Hiding Sensitive Medical Data Using Simple and Pre-Large Rain Optimization Algorithm through Data Removal for E-Health System
Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover underlying rules and hide sensitive data for data sanitization. Various algorithms and heuristics have been studied to hide sensitive data using tra...
        Saved in:
      
    
          | Published in | Journal of internet services and information security Vol. 13; no. 2; pp. 177 - 192 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        30.05.2023
     | 
| Online Access | Get full text | 
| ISSN | 2182-2077 2182-2069 2182-2077  | 
| DOI | 10.58346/JISIS.2023.I2.011 | 
Cover
| Abstract | Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover underlying rules and hide sensitive data for data sanitization. Various algorithms and heuristics have been studied to hide sensitive data using transaction removal. However, they are facing challenges to attain the reasonable side effects. Thus, rain optimization algorithm (ROA) based sensitive data hiding techniques is proposed in this paper. Using this algorithm, suitable transactions to be removed are selected. Besides, in this work, ROA based two frameworks are designed for data sanitization that are simple ROA to remove transaction (sROA2RT) and pre-large ROA to remove transaction (pROA2RT). In this algorithm, fitness is evaluated based on four side effects such as hiding failure, artificial cost, missing cost and dissimilarity of database. The proposed frameworks are evaluated using three e-Health datasets. Compared to previous frameworks, the proposed frameworks attain reasonable side effects. | 
    
|---|---|
| AbstractList | Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover underlying rules and hide sensitive data for data sanitization. Various algorithms and heuristics have been studied to hide sensitive data using transaction removal. However, they are facing challenges to attain the reasonable side effects. Thus, rain optimization algorithm (ROA) based sensitive data hiding techniques is proposed in this paper. Using this algorithm, suitable transactions to be removed are selected. Besides, in this work, ROA based two frameworks are designed for data sanitization that are simple ROA to remove transaction (sROA2RT) and pre-large ROA to remove transaction (pROA2RT). In this algorithm, fitness is evaluated based on four side effects such as hiding failure, artificial cost, missing cost and dissimilarity of database. The proposed frameworks are evaluated using three e-Health datasets. Compared to previous frameworks, the proposed frameworks attain reasonable side effects. | 
    
| Author | Dr.T., Sasirooba M, Madhavi Dr.G., Kranthi Kumar  | 
    
| Author_xml | – sequence: 1 givenname: Madhavi surname: M fullname: M, Madhavi – sequence: 2 givenname: Sasirooba surname: Dr.T. fullname: Dr.T., Sasirooba – sequence: 3 givenname: Kranthi Kumar surname: Dr.G. fullname: Dr.G., Kranthi Kumar  | 
    
| BookMark | eNplkNtOAjEQhhuDiYi8gFd9gcUeWHa5JIiyBoMBud7Mtl0YsgfSFgwmvrsIGo1czZ9Mvn8y3zVpVHVlCLnlrBPGstu7e0rmybwjmJCdRHQY5xekKXgsAsGiqPEnX5G2c2vGGGeRCGPRJB9j1Fgt6dxUDj3uDH02GhUU9B480IU7LrHcFIZCpemLNcEE7NLQGWBFpxuPJb6Dx7qig2JZW_SrkvqVrbfL1aljZsp6dyjMa0tHwdhA4Vd0vnfelDfkMofCmfb3bJHFw-h1OA4m08dkOJgESrAeD7IwZ92e5rmKeZhFGvoylHmWaSa7RqtQCegpEDLr6zAGk6kcNOOh0TLKjdZStog89W6rDezfoCjSjcUS7D7lLD1KTNfo0KVfElMU6UHigYpPlLK1c9bkqUJ_fNVbwOIXPfo_ockPKv6hZ_fOoU8Se4yP | 
    
| CitedBy_id | crossref_primary_10_28978_nesciences_1465276 | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.58346/JISIS.2023.I2.011 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2182-2077 | 
    
| EndPage | 192 | 
    
| ExternalDocumentID | 10.58346/jisis.2023.i2.011 10_58346_JISIS_2023_I2_011  | 
    
| GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 OK1 ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c2061-b5f046d1fc815b7da9353fbbd034edc5c2a6ca23b9d58aebcfad015ed37fedd33 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2182-2077 2182-2069  | 
    
| IngestDate | Mon Sep 15 10:11:53 EDT 2025 Tue Jul 01 01:25:43 EDT 2025 Thu Apr 24 23:10:53 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2061-b5f046d1fc815b7da9353fbbd034edc5c2a6ca23b9d58aebcfad015ed37fedd33 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.58346/jisis.2023.i2.011 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | unpaywall_primary_10_58346_jisis_2023_i2_011 crossref_citationtrail_10_58346_JISIS_2023_I2_011 crossref_primary_10_58346_JISIS_2023_I2_011  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-30 | 
    
| PublicationDateYYYYMMDD | 2023-05-30 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-30 day: 30  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of internet services and information security | 
    
| PublicationYear | 2023 | 
    
| SSID | ssj0001072582 | 
    
| Score | 2.29457 | 
    
| Snippet | Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database  | 
    
| StartPage | 177 | 
    
| Title | Hiding Sensitive Medical Data Using Simple and Pre-Large Rain Optimization Algorithm through Data Removal for E-Health System | 
    
| URI | https://doi.org/10.58346/jisis.2023.i2.011 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2182-2077 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072582 issn: 2182-2077 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5Bcmg59F1BodEeuNGNbK_Xj2MEQUkoaWgaKZys2VexSJwodVSBxH9n196itFVRudnSeGXNjGZmNTPfh9ChByqIVJgS26MiYSQ8kqgUSCpMOmDARVyxN5wPo94kHEzZ1MHk2F2Yjf49S6htP5rru4XVDmg7D9qeXeNtRszU3Q3UnAxHnUvLHmeKZGPuir_OPcdxvSHzj0N-y0LP1sUSbn7CbLaRWk5f1hxFPypEQjtRct1el7wtbv_Aa_y_v36FXrgKE3dql3iNtlTxBu1s4A6-RXe93KYsPLbT6zbeYdevwSdQAq7GCPA4t8DBGAqJRytFPtuRcWzbQfiLCTNzt7-JO7Pvi1VeXs2xo_ypz_iq5gvjxNjUxLhL6mUnXMOjv0OT0-634x5xPAxEGKX6hDNtbtHS1yLxGY8lpJRRzbn0aKikYCKASEBAeSpZAooLDdJUGUrSWCspKX2PGsWiULsIm3gSK9BaAVdhHGuuqS-BppCKIGResIf8X3bJhAMpt1wZs8xcVirVZoP-uD_OrGqzfpAZ1e6ho4dvljVEx6PSnx7M_bd4ZbdaPK_EPzxNfB89t2_VeIF3gBrlaq0-mqql5C20fXaRtJzT3gOuzeih | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHtSDb_HNHrzpliSbTZpj8UErvrAW9BRmXxpsU6kpouB_dzdZpSqK3hKYLGFmmJllZr4PoR0PVBCpMCG2R0XCSHikoRIgiTDpgAEXccnecHoWtbrh8TW7djA5dhdmrH_PGtS2H8313cJqB7SeBXXPrvFORszU3TU02T27aN5Y9jhTJBtzl_x17jmOqw2ZHw75lIWmRvkDPD9BrzeWWo7mKo6ixxKR0E6U3NdHBa-Lly94jX_763k06ypM3KxcYgFNqHwRzYzhDi6h11ZmUxbu2Ol1G--w69fgAygAl2MEuJNZ4GAMucQXQ0VO7Mg4tu0gfG7CTN_tb-Jm73YwzIq7PnaUP9UZl6o_ME6MTU2MD0m17IQrePRl1D06vNpvEcfDQIRRqk840-YWLX0tGj7jsYSEMqo5lx4NlRRMBBAJCChPJGuA4kKDNFWGkjTWSkpKV1AtH-RqFWETT2IFWivgKoxjzTX1JdAEEhGEzAvWkP9ul1Q4kHLLldFLzWWlVG163O60O6lVbdoOUqPaNbT78c1DBdHxq_Teh7m_i5d2q8SzUnz9f-IbaNq-leMF3iaqFcOR2jJVS8G3nbu-AUB356w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hiding+Sensitive+Medical+Data+Using+Simple+and+Pre-Large+Rain+Optimization+Algorithm+through+Data+Removal+for+E-Health+System&rft.jtitle=Journal+of+internet+services+and+information+security&rft.au=M%2C+Madhavi&rft.au=Dr.T.%2C+Sasirooba&rft.au=Dr.G.%2C+Kranthi+Kumar&rft.date=2023-05-30&rft.issn=2182-2077&rft.eissn=2182-2077&rft.volume=13&rft.issue=2&rft.spage=177&rft.epage=192&rft_id=info:doi/10.58346%2FJISIS.2023.I2.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_58346_JISIS_2023_I2_011 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2182-2077&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2182-2077&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2182-2077&client=summon |