcx7BIINRJc0FDF1JMeYZ_k28wXlwo4s4cWRZUrpqtChkScVxn5h20dQQVWjYyAhtwVzeMyoLZ0oVtLycKHgzBVZDaxsgFUaIgg1QXk2J-MjWFAr51sY4BYG-RYGvAHXizVfBT3HSumb0jSBvqqzFeIn64lfwlZn2O8FvYdB9xS2aWFpw7TOoJJO59E5opdUXujD-gPwZeLy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiDH1NxfubBNy22adY2j0Md82uIONhbSZpEFN3GVv9_L21aNpCB70lpL5f8ftfc_Q7gwmiqVGyzp5i9Zkw4w3NQhZ6hSRTLGKeFtjj5uR_1Buxh2B7OVfEX2e7VlWRZ02BVmkb59USZ67rwzcqW-B7ii-fzBGNivgprDLHaJnUNaKcOuZwOJZIC5JEIvq5s5u9nLELT4r1oATfdHdhyPJF0yoXdhRU9asJ21YOBuC3ZhM05QcE9eO0QDOfRs8ZWY5vgR6mP8mcfeZ8WyV05KXtGEySrpMgmHMvP8tAjYzw-vl1dJnGdZmb7MOjevd30PNc1wcuoH3HPIGWzKm8KIxWB9AD5IM2EoUxyRKkgDpNYUC5CHYjI6MCXsq0yRnUkFaK1CMMDaOCr6kMgGQ9FwrhJaCiZNkoGEU4UPGkLm7UqWxBUBkszJyluO1t8pbUYcmHkFI2cFkZOeQsu6zmTUlBj6eirah1St7lmS4Yf_W_4Oay_3HbTp_v-4zFs0NIVPD84gUY-_dGnSDdyeVZ41C-_hso7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonmonotone+conditional+gradient+method+for+multiobjective+optimization+problems&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Upadhayay%2C+Ashutosh&rft.au=Ghosh%2C+Debdas&rft.au=Jauny&rft.au=Yao%2C+Jen-Chih&rft.date=2024-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=28&rft.issue=17-18&rft.spage=9609&rft.epage=9630&rft_id=info:doi/10.1007%2Fs00500-024-09806-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_024_09806_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |