Hybrid artificial bee colony algorithm with Q-learning for distributed heterogeneous flexible job shop scheduling problem considering machine preventive maintenance
•A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The joint scheduling problem of production and preventive maintenance is studied.•A novel hybrid artificial bee colony algorithm with Q-learning...
        Saved in:
      
    
          | Published in | Swarm and evolutionary computation Vol. 98; p. 102134 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.10.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2210-6502 | 
| DOI | 10.1016/j.swevo.2025.102134 | 
Cover
| Abstract | •A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The joint scheduling problem of production and preventive maintenance is studied.•A novel hybrid artificial bee colony algorithm with Q-learning is designed.
Current research on preventive maintenance in the scheduling domain predominantly focuses on machine degradation under stable operating conditions. However, the machine works under varying operating conditions (cutting depth, feed rate, etc.) when processing different jobs, and much research ignores the influence of these diverse operating conditions on machine degradation. To address this gap, this paper proposes a novel machine degradation model tailored to various operating conditions and introduces a dual-threshold preventive maintenance strategy, which is integrated with the scheduling problem. To effectively solve this integrated problem, a mixed-integer programming (MIP) framework targeting makespan minimization is constructed, coupled with a hybrid artificial bee colony (ABC) algorithm incorporating a neighborhood search mechanism. First, a three-layer encoding scheme based on factory-machine-operation is designed, and preventive maintenance decisions are incorporated into the decoding strategy. Furthermore, a hybrid population initialization strategy is developed to enhance population diversity. Third, multiple crossover and mutation operators are developed during the employed bee phase, and a simple yet effective operator selection mechanism is employed to improve global search efficiency. In the onlooker bee phase, five neighborhood search operators are proposed to address the local search limitations of traditional ABC algorithms. These operators are adaptively selected via a Q-learning algorithm to strengthen local search performance. Finally, extended computational instances are designed, and comparative experiments validate the effectiveness of the proposed algorithm in solving scheduling problems across different job scales and factory scales. | 
    
|---|---|
| AbstractList | •A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The joint scheduling problem of production and preventive maintenance is studied.•A novel hybrid artificial bee colony algorithm with Q-learning is designed.
Current research on preventive maintenance in the scheduling domain predominantly focuses on machine degradation under stable operating conditions. However, the machine works under varying operating conditions (cutting depth, feed rate, etc.) when processing different jobs, and much research ignores the influence of these diverse operating conditions on machine degradation. To address this gap, this paper proposes a novel machine degradation model tailored to various operating conditions and introduces a dual-threshold preventive maintenance strategy, which is integrated with the scheduling problem. To effectively solve this integrated problem, a mixed-integer programming (MIP) framework targeting makespan minimization is constructed, coupled with a hybrid artificial bee colony (ABC) algorithm incorporating a neighborhood search mechanism. First, a three-layer encoding scheme based on factory-machine-operation is designed, and preventive maintenance decisions are incorporated into the decoding strategy. Furthermore, a hybrid population initialization strategy is developed to enhance population diversity. Third, multiple crossover and mutation operators are developed during the employed bee phase, and a simple yet effective operator selection mechanism is employed to improve global search efficiency. In the onlooker bee phase, five neighborhood search operators are proposed to address the local search limitations of traditional ABC algorithms. These operators are adaptively selected via a Q-learning algorithm to strengthen local search performance. Finally, extended computational instances are designed, and comparative experiments validate the effectiveness of the proposed algorithm in solving scheduling problems across different job scales and factory scales. | 
    
| ArticleNumber | 102134 | 
    
| Author | Li, Xixing Tang, Hongtao Wu, Rui Luo, Enzhuang Li, Yibing  | 
    
| Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0001-7133-185X surname: Wu fullname: Wu, Rui organization: School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China – sequence: 2 givenname: Enzhuang surname: Luo fullname: Luo, Enzhuang organization: School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China – sequence: 3 givenname: Xixing orcidid: 0000-0002-5796-3479 surname: Li fullname: Li, Xixing email: li_xi_xing@126.com organization: School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China – sequence: 4 givenname: Hongtao surname: Tang fullname: Tang, Hongtao organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 5 givenname: Yibing surname: Li fullname: Li, Yibing organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China  | 
    
| BookMark | eNp9UElOAzEQ9AEk1hdw8QcmeMmYzIEDQmxSJIQEZ8tLO9PRxI7sSSD_4aE4hDN96JaqurpLdUaOYopAyBVnE864ul5Oyids00Qw0VZEcDk9IqdCcNaolokTclnKktVSdaHtTsn3885m9NTkEQM6NAO1ANSlIcUdNcMiZRz7Ff2snb41A5gcMS5oSJl6LGNGuxnB0x5GyGkBEdKm0DDAF9oB6DJZWvq0psX14DfDXrrOqVKr-iMW9JD32Mq4HiNUDrYQR9xChTCOEE10cEGOgxkKXP7Nc_Lx-PB-_9zMX59e7u_mjRNM8UZxJyVTFniYOqVmwQdlWZCzru3gBqzv-Cx0duqllCA8a6Wpi0HwlrdOTZU8J_Jw1-VUSoag1xlXJu80Z3qfr17q33z1Pl99yLeqbg8qqNa2CFkXh1Bte8zgRu0T_qv_Afp0jgU | 
    
| Cites_doi | 10.1016/j.asoc.2025.112697 10.1016/j.cie.2024.110484 10.1016/j.eswa.2010.12.043 10.1016/j.swevo.2024.101537 10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3 10.1016/j.swevo.2021.100861 10.1109/TASE.2022.3151648 10.1016/j.swevo.2024.101643 10.1016/j.eswa.2020.114495 10.1016/j.cie.2020.106347 10.1109/TCYB.2022.3192112 10.1016/j.cie.2024.110624 10.1016/j.engappai.2025.110447 10.1007/s10845-023-02114-3 10.1109/TASE.2022.3212786 10.1109/TASE.2024.3514863 10.26599/TST.2021.9010009 10.1109/TII.2020.3043734 10.1016/j.ijpe.2023.108971 10.1007/BF02023073 10.1016/j.aei.2021.101339 10.1016/j.cie.2021.107318 10.1109/TCYB.2022.3229666 10.1007/BF01719451 10.1016/j.engappai.2023.107321 10.1109/TASE.2021.3119353 10.1016/j.jmsy.2024.10.019 10.1016/j.cie.2024.109950 10.1080/00207543.2018.1459923 10.1016/j.ress.2006.01.006 10.1109/TEVC.2024.3400043 10.1016/S0951-8320(98)00050-7 10.1109/TII.2022.3192881 10.1016/j.swevo.2025.101873 10.1016/j.rcim.2019.01.005 10.1016/j.ress.2017.05.014 10.1109/TSMC.2023.3305541 10.1016/j.jmsy.2020.08.013 10.1016/j.asoc.2022.108694 10.1016/j.ymssp.2014.10.014 10.1016/j.ins.2017.07.011 10.1016/j.asoc.2019.02.011 10.2307/2528221 10.1016/j.cie.2025.110861 10.1016/j.jmsy.2023.09.002 10.1016/j.asoc.2024.112247 10.1016/j.swevo.2024.101772 10.1016/j.cie.2020.106320 10.1007/s11431-022-2096-6 10.1016/j.eswa.2023.120837 10.1016/j.eswa.2024.125189 10.1016/j.ijpe.2024.109163 10.1016/j.jmsy.2018.02.003 10.1016/j.ymssp.2019.106302 10.1109/TASE.2023.3327792  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2025 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.swevo.2025.102134 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| ExternalDocumentID | 10_1016_j_swevo_2025_102134 S2210650225002925  | 
    
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABGRD ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- ~HD AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c2061-61c3306be1f4c668fdf6b0f38959e7ebd918f9b4d333e2d053af4cf21515c6463 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 2210-6502 | 
    
| IngestDate | Wed Oct 01 05:16:11 EDT 2025 Sun Oct 19 01:39:17 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Distributed heterogeneous flexible job shop scheduling Artificial bee colony algorithm Q-learning Preventive maintenance  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2061-61c3306be1f4c668fdf6b0f38959e7ebd918f9b4d333e2d053af4cf21515c6463 | 
    
| ORCID | 0000-0001-7133-185X 0000-0002-5796-3479  | 
    
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2025_102134 elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102134  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2025 2025-10-00  | 
    
| PublicationDateYYYYMMDD | 2025-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Swarm and evolutionary computation | 
    
| PublicationYear | 2025 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Li, Li, Meng, Zhang (bib0039) 2025; 16 Meng, Zhang, Ren, Zhang, Lv (bib0021) 2020; 142 Ali, Chebel-Morello, Saidi, Malinowski, Fnaiech (bib0048) 2015; 56-57 Zhao, Wang, Wang (bib0042) 2023; 20 Lei, Liu (bib0028) 2020; 141 Wang, Yan, Zhang (bib0031) 2021; 49 Chansombat, Pongcharoen, Hicks (bib0014) 2019; 57 Brandimarte (bib0054) 1993; 41 An, Zhao, Gao, Dong, Chen, Zhou (bib0034) 2024; 89 Li, Wang, Gong, Ming (bib0051) 2024 Deng, Qiu, Di, Zhang (bib0036) 2025; 170 Fu, Hou, Wang, Wu, Gao, Wang (bib0003) 2021; 26 Lin, Lee, Wu (bib0032) 2019; 58 Martorell, Sanchez, Serradell, Safety (bib0045) 1999; 64 Mao, Pan, Miao, Gao (bib0012) 2021; 169 Zhou, Xi, Lee (bib0055) 2007; 92 Zuo, Zhao, Zhang (bib0037) 2024; 197 Wei, Ye, Xu (bib0007) 2024; 189 Moradi, Fatemi Ghomi, Zandieh (bib0010) 2011; 38 Li, Gong, Wang, Lu, Dong (bib0025) 2024; 54 Yu, Gao, Lu, Yin (bib0041) 2025; 22 Yu, Gao, Li, Suganthan (bib0052) 2024; 166 Hurink, Jurisch, Thole (bib0053) 1994; 15 Zhao, Cheng, Meng, Zhang, Ren, Zhang, Duan (bib0011) 2025; 201 Yan, Wang, Yang (bib0033) 2024 Li, Xie, Ma, Gao, Li (bib0020) 2022; 65 Ma, Gao, Tong (bib0049) 2025; 149 Zhuang, Zhang, Tang, Li, Wang (bib0016) 2024; 258 Du, Li, Luo, Meng (bib0005) 2021; 62 Cui, Li, Wang, Lin, Chen, Lu, Lu (bib0050) 2017; 417 Hu, Jiang, Liao (bib0056) 2017; 168 Zhu, Zhou (bib0047) 2023; 264 Zhao, Xu, Wang, Zhu, Xu, Jonrinaldi (bib0001) 2023; 19 Xie, Li, Gao, Gui (bib0019) 2023; 71 Han, Sang, Pan, Zhang, Guo (bib0035) 2024; 86 Xu, Hu, Luo, Wang, Wu (bib0004) 2021; 157 Shao, Shao, Pi (bib0022) 2022; 19 Zhang, Fu, Gao, Pan, Huang (bib0029) 2024; 196 Wang, Han (bib0060) 2025; 92 Karaboga (bib0015) 2005; 200 Hu, Jiang, Liao (bib0046) 2017; 168 Yang, Zhao, Peng, Ma (bib0009) 2018; 47 Kundu, Darpe, Kulkarni (bib0043) 2019; 134 Pike (bib0044) 1966; 22 Tang, Chen, Li, Peng, Guo, Du (bib0057) 2019; 78 Zhang, Tang, Chica, Li (bib0017) 2024; 54 Tang, Fang, Liu, Li, Guo (bib0018) 2022; 120 Lee, Chen (bib0026) 2000; 47 Lu, Gao, Yi, Li (bib0006) 2021; 17 Jia, Yan, Wang (bib0038) 2023; 232 Wang, Lei, Li, Li, Tang (bib0040) 2025; 78 Hu, Jiang, Liao (bib0013) 2020; 57 Li, Gong, Wang, Lu, Pan, Zhuang (bib0024) 2024; 21 Xu, Hu, Luo, Wang, Wu (bib0008) 2021; 157 Pan, Gao, Li, Wu (bib0002) 2023; 20 Zhao, Di, Wang (bib0023) 2023; 53 Wang, Xia, Xu, Ding, Zheng, Pan, Xi (bib0030) 2024; 269 Wang, Wei, Liu, Zhang, Li (bib0059) 2025; 94 Wocker, Ostermeier, Wanninger, Zwinkau, Deuse (bib0027) 2023; 35 Liu, Zha, Yan, Zhang, Zhao, Cheng, Cheng (bib0058) 2024; 127 Ali (10.1016/j.swevo.2025.102134_bib0048) 2015; 56-57 An (10.1016/j.swevo.2025.102134_bib0034) 2024; 89 Pike (10.1016/j.swevo.2025.102134_bib0044) 1966; 22 Hu (10.1016/j.swevo.2025.102134_bib0046) 2017; 168 Wocker (10.1016/j.swevo.2025.102134_bib0027) 2023; 35 Shao (10.1016/j.swevo.2025.102134_bib0022) 2022; 19 Yu (10.1016/j.swevo.2025.102134_bib0041) 2025; 22 Li (10.1016/j.swevo.2025.102134_bib0025) 2024; 54 Hu (10.1016/j.swevo.2025.102134_bib0056) 2017; 168 Wei (10.1016/j.swevo.2025.102134_bib0007) 2024; 189 Xu (10.1016/j.swevo.2025.102134_bib0008) 2021; 157 Zhao (10.1016/j.swevo.2025.102134_bib0011) 2025; 201 Li (10.1016/j.swevo.2025.102134_bib0020) 2022; 65 Martorell (10.1016/j.swevo.2025.102134_bib0045) 1999; 64 Wang (10.1016/j.swevo.2025.102134_bib0059) 2025; 94 Pan (10.1016/j.swevo.2025.102134_bib0002) 2023; 20 Karaboga (10.1016/j.swevo.2025.102134_bib0015) 2005; 200 Zhang (10.1016/j.swevo.2025.102134_bib0017) 2024; 54 Moradi (10.1016/j.swevo.2025.102134_bib0010) 2011; 38 Zhang (10.1016/j.swevo.2025.102134_bib0029) 2024; 196 Zhao (10.1016/j.swevo.2025.102134_bib0042) 2023; 20 Liu (10.1016/j.swevo.2025.102134_bib0058) 2024; 127 Zhou (10.1016/j.swevo.2025.102134_bib0055) 2007; 92 Hurink (10.1016/j.swevo.2025.102134_bib0053) 1994; 15 Zhao (10.1016/j.swevo.2025.102134_bib0001) 2023; 19 Chansombat (10.1016/j.swevo.2025.102134_bib0014) 2019; 57 Tang (10.1016/j.swevo.2025.102134_bib0018) 2022; 120 Li (10.1016/j.swevo.2025.102134_bib0051) 2024 Du (10.1016/j.swevo.2025.102134_bib0005) 2021; 62 Jia (10.1016/j.swevo.2025.102134_bib0038) 2023; 232 Zuo (10.1016/j.swevo.2025.102134_bib0037) 2024; 197 Wang (10.1016/j.swevo.2025.102134_bib0040) 2025; 78 Ma (10.1016/j.swevo.2025.102134_bib0049) 2025; 149 Zhao (10.1016/j.swevo.2025.102134_bib0023) 2023; 53 Yang (10.1016/j.swevo.2025.102134_bib0009) 2018; 47 Xu (10.1016/j.swevo.2025.102134_bib0004) 2021; 157 Lei (10.1016/j.swevo.2025.102134_bib0028) 2020; 141 Li (10.1016/j.swevo.2025.102134_bib0024) 2024; 21 Zhuang (10.1016/j.swevo.2025.102134_bib0016) 2024; 258 Lu (10.1016/j.swevo.2025.102134_bib0006) 2021; 17 Zhu (10.1016/j.swevo.2025.102134_bib0047) 2023; 264 Yu (10.1016/j.swevo.2025.102134_bib0052) 2024; 166 Han (10.1016/j.swevo.2025.102134_bib0035) 2024; 86 Cui (10.1016/j.swevo.2025.102134_bib0050) 2017; 417 Wang (10.1016/j.swevo.2025.102134_bib0060) 2025; 92 Tang (10.1016/j.swevo.2025.102134_bib0057) 2019; 78 Wang (10.1016/j.swevo.2025.102134_bib0030) 2024; 269 Meng (10.1016/j.swevo.2025.102134_bib0021) 2020; 142 Yan (10.1016/j.swevo.2025.102134_bib0033) 2024 Xie (10.1016/j.swevo.2025.102134_bib0019) 2023; 71 Brandimarte (10.1016/j.swevo.2025.102134_bib0054) 1993; 41 Kundu (10.1016/j.swevo.2025.102134_bib0043) 2019; 134 Fu (10.1016/j.swevo.2025.102134_bib0003) 2021; 26 Lee (10.1016/j.swevo.2025.102134_bib0026) 2000; 47 Li (10.1016/j.swevo.2025.102134_bib0039) 2025; 16 Mao (10.1016/j.swevo.2025.102134_bib0012) 2021; 169 Hu (10.1016/j.swevo.2025.102134_bib0013) 2020; 57 Lin (10.1016/j.swevo.2025.102134_bib0032) 2019; 58 Deng (10.1016/j.swevo.2025.102134_bib0036) 2025; 170 Wang (10.1016/j.swevo.2025.102134_bib0031) 2021; 49  | 
    
| References_xml | – volume: 58 start-page: 196 year: 2019 end-page: 207 ident: bib0032 article-title: Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems publication-title: Rob. Comput. Integr. Manuf. – volume: 49 year: 2021 ident: bib0031 article-title: Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system using a reinforcement learning approach publication-title: Adv. Eng. Inf. – volume: 200 start-page: 1 year: 2005 end-page: 10 ident: bib0015 publication-title: An Idea Based on Honey Bee Swarm for Numerical Optimization – volume: 269 year: 2024 ident: bib0030 article-title: Joint optimization of flexible job shop scheduling and preventive maintenance under high-frequency production switching publication-title: Int. J. Prod. Econ. – volume: 127 year: 2024 ident: bib0058 article-title: An improved genetic algorithm with an overlapping strategy for solving a combination of order batching and flexible job shop scheduling problem publication-title: Eng. Appl. Artif. Intell. – volume: 56-57 start-page: 150 year: 2015 end-page: 172 ident: bib0048 article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network publication-title: Mech. Syst. Sig. Process. – volume: 157 start-page: 17 year: 2021 ident: bib0008 article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission publication-title: Comput. Ind. Eng. – volume: 120 year: 2022 ident: bib0018 article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem publication-title: Appl. Soft Comput. – volume: 47 start-page: 12 year: 2018 end-page: 34 ident: bib0009 article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits publication-title: J. Manuf. Syst. – volume: 47 start-page: 145 year: 2000 end-page: 165 ident: bib0026 article-title: Scheduling jobs and maintenance activities on parallel machines publication-title: Nav. Res. Logist. – volume: 134 start-page: 19 year: 2019 ident: bib0043 article-title: Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions publication-title: Mech. Syst. Sig. Process. – volume: 71 start-page: 82 year: 2023 end-page: 94 ident: bib0019 article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems publication-title: J. Manuf. Syst. – volume: 35 start-page: 1517 year: 2023 end-page: 1539 ident: bib0027 article-title: Flexible job shop scheduling with preventive maintenance consideration publication-title: J. Intell. Manuf. – volume: 157 year: 2021 ident: bib0004 article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission publication-title: Comput. Ind. Eng. – volume: 169 year: 2021 ident: bib0012 article-title: An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance publication-title: Expert Syst. Appl. – volume: 20 start-page: 361 year: 2023 end-page: 371 ident: bib0002 article-title: Improved meta-heuristics for solving distributed lot-streaming permutation flow shop scheduling problems publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 26 start-page: 625 year: 2021 end-page: 645 ident: bib0003 article-title: Technology, distributed scheduling problems in intelligent manufacturing systems publication-title: Tsinghua Sci. Technol. – volume: 89 year: 2024 ident: bib0034 article-title: A self-adaptive co-evolutionary algorithm for multi-objective flexible job-shop rescheduling problem with multi-phase processing speed selection, condition-based preventive maintenance and dynamic repairman assignment publication-title: Swarm Evol. Comput. – volume: 16 start-page: 307 year: 2025 end-page: 322 ident: bib0039 article-title: A hybrid artificial bee colony algorithm with an iterated local search mechanism for distributed no-wait flowshop problems with preventive maintenance publication-title: Int. J. Ind. Eng. Comput. – volume: 141 year: 2020 ident: bib0028 article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance publication-title: Comput. Ind. Eng. – volume: 196 year: 2024 ident: bib0029 article-title: A learning-driven multi-objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling problems with preventive maintenance and transportation operations publication-title: Comput. Ind. Eng. – volume: 189 year: 2024 ident: bib0007 article-title: Shared manufacturing-based distributed flexible job shop scheduling with supply-demand matching publication-title: Comput. Ind. Eng. – volume: 19 start-page: 3379 year: 2022 end-page: 3394 ident: bib0022 article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 78 start-page: 176 year: 2019 end-page: 194 ident: bib0057 article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete PSO-SA: an application from a casting workshop publication-title: Appl. Soft Comput. – volume: 20 start-page: 2305 year: 2023 end-page: 2320 ident: bib0042 article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous No-wait flowshop scheduling problem with sequence-dependent setup times publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 168 start-page: 105 year: 2017 end-page: 115 ident: bib0056 article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition publication-title: Reliab. Eng. Syst. Saf. – volume: 53 start-page: 3337 year: 2023 end-page: 3350 ident: bib0023 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans. Cybern. – volume: 65 start-page: 2105 year: 2022 end-page: 2115 ident: bib0020 article-title: Improved gray wolf optimizer for distributed flexible job shop scheduling problem publication-title: Sci. China-Technol. Sci. – volume: 94 start-page: 10 year: 2025 ident: bib0059 article-title: An improved adaptive hybrid algorithm for solving distributed flexible job shop scheduling problem publication-title: Swarm Evol. Comput. – volume: 92 start-page: 11 year: 2025 ident: bib0060 article-title: A learning-based memetic algorithm for energy-efficient distributed flow-shop scheduling with preventive maintenance publication-title: Swarm Evol. Comput. – year: 2024 ident: bib0051 article-title: An evolutionary multitasking memetic algorithm for multi-objective distributed heterogeneous welding flow shop scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 168 start-page: 105 year: 2017 end-page: 115 ident: bib0046 article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition publication-title: Reliab. Eng. Syst. Saf. – volume: 149 start-page: 17 year: 2025 ident: bib0049 article-title: A deep reinforcement learning assisted adaptive genetic algorithm for flexible job shop scheduling publication-title: Eng. Appl. Artif. Intell. – volume: 197 start-page: 12 year: 2024 ident: bib0037 article-title: A bi-population cooperative scatter search algorithm for distributed hybrid flow shop scheduling with machine breakdown publication-title: Comput. Ind. Eng. – volume: 264 start-page: 12 year: 2023 ident: bib0047 article-title: Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems publication-title: Int. J. Prod. Econ. – volume: 62 year: 2021 ident: bib0005 article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations publication-title: Swarm Evol. Comput. – volume: 54 start-page: 2914 year: 2024 end-page: 2927 ident: bib0017 article-title: Reinforcement learning-based multiobjective evolutionary algorithm for mixed-model multimanned assembly line balancing under uncertain demand publication-title: IEEE Trans. Cybern. – volume: 21 start-page: 6550 year: 2024 end-page: 6562 ident: bib0024 article-title: Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 232 start-page: 17 year: 2023 ident: bib0038 article-title: Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with flexible preventive maintenance publication-title: Expert Syst. Appl. – volume: 22 start-page: 9934 year: 2025 end-page: 9947 ident: bib0041 article-title: A learning-based hybrid artificial bee colony algorithm for energy-efficient distributed heterogeneous type-2 fuzzy welding shop scheduling problem with factory eligibility publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 64 start-page: 19 year: 1999 end-page: 31 ident: bib0045 article-title: Age-dependent reliability model considering effects of maintenance and working conditions publication-title: Reliab. Eng. Syst. Saf. – volume: 17 start-page: 6687 year: 2021 end-page: 6696 ident: bib0006 article-title: Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China publication-title: IEEE Trans. Ind. Inf. – volume: 417 start-page: 169 year: 2017 end-page: 185 ident: bib0050 article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization publication-title: Inf. Sci. – volume: 41 start-page: 157 year: 1993 end-page: 183 ident: bib0054 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Ann. Oper. Res. – volume: 54 start-page: 201 year: 2024 end-page: 211 ident: bib0025 article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 166 start-page: 26 year: 2024 ident: bib0052 article-title: Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics publication-title: Appl. Soft Comput. – volume: 86 start-page: 10 year: 2024 ident: bib0035 article-title: An efficient collaborative multi-swap iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance publication-title: Swarm Evol. Comput. – volume: 170 start-page: 12 year: 2025 ident: bib0036 article-title: A knowledge-driven memetic algorithm for distributed green flexible job shop scheduling considering the endurance of machines publication-title: Appl. Soft Comput. – volume: 57 start-page: 231 year: 2020 end-page: 241 ident: bib0013 article-title: Joint optimization of job scheduling and maintenance planning for a two-machine flow shop considering job-dependent operating condition publication-title: J. Manuf. Syst. – volume: 38 start-page: 7169 year: 2011 end-page: 7178 ident: bib0010 article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem publication-title: Expert Syst. Appl. – volume: 142 year: 2020 ident: bib0021 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 258 start-page: 17 year: 2024 ident: bib0016 article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for green flexible shop scheduling problem considering machine speed publication-title: Expert Syst. Appl. – year: 2024 ident: bib0033 article-title: A learning-assisted Bi-population evolutionary algorithm for distributed flexible job-shop scheduling with maintenance decisions publication-title: IEEE Trans. Evol. Comput. – volume: 78 start-page: 94 year: 2025 end-page: 108 ident: bib0040 article-title: A dynamic artificial bee colony for fuzzy distributed energy-efficient hybrid flow shop scheduling with batch processing machines publication-title: J. Manuf. Syst. – volume: 22 start-page: 142 year: 1966 end-page: 161 ident: bib0044 article-title: A method of analysis of a certain class of experiments in carcinogenesis publication-title: Biometrics – volume: 92 start-page: 530 year: 2007 end-page: 534 ident: bib0055 article-title: Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation publication-title: Reliab. Eng. Syst. Saf. – volume: 57 start-page: 61 year: 2019 end-page: 82 ident: bib0014 article-title: A mixed-integer linear programming model for integrated production and preventive maintenance scheduling in the capital goods industry publication-title: Int. J. Prod. Res. – volume: 19 start-page: 6692 year: 2023 end-page: 6705 ident: bib0001 article-title: A population-based iterated greedy algorithm for distributed assembly No-wait flow-shop scheduling problem publication-title: IEEE Trans. Ind. Inf. – volume: 201 start-page: 16 year: 2025 ident: bib0011 article-title: MILP modeling and optimization of flexible job shop scheduling problem with preventive maintenance publication-title: Comput. Ind. Eng. – volume: 15 start-page: 205 year: 1994 end-page: 215 ident: bib0053 article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines publication-title: Operat.-Res.-Spektrum – volume: 170 start-page: 12 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0036 article-title: A knowledge-driven memetic algorithm for distributed green flexible job shop scheduling considering the endurance of machines publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2025.112697 – volume: 196 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0029 article-title: A learning-driven multi-objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling problems with preventive maintenance and transportation operations publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110484 – volume: 38 start-page: 7169 year: 2011 ident: 10.1016/j.swevo.2025.102134_bib0010 article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.043 – volume: 86 start-page: 10 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0035 article-title: An efficient collaborative multi-swap iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101537 – volume: 47 start-page: 145 year: 2000 ident: 10.1016/j.swevo.2025.102134_bib0026 article-title: Scheduling jobs and maintenance activities on parallel machines publication-title: Nav. Res. Logist. doi: 10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3 – volume: 62 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0005 article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100861 – volume: 20 start-page: 361 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0002 article-title: Improved meta-heuristics for solving distributed lot-streaming permutation flow shop scheduling problems publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3151648 – volume: 89 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0034 article-title: A self-adaptive co-evolutionary algorithm for multi-objective flexible job-shop rescheduling problem with multi-phase processing speed selection, condition-based preventive maintenance and dynamic repairman assignment publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101643 – volume: 169 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0012 article-title: An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114495 – volume: 142 year: 2020 ident: 10.1016/j.swevo.2025.102134_bib0021 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106347 – volume: 53 start-page: 3337 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0023 article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3192112 – volume: 197 start-page: 12 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0037 article-title: A bi-population cooperative scatter search algorithm for distributed hybrid flow shop scheduling with machine breakdown publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110624 – volume: 149 start-page: 17 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0049 article-title: A deep reinforcement learning assisted adaptive genetic algorithm for flexible job shop scheduling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2025.110447 – volume: 35 start-page: 1517 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0027 article-title: Flexible job shop scheduling with preventive maintenance consideration publication-title: J. Intell. Manuf. doi: 10.1007/s10845-023-02114-3 – volume: 20 start-page: 2305 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0042 article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous No-wait flowshop scheduling problem with sequence-dependent setup times publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3212786 – volume: 22 start-page: 9934 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0041 article-title: A learning-based hybrid artificial bee colony algorithm for energy-efficient distributed heterogeneous type-2 fuzzy welding shop scheduling problem with factory eligibility publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2024.3514863 – volume: 26 start-page: 625 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0003 article-title: Technology, distributed scheduling problems in intelligent manufacturing systems publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010009 – volume: 17 start-page: 6687 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0006 article-title: Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.3043734 – volume: 264 start-page: 12 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0047 article-title: Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2023.108971 – volume: 41 start-page: 157 year: 1993 ident: 10.1016/j.swevo.2025.102134_bib0054 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Ann. Oper. Res. doi: 10.1007/BF02023073 – volume: 49 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0031 article-title: Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system using a reinforcement learning approach publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101339 – volume: 157 start-page: 17 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0008 article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107318 – volume: 54 start-page: 2914 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0017 article-title: Reinforcement learning-based multiobjective evolutionary algorithm for mixed-model multimanned assembly line balancing under uncertain demand publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2022.3229666 – volume: 15 start-page: 205 year: 1994 ident: 10.1016/j.swevo.2025.102134_bib0053 article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines publication-title: Operat.-Res.-Spektrum doi: 10.1007/BF01719451 – volume: 127 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0058 article-title: An improved genetic algorithm with an overlapping strategy for solving a combination of order batching and flexible job shop scheduling problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107321 – volume: 19 start-page: 3379 year: 2022 ident: 10.1016/j.swevo.2025.102134_bib0022 article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3119353 – volume: 200 start-page: 1 year: 2005 ident: 10.1016/j.swevo.2025.102134_bib0015 – volume: 78 start-page: 94 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0040 article-title: A dynamic artificial bee colony for fuzzy distributed energy-efficient hybrid flow shop scheduling with batch processing machines publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2024.10.019 – volume: 189 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0007 article-title: Shared manufacturing-based distributed flexible job shop scheduling with supply-demand matching publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.109950 – volume: 57 start-page: 61 year: 2019 ident: 10.1016/j.swevo.2025.102134_bib0014 article-title: A mixed-integer linear programming model for integrated production and preventive maintenance scheduling in the capital goods industry publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1459923 – volume: 92 start-page: 530 year: 2007 ident: 10.1016/j.swevo.2025.102134_bib0055 article-title: Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2006.01.006 – year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0033 article-title: A learning-assisted Bi-population evolutionary algorithm for distributed flexible job-shop scheduling with maintenance decisions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2024.3400043 – volume: 157 year: 2021 ident: 10.1016/j.swevo.2025.102134_bib0004 article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107318 – volume: 64 start-page: 19 year: 1999 ident: 10.1016/j.swevo.2025.102134_bib0045 article-title: Age-dependent reliability model considering effects of maintenance and working conditions publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(98)00050-7 – volume: 19 start-page: 6692 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0001 article-title: A population-based iterated greedy algorithm for distributed assembly No-wait flow-shop scheduling problem publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3192881 – volume: 94 start-page: 10 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0059 article-title: An improved adaptive hybrid algorithm for solving distributed flexible job shop scheduling problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2025.101873 – volume: 58 start-page: 196 year: 2019 ident: 10.1016/j.swevo.2025.102134_bib0032 article-title: Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems publication-title: Rob. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2019.01.005 – year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0051 article-title: An evolutionary multitasking memetic algorithm for multi-objective distributed heterogeneous welding flow shop scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 16 start-page: 307 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0039 article-title: A hybrid artificial bee colony algorithm with an iterated local search mechanism for distributed no-wait flowshop problems with preventive maintenance publication-title: Int. J. Ind. Eng. Comput. – volume: 168 start-page: 105 year: 2017 ident: 10.1016/j.swevo.2025.102134_bib0046 article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.05.014 – volume: 54 start-page: 201 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0025 article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2023.3305541 – volume: 57 start-page: 231 year: 2020 ident: 10.1016/j.swevo.2025.102134_bib0013 article-title: Joint optimization of job scheduling and maintenance planning for a two-machine flow shop considering job-dependent operating condition publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.08.013 – volume: 120 year: 2022 ident: 10.1016/j.swevo.2025.102134_bib0018 article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108694 – volume: 56-57 start-page: 150 year: 2015 ident: 10.1016/j.swevo.2025.102134_bib0048 article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.10.014 – volume: 417 start-page: 169 year: 2017 ident: 10.1016/j.swevo.2025.102134_bib0050 article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.011 – volume: 78 start-page: 176 year: 2019 ident: 10.1016/j.swevo.2025.102134_bib0057 article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete PSO-SA: an application from a casting workshop publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.011 – volume: 22 start-page: 142 year: 1966 ident: 10.1016/j.swevo.2025.102134_bib0044 article-title: A method of analysis of a certain class of experiments in carcinogenesis publication-title: Biometrics doi: 10.2307/2528221 – volume: 201 start-page: 16 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0011 article-title: MILP modeling and optimization of flexible job shop scheduling problem with preventive maintenance publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2025.110861 – volume: 71 start-page: 82 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0019 article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2023.09.002 – volume: 166 start-page: 26 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0052 article-title: Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112247 – volume: 92 start-page: 11 year: 2025 ident: 10.1016/j.swevo.2025.102134_bib0060 article-title: A learning-based memetic algorithm for energy-efficient distributed flow-shop scheduling with preventive maintenance publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101772 – volume: 141 year: 2020 ident: 10.1016/j.swevo.2025.102134_bib0028 article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106320 – volume: 65 start-page: 2105 year: 2022 ident: 10.1016/j.swevo.2025.102134_bib0020 article-title: Improved gray wolf optimizer for distributed flexible job shop scheduling problem publication-title: Sci. China-Technol. Sci. doi: 10.1007/s11431-022-2096-6 – volume: 232 start-page: 17 year: 2023 ident: 10.1016/j.swevo.2025.102134_bib0038 article-title: Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with flexible preventive maintenance publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120837 – volume: 258 start-page: 17 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0016 article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for green flexible shop scheduling problem considering machine speed publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125189 – volume: 269 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0030 article-title: Joint optimization of flexible job shop scheduling and preventive maintenance under high-frequency production switching publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2024.109163 – volume: 47 start-page: 12 year: 2018 ident: 10.1016/j.swevo.2025.102134_bib0009 article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.02.003 – volume: 134 start-page: 19 year: 2019 ident: 10.1016/j.swevo.2025.102134_bib0043 article-title: Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.106302 – volume: 21 start-page: 6550 year: 2024 ident: 10.1016/j.swevo.2025.102134_bib0024 article-title: Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2023.3327792 – volume: 168 start-page: 105 year: 2017 ident: 10.1016/j.swevo.2025.102134_bib0056 article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.05.014  | 
    
| SSID | ssj0000602559 | 
    
| Score | 2.37113 | 
    
| Snippet | •A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 102134 | 
    
| SubjectTerms | Artificial bee colony algorithm Distributed heterogeneous flexible job shop scheduling Preventive maintenance Q-learning  | 
    
| Title | Hybrid artificial bee colony algorithm with Q-learning for distributed heterogeneous flexible job shop scheduling problem considering machine preventive maintenance | 
    
| URI | https://dx.doi.org/10.1016/j.swevo.2025.102134 | 
    
| Volume | 98 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2210-6502 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals issn: 2210-6502 databaseCode: AIKHN dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 2210-6502 databaseCode: ACRLP dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 2210-6502 databaseCode: .~1 dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2210-6502 databaseCode: AKRWK dateStart: 20110301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602559 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4muHDhjRgv-cCRsj7StD1OCDRAICGYtFvVtM42NNaJPdAu_Bp-KHYfCCTEgWPTRI1iJ7ZT-_uEOLW9lMy8kpYbZGhJNI5FeqMszXzWSeJHuqBvu7tXna686fm9hrioa2E4rbI6-8szvTitq5ZWtZqtyXDYenQpWiH_ghSSfy25XGguZcAsBufvztc9i60Kr5k55qi_xQNq8KEizWv6hgsuAnR9RjFwPPm7gfpmdK42xXrlLUK7nNCWaOB4W2zUTAxQbcwd8dFZcuUV8MxLSAjQiMCI1OMlJKN-_jqcDV6Ab13hwaqoIvpAHitkDJ3LrFeYwYCTY3LSKcznUzAMlqlHCM-5hukgnwCFwmSauIIdKiYa-kbJ-MltL0VmJtK7EhdqgdTEgBSM6oG7ont1-XTRsSr-BSt1ycxTVJl6FFFodIxMlQpNZpS2Dbk4foQB6ixyQhNpmXmeh25G2zmhjoadCD9VUnl7YmWcj3FfAKMIJqHDDlAowywIZRKS8YyMrT2VpGFTnNWLHk9KmI24zj97jgsZxSyjuJRRU6haMPEPbYnJEPw18OC_Aw_FGj-VaXxHYmX2Osdjckdm-qTQtxOx2r6-7dx_Anck4lY | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HODCG_HGB46UrW2atUeEQAO2SYhN2q1qWodtGuu0B4gLv4Yfit0HAglx4JrUbRQ7sZ063yfEWdWNyc0raTm1BC2JxrbIbpSlmc86irxAZ_RtzZaqd-Rd1-suiKvyLgyXVRZ7f76nZ7t10VIpZrMy7vcrjw5lKxRfkEHyryXHWxTL9P4aZ2AX7_bXQUtVZWEzk8yRgMUSJfpQVuc1fcUXvgXoeAxjYLvydw_1zevcbIi1IlyEy3xEm2IBR1tivaRigGJlbouP-htfvQIeeo4JARoRGJJ69AbR8Cmd9Ge9Z-BjV3iwCq6IJ6CQFRLGzmXaK0ygx9UxKRkVpvMpGEbL1EOEQaph2kvHQLkw-Sa-wg4FFQ19I6f85LbnrDQTqS8HhnpBamJECob1wB3RubluX9WtgoDBih3y85RWxi6lFBptI2OlfJMYpauGYhwvwBrqJLB9E2iZuK6LTkLrOaIHDUcRXqykcnfF0igd4Z4AhhGMfJsjIF_6Sc2XkU_eMzBV7aoo9vfFeTnp4TjH2QjLArRBmOkoZB2FuY72hSoVE_4wl5A8wV-CB_8VPBUr9XazETZuW_eHYpV78pq-I7E0m8zxmGKTmT7JbO8TyNbj6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+artificial+bee+colony+algorithm+with+Q-learning+for+distributed+heterogeneous+flexible+job+shop+scheduling+problem+considering+machine+preventive+maintenance&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wu%2C+Rui&rft.au=Luo%2C+Enzhuang&rft.au=Li%2C+Xixing&rft.au=Tang%2C+Hongtao&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=98&rft_id=info:doi/10.1016%2Fj.swevo.2025.102134&rft.externalDocID=S2210650225002925 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |