Hybrid artificial bee colony algorithm with Q-learning for distributed heterogeneous flexible job shop scheduling problem considering machine preventive maintenance

•A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The joint scheduling problem of production and preventive maintenance is studied.•A novel hybrid artificial bee colony algorithm with Q-learning...

Full description

Saved in:
Bibliographic Details
Published inSwarm and evolutionary computation Vol. 98; p. 102134
Main Authors Wu, Rui, Luo, Enzhuang, Li, Xixing, Tang, Hongtao, Li, Yibing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2025
Subjects
Online AccessGet full text
ISSN2210-6502
DOI10.1016/j.swevo.2025.102134

Cover

Abstract •A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The joint scheduling problem of production and preventive maintenance is studied.•A novel hybrid artificial bee colony algorithm with Q-learning is designed. Current research on preventive maintenance in the scheduling domain predominantly focuses on machine degradation under stable operating conditions. However, the machine works under varying operating conditions (cutting depth, feed rate, etc.) when processing different jobs, and much research ignores the influence of these diverse operating conditions on machine degradation. To address this gap, this paper proposes a novel machine degradation model tailored to various operating conditions and introduces a dual-threshold preventive maintenance strategy, which is integrated with the scheduling problem. To effectively solve this integrated problem, a mixed-integer programming (MIP) framework targeting makespan minimization is constructed, coupled with a hybrid artificial bee colony (ABC) algorithm incorporating a neighborhood search mechanism. First, a three-layer encoding scheme based on factory-machine-operation is designed, and preventive maintenance decisions are incorporated into the decoding strategy. Furthermore, a hybrid population initialization strategy is developed to enhance population diversity. Third, multiple crossover and mutation operators are developed during the employed bee phase, and a simple yet effective operator selection mechanism is employed to improve global search efficiency. In the onlooker bee phase, five neighborhood search operators are proposed to address the local search limitations of traditional ABC algorithms. These operators are adaptively selected via a Q-learning algorithm to strengthen local search performance. Finally, extended computational instances are designed, and comparative experiments validate the effectiveness of the proposed algorithm in solving scheduling problems across different job scales and factory scales.
AbstractList •A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The joint scheduling problem of production and preventive maintenance is studied.•A novel hybrid artificial bee colony algorithm with Q-learning is designed. Current research on preventive maintenance in the scheduling domain predominantly focuses on machine degradation under stable operating conditions. However, the machine works under varying operating conditions (cutting depth, feed rate, etc.) when processing different jobs, and much research ignores the influence of these diverse operating conditions on machine degradation. To address this gap, this paper proposes a novel machine degradation model tailored to various operating conditions and introduces a dual-threshold preventive maintenance strategy, which is integrated with the scheduling problem. To effectively solve this integrated problem, a mixed-integer programming (MIP) framework targeting makespan minimization is constructed, coupled with a hybrid artificial bee colony (ABC) algorithm incorporating a neighborhood search mechanism. First, a three-layer encoding scheme based on factory-machine-operation is designed, and preventive maintenance decisions are incorporated into the decoding strategy. Furthermore, a hybrid population initialization strategy is developed to enhance population diversity. Third, multiple crossover and mutation operators are developed during the employed bee phase, and a simple yet effective operator selection mechanism is employed to improve global search efficiency. In the onlooker bee phase, five neighborhood search operators are proposed to address the local search limitations of traditional ABC algorithms. These operators are adaptively selected via a Q-learning algorithm to strengthen local search performance. Finally, extended computational instances are designed, and comparative experiments validate the effectiveness of the proposed algorithm in solving scheduling problems across different job scales and factory scales.
ArticleNumber 102134
Author Li, Xixing
Tang, Hongtao
Wu, Rui
Luo, Enzhuang
Li, Yibing
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0001-7133-185X
  surname: Wu
  fullname: Wu, Rui
  organization: School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
– sequence: 2
  givenname: Enzhuang
  surname: Luo
  fullname: Luo, Enzhuang
  organization: School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
– sequence: 3
  givenname: Xixing
  orcidid: 0000-0002-5796-3479
  surname: Li
  fullname: Li, Xixing
  email: li_xi_xing@126.com
  organization: School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
– sequence: 4
  givenname: Hongtao
  surname: Tang
  fullname: Tang, Hongtao
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 5
  givenname: Yibing
  surname: Li
  fullname: Li, Yibing
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
BookMark eNp9UElOAzEQ9AEk1hdw8QcmeMmYzIEDQmxSJIQEZ8tLO9PRxI7sSSD_4aE4hDN96JaqurpLdUaOYopAyBVnE864ul5Oyids00Qw0VZEcDk9IqdCcNaolokTclnKktVSdaHtTsn3885m9NTkEQM6NAO1ANSlIcUdNcMiZRz7Ff2snb41A5gcMS5oSJl6LGNGuxnB0x5GyGkBEdKm0DDAF9oB6DJZWvq0psX14DfDXrrOqVKr-iMW9JD32Mq4HiNUDrYQR9xChTCOEE10cEGOgxkKXP7Nc_Lx-PB-_9zMX59e7u_mjRNM8UZxJyVTFniYOqVmwQdlWZCzru3gBqzv-Cx0duqllCA8a6Wpi0HwlrdOTZU8J_Jw1-VUSoag1xlXJu80Z3qfr17q33z1Pl99yLeqbg8qqNa2CFkXh1Bte8zgRu0T_qv_Afp0jgU
Cites_doi 10.1016/j.asoc.2025.112697
10.1016/j.cie.2024.110484
10.1016/j.eswa.2010.12.043
10.1016/j.swevo.2024.101537
10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3
10.1016/j.swevo.2021.100861
10.1109/TASE.2022.3151648
10.1016/j.swevo.2024.101643
10.1016/j.eswa.2020.114495
10.1016/j.cie.2020.106347
10.1109/TCYB.2022.3192112
10.1016/j.cie.2024.110624
10.1016/j.engappai.2025.110447
10.1007/s10845-023-02114-3
10.1109/TASE.2022.3212786
10.1109/TASE.2024.3514863
10.26599/TST.2021.9010009
10.1109/TII.2020.3043734
10.1016/j.ijpe.2023.108971
10.1007/BF02023073
10.1016/j.aei.2021.101339
10.1016/j.cie.2021.107318
10.1109/TCYB.2022.3229666
10.1007/BF01719451
10.1016/j.engappai.2023.107321
10.1109/TASE.2021.3119353
10.1016/j.jmsy.2024.10.019
10.1016/j.cie.2024.109950
10.1080/00207543.2018.1459923
10.1016/j.ress.2006.01.006
10.1109/TEVC.2024.3400043
10.1016/S0951-8320(98)00050-7
10.1109/TII.2022.3192881
10.1016/j.swevo.2025.101873
10.1016/j.rcim.2019.01.005
10.1016/j.ress.2017.05.014
10.1109/TSMC.2023.3305541
10.1016/j.jmsy.2020.08.013
10.1016/j.asoc.2022.108694
10.1016/j.ymssp.2014.10.014
10.1016/j.ins.2017.07.011
10.1016/j.asoc.2019.02.011
10.2307/2528221
10.1016/j.cie.2025.110861
10.1016/j.jmsy.2023.09.002
10.1016/j.asoc.2024.112247
10.1016/j.swevo.2024.101772
10.1016/j.cie.2020.106320
10.1007/s11431-022-2096-6
10.1016/j.eswa.2023.120837
10.1016/j.eswa.2024.125189
10.1016/j.ijpe.2024.109163
10.1016/j.jmsy.2018.02.003
10.1016/j.ymssp.2019.106302
10.1109/TASE.2023.3327792
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.102134
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_102134
S2210650225002925
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c2061-61c3306be1f4c668fdf6b0f38959e7ebd918f9b4d333e2d053af4cf21515c6463
IEDL.DBID .~1
ISSN 2210-6502
IngestDate Wed Oct 01 05:16:11 EDT 2025
Sun Oct 19 01:39:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Distributed heterogeneous flexible job shop scheduling
Artificial bee colony algorithm
Q-learning
Preventive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2061-61c3306be1f4c668fdf6b0f38959e7ebd918f9b4d333e2d053af4cf21515c6463
ORCID 0000-0001-7133-185X
0000-0002-5796-3479
ParticipantIDs crossref_primary_10_1016_j_swevo_2025_102134
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Li, Meng, Zhang (bib0039) 2025; 16
Meng, Zhang, Ren, Zhang, Lv (bib0021) 2020; 142
Ali, Chebel-Morello, Saidi, Malinowski, Fnaiech (bib0048) 2015; 56-57
Zhao, Wang, Wang (bib0042) 2023; 20
Lei, Liu (bib0028) 2020; 141
Wang, Yan, Zhang (bib0031) 2021; 49
Chansombat, Pongcharoen, Hicks (bib0014) 2019; 57
Brandimarte (bib0054) 1993; 41
An, Zhao, Gao, Dong, Chen, Zhou (bib0034) 2024; 89
Li, Wang, Gong, Ming (bib0051) 2024
Deng, Qiu, Di, Zhang (bib0036) 2025; 170
Fu, Hou, Wang, Wu, Gao, Wang (bib0003) 2021; 26
Lin, Lee, Wu (bib0032) 2019; 58
Martorell, Sanchez, Serradell, Safety (bib0045) 1999; 64
Mao, Pan, Miao, Gao (bib0012) 2021; 169
Zhou, Xi, Lee (bib0055) 2007; 92
Zuo, Zhao, Zhang (bib0037) 2024; 197
Wei, Ye, Xu (bib0007) 2024; 189
Moradi, Fatemi Ghomi, Zandieh (bib0010) 2011; 38
Li, Gong, Wang, Lu, Dong (bib0025) 2024; 54
Yu, Gao, Lu, Yin (bib0041) 2025; 22
Yu, Gao, Li, Suganthan (bib0052) 2024; 166
Hurink, Jurisch, Thole (bib0053) 1994; 15
Zhao, Cheng, Meng, Zhang, Ren, Zhang, Duan (bib0011) 2025; 201
Yan, Wang, Yang (bib0033) 2024
Li, Xie, Ma, Gao, Li (bib0020) 2022; 65
Ma, Gao, Tong (bib0049) 2025; 149
Zhuang, Zhang, Tang, Li, Wang (bib0016) 2024; 258
Du, Li, Luo, Meng (bib0005) 2021; 62
Cui, Li, Wang, Lin, Chen, Lu, Lu (bib0050) 2017; 417
Hu, Jiang, Liao (bib0056) 2017; 168
Zhu, Zhou (bib0047) 2023; 264
Zhao, Xu, Wang, Zhu, Xu, Jonrinaldi (bib0001) 2023; 19
Xie, Li, Gao, Gui (bib0019) 2023; 71
Han, Sang, Pan, Zhang, Guo (bib0035) 2024; 86
Xu, Hu, Luo, Wang, Wu (bib0004) 2021; 157
Shao, Shao, Pi (bib0022) 2022; 19
Zhang, Fu, Gao, Pan, Huang (bib0029) 2024; 196
Wang, Han (bib0060) 2025; 92
Karaboga (bib0015) 2005; 200
Hu, Jiang, Liao (bib0046) 2017; 168
Yang, Zhao, Peng, Ma (bib0009) 2018; 47
Kundu, Darpe, Kulkarni (bib0043) 2019; 134
Pike (bib0044) 1966; 22
Tang, Chen, Li, Peng, Guo, Du (bib0057) 2019; 78
Zhang, Tang, Chica, Li (bib0017) 2024; 54
Tang, Fang, Liu, Li, Guo (bib0018) 2022; 120
Lee, Chen (bib0026) 2000; 47
Lu, Gao, Yi, Li (bib0006) 2021; 17
Jia, Yan, Wang (bib0038) 2023; 232
Wang, Lei, Li, Li, Tang (bib0040) 2025; 78
Hu, Jiang, Liao (bib0013) 2020; 57
Li, Gong, Wang, Lu, Pan, Zhuang (bib0024) 2024; 21
Xu, Hu, Luo, Wang, Wu (bib0008) 2021; 157
Pan, Gao, Li, Wu (bib0002) 2023; 20
Zhao, Di, Wang (bib0023) 2023; 53
Wang, Xia, Xu, Ding, Zheng, Pan, Xi (bib0030) 2024; 269
Wang, Wei, Liu, Zhang, Li (bib0059) 2025; 94
Wocker, Ostermeier, Wanninger, Zwinkau, Deuse (bib0027) 2023; 35
Liu, Zha, Yan, Zhang, Zhao, Cheng, Cheng (bib0058) 2024; 127
Ali (10.1016/j.swevo.2025.102134_bib0048) 2015; 56-57
An (10.1016/j.swevo.2025.102134_bib0034) 2024; 89
Pike (10.1016/j.swevo.2025.102134_bib0044) 1966; 22
Hu (10.1016/j.swevo.2025.102134_bib0046) 2017; 168
Wocker (10.1016/j.swevo.2025.102134_bib0027) 2023; 35
Shao (10.1016/j.swevo.2025.102134_bib0022) 2022; 19
Yu (10.1016/j.swevo.2025.102134_bib0041) 2025; 22
Li (10.1016/j.swevo.2025.102134_bib0025) 2024; 54
Hu (10.1016/j.swevo.2025.102134_bib0056) 2017; 168
Wei (10.1016/j.swevo.2025.102134_bib0007) 2024; 189
Xu (10.1016/j.swevo.2025.102134_bib0008) 2021; 157
Zhao (10.1016/j.swevo.2025.102134_bib0011) 2025; 201
Li (10.1016/j.swevo.2025.102134_bib0020) 2022; 65
Martorell (10.1016/j.swevo.2025.102134_bib0045) 1999; 64
Wang (10.1016/j.swevo.2025.102134_bib0059) 2025; 94
Pan (10.1016/j.swevo.2025.102134_bib0002) 2023; 20
Karaboga (10.1016/j.swevo.2025.102134_bib0015) 2005; 200
Zhang (10.1016/j.swevo.2025.102134_bib0017) 2024; 54
Moradi (10.1016/j.swevo.2025.102134_bib0010) 2011; 38
Zhang (10.1016/j.swevo.2025.102134_bib0029) 2024; 196
Zhao (10.1016/j.swevo.2025.102134_bib0042) 2023; 20
Liu (10.1016/j.swevo.2025.102134_bib0058) 2024; 127
Zhou (10.1016/j.swevo.2025.102134_bib0055) 2007; 92
Hurink (10.1016/j.swevo.2025.102134_bib0053) 1994; 15
Zhao (10.1016/j.swevo.2025.102134_bib0001) 2023; 19
Chansombat (10.1016/j.swevo.2025.102134_bib0014) 2019; 57
Tang (10.1016/j.swevo.2025.102134_bib0018) 2022; 120
Li (10.1016/j.swevo.2025.102134_bib0051) 2024
Du (10.1016/j.swevo.2025.102134_bib0005) 2021; 62
Jia (10.1016/j.swevo.2025.102134_bib0038) 2023; 232
Zuo (10.1016/j.swevo.2025.102134_bib0037) 2024; 197
Wang (10.1016/j.swevo.2025.102134_bib0040) 2025; 78
Ma (10.1016/j.swevo.2025.102134_bib0049) 2025; 149
Zhao (10.1016/j.swevo.2025.102134_bib0023) 2023; 53
Yang (10.1016/j.swevo.2025.102134_bib0009) 2018; 47
Xu (10.1016/j.swevo.2025.102134_bib0004) 2021; 157
Lei (10.1016/j.swevo.2025.102134_bib0028) 2020; 141
Li (10.1016/j.swevo.2025.102134_bib0024) 2024; 21
Zhuang (10.1016/j.swevo.2025.102134_bib0016) 2024; 258
Lu (10.1016/j.swevo.2025.102134_bib0006) 2021; 17
Zhu (10.1016/j.swevo.2025.102134_bib0047) 2023; 264
Yu (10.1016/j.swevo.2025.102134_bib0052) 2024; 166
Han (10.1016/j.swevo.2025.102134_bib0035) 2024; 86
Cui (10.1016/j.swevo.2025.102134_bib0050) 2017; 417
Wang (10.1016/j.swevo.2025.102134_bib0060) 2025; 92
Tang (10.1016/j.swevo.2025.102134_bib0057) 2019; 78
Wang (10.1016/j.swevo.2025.102134_bib0030) 2024; 269
Meng (10.1016/j.swevo.2025.102134_bib0021) 2020; 142
Yan (10.1016/j.swevo.2025.102134_bib0033) 2024
Xie (10.1016/j.swevo.2025.102134_bib0019) 2023; 71
Brandimarte (10.1016/j.swevo.2025.102134_bib0054) 1993; 41
Kundu (10.1016/j.swevo.2025.102134_bib0043) 2019; 134
Fu (10.1016/j.swevo.2025.102134_bib0003) 2021; 26
Lee (10.1016/j.swevo.2025.102134_bib0026) 2000; 47
Li (10.1016/j.swevo.2025.102134_bib0039) 2025; 16
Mao (10.1016/j.swevo.2025.102134_bib0012) 2021; 169
Hu (10.1016/j.swevo.2025.102134_bib0013) 2020; 57
Lin (10.1016/j.swevo.2025.102134_bib0032) 2019; 58
Deng (10.1016/j.swevo.2025.102134_bib0036) 2025; 170
Wang (10.1016/j.swevo.2025.102134_bib0031) 2021; 49
References_xml – volume: 58
  start-page: 196
  year: 2019
  end-page: 207
  ident: bib0032
  article-title: Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 49
  year: 2021
  ident: bib0031
  article-title: Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system using a reinforcement learning approach
  publication-title: Adv. Eng. Inf.
– volume: 200
  start-page: 1
  year: 2005
  end-page: 10
  ident: bib0015
  publication-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
– volume: 269
  year: 2024
  ident: bib0030
  article-title: Joint optimization of flexible job shop scheduling and preventive maintenance under high-frequency production switching
  publication-title: Int. J. Prod. Econ.
– volume: 127
  year: 2024
  ident: bib0058
  article-title: An improved genetic algorithm with an overlapping strategy for solving a combination of order batching and flexible job shop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 56-57
  start-page: 150
  year: 2015
  end-page: 172
  ident: bib0048
  article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
  publication-title: Mech. Syst. Sig. Process.
– volume: 157
  start-page: 17
  year: 2021
  ident: bib0008
  article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission
  publication-title: Comput. Ind. Eng.
– volume: 120
  year: 2022
  ident: bib0018
  article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 12
  year: 2018
  end-page: 34
  ident: bib0009
  article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits
  publication-title: J. Manuf. Syst.
– volume: 47
  start-page: 145
  year: 2000
  end-page: 165
  ident: bib0026
  article-title: Scheduling jobs and maintenance activities on parallel machines
  publication-title: Nav. Res. Logist.
– volume: 134
  start-page: 19
  year: 2019
  ident: bib0043
  article-title: Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions
  publication-title: Mech. Syst. Sig. Process.
– volume: 71
  start-page: 82
  year: 2023
  end-page: 94
  ident: bib0019
  article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems
  publication-title: J. Manuf. Syst.
– volume: 35
  start-page: 1517
  year: 2023
  end-page: 1539
  ident: bib0027
  article-title: Flexible job shop scheduling with preventive maintenance consideration
  publication-title: J. Intell. Manuf.
– volume: 157
  year: 2021
  ident: bib0004
  article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission
  publication-title: Comput. Ind. Eng.
– volume: 169
  year: 2021
  ident: bib0012
  article-title: An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 361
  year: 2023
  end-page: 371
  ident: bib0002
  article-title: Improved meta-heuristics for solving distributed lot-streaming permutation flow shop scheduling problems
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 26
  start-page: 625
  year: 2021
  end-page: 645
  ident: bib0003
  article-title: Technology, distributed scheduling problems in intelligent manufacturing systems
  publication-title: Tsinghua Sci. Technol.
– volume: 89
  year: 2024
  ident: bib0034
  article-title: A self-adaptive co-evolutionary algorithm for multi-objective flexible job-shop rescheduling problem with multi-phase processing speed selection, condition-based preventive maintenance and dynamic repairman assignment
  publication-title: Swarm Evol. Comput.
– volume: 16
  start-page: 307
  year: 2025
  end-page: 322
  ident: bib0039
  article-title: A hybrid artificial bee colony algorithm with an iterated local search mechanism for distributed no-wait flowshop problems with preventive maintenance
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 141
  year: 2020
  ident: bib0028
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Comput. Ind. Eng.
– volume: 196
  year: 2024
  ident: bib0029
  article-title: A learning-driven multi-objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling problems with preventive maintenance and transportation operations
  publication-title: Comput. Ind. Eng.
– volume: 189
  year: 2024
  ident: bib0007
  article-title: Shared manufacturing-based distributed flexible job shop scheduling with supply-demand matching
  publication-title: Comput. Ind. Eng.
– volume: 19
  start-page: 3379
  year: 2022
  end-page: 3394
  ident: bib0022
  article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 78
  start-page: 176
  year: 2019
  end-page: 194
  ident: bib0057
  article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete PSO-SA: an application from a casting workshop
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 2305
  year: 2023
  end-page: 2320
  ident: bib0042
  article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous No-wait flowshop scheduling problem with sequence-dependent setup times
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 168
  start-page: 105
  year: 2017
  end-page: 115
  ident: bib0056
  article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 53
  start-page: 3337
  year: 2023
  end-page: 3350
  ident: bib0023
  article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans. Cybern.
– volume: 65
  start-page: 2105
  year: 2022
  end-page: 2115
  ident: bib0020
  article-title: Improved gray wolf optimizer for distributed flexible job shop scheduling problem
  publication-title: Sci. China-Technol. Sci.
– volume: 94
  start-page: 10
  year: 2025
  ident: bib0059
  article-title: An improved adaptive hybrid algorithm for solving distributed flexible job shop scheduling problem
  publication-title: Swarm Evol. Comput.
– volume: 92
  start-page: 11
  year: 2025
  ident: bib0060
  article-title: A learning-based memetic algorithm for energy-efficient distributed flow-shop scheduling with preventive maintenance
  publication-title: Swarm Evol. Comput.
– year: 2024
  ident: bib0051
  article-title: An evolutionary multitasking memetic algorithm for multi-objective distributed heterogeneous welding flow shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 168
  start-page: 105
  year: 2017
  end-page: 115
  ident: bib0046
  article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 149
  start-page: 17
  year: 2025
  ident: bib0049
  article-title: A deep reinforcement learning assisted adaptive genetic algorithm for flexible job shop scheduling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 197
  start-page: 12
  year: 2024
  ident: bib0037
  article-title: A bi-population cooperative scatter search algorithm for distributed hybrid flow shop scheduling with machine breakdown
  publication-title: Comput. Ind. Eng.
– volume: 264
  start-page: 12
  year: 2023
  ident: bib0047
  article-title: Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems
  publication-title: Int. J. Prod. Econ.
– volume: 62
  year: 2021
  ident: bib0005
  article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations
  publication-title: Swarm Evol. Comput.
– volume: 54
  start-page: 2914
  year: 2024
  end-page: 2927
  ident: bib0017
  article-title: Reinforcement learning-based multiobjective evolutionary algorithm for mixed-model multimanned assembly line balancing under uncertain demand
  publication-title: IEEE Trans. Cybern.
– volume: 21
  start-page: 6550
  year: 2024
  end-page: 6562
  ident: bib0024
  article-title: Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 232
  start-page: 17
  year: 2023
  ident: bib0038
  article-title: Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with flexible preventive maintenance
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 9934
  year: 2025
  end-page: 9947
  ident: bib0041
  article-title: A learning-based hybrid artificial bee colony algorithm for energy-efficient distributed heterogeneous type-2 fuzzy welding shop scheduling problem with factory eligibility
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 64
  start-page: 19
  year: 1999
  end-page: 31
  ident: bib0045
  article-title: Age-dependent reliability model considering effects of maintenance and working conditions
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 17
  start-page: 6687
  year: 2021
  end-page: 6696
  ident: bib0006
  article-title: Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China
  publication-title: IEEE Trans. Ind. Inf.
– volume: 417
  start-page: 169
  year: 2017
  end-page: 185
  ident: bib0050
  article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization
  publication-title: Inf. Sci.
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: bib0054
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann. Oper. Res.
– volume: 54
  start-page: 201
  year: 2024
  end-page: 211
  ident: bib0025
  article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 166
  start-page: 26
  year: 2024
  ident: bib0052
  article-title: Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics
  publication-title: Appl. Soft Comput.
– volume: 86
  start-page: 10
  year: 2024
  ident: bib0035
  article-title: An efficient collaborative multi-swap iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance
  publication-title: Swarm Evol. Comput.
– volume: 170
  start-page: 12
  year: 2025
  ident: bib0036
  article-title: A knowledge-driven memetic algorithm for distributed green flexible job shop scheduling considering the endurance of machines
  publication-title: Appl. Soft Comput.
– volume: 57
  start-page: 231
  year: 2020
  end-page: 241
  ident: bib0013
  article-title: Joint optimization of job scheduling and maintenance planning for a two-machine flow shop considering job-dependent operating condition
  publication-title: J. Manuf. Syst.
– volume: 38
  start-page: 7169
  year: 2011
  end-page: 7178
  ident: bib0010
  article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem
  publication-title: Expert Syst. Appl.
– volume: 142
  year: 2020
  ident: bib0021
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 258
  start-page: 17
  year: 2024
  ident: bib0016
  article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for green flexible shop scheduling problem considering machine speed
  publication-title: Expert Syst. Appl.
– year: 2024
  ident: bib0033
  article-title: A learning-assisted Bi-population evolutionary algorithm for distributed flexible job-shop scheduling with maintenance decisions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 78
  start-page: 94
  year: 2025
  end-page: 108
  ident: bib0040
  article-title: A dynamic artificial bee colony for fuzzy distributed energy-efficient hybrid flow shop scheduling with batch processing machines
  publication-title: J. Manuf. Syst.
– volume: 22
  start-page: 142
  year: 1966
  end-page: 161
  ident: bib0044
  article-title: A method of analysis of a certain class of experiments in carcinogenesis
  publication-title: Biometrics
– volume: 92
  start-page: 530
  year: 2007
  end-page: 534
  ident: bib0055
  article-title: Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 57
  start-page: 61
  year: 2019
  end-page: 82
  ident: bib0014
  article-title: A mixed-integer linear programming model for integrated production and preventive maintenance scheduling in the capital goods industry
  publication-title: Int. J. Prod. Res.
– volume: 19
  start-page: 6692
  year: 2023
  end-page: 6705
  ident: bib0001
  article-title: A population-based iterated greedy algorithm for distributed assembly No-wait flow-shop scheduling problem
  publication-title: IEEE Trans. Ind. Inf.
– volume: 201
  start-page: 16
  year: 2025
  ident: bib0011
  article-title: MILP modeling and optimization of flexible job shop scheduling problem with preventive maintenance
  publication-title: Comput. Ind. Eng.
– volume: 15
  start-page: 205
  year: 1994
  end-page: 215
  ident: bib0053
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: Operat.-Res.-Spektrum
– volume: 170
  start-page: 12
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0036
  article-title: A knowledge-driven memetic algorithm for distributed green flexible job shop scheduling considering the endurance of machines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2025.112697
– volume: 196
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0029
  article-title: A learning-driven multi-objective cooperative artificial bee colony algorithm for distributed flexible job shop scheduling problems with preventive maintenance and transportation operations
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110484
– volume: 38
  start-page: 7169
  year: 2011
  ident: 10.1016/j.swevo.2025.102134_bib0010
  article-title: Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.043
– volume: 86
  start-page: 10
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0035
  article-title: An efficient collaborative multi-swap iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101537
– volume: 47
  start-page: 145
  year: 2000
  ident: 10.1016/j.swevo.2025.102134_bib0026
  article-title: Scheduling jobs and maintenance activities on parallel machines
  publication-title: Nav. Res. Logist.
  doi: 10.1002/(SICI)1520-6750(200003)47:2<145::AID-NAV5>3.0.CO;2-3
– volume: 62
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0005
  article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100861
– volume: 20
  start-page: 361
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0002
  article-title: Improved meta-heuristics for solving distributed lot-streaming permutation flow shop scheduling problems
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3151648
– volume: 89
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0034
  article-title: A self-adaptive co-evolutionary algorithm for multi-objective flexible job-shop rescheduling problem with multi-phase processing speed selection, condition-based preventive maintenance and dynamic repairman assignment
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101643
– volume: 169
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0012
  article-title: An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114495
– volume: 142
  year: 2020
  ident: 10.1016/j.swevo.2025.102134_bib0021
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106347
– volume: 53
  start-page: 3337
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0023
  article-title: A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3192112
– volume: 197
  start-page: 12
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0037
  article-title: A bi-population cooperative scatter search algorithm for distributed hybrid flow shop scheduling with machine breakdown
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110624
– volume: 149
  start-page: 17
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0049
  article-title: A deep reinforcement learning assisted adaptive genetic algorithm for flexible job shop scheduling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2025.110447
– volume: 35
  start-page: 1517
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0027
  article-title: Flexible job shop scheduling with preventive maintenance consideration
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-023-02114-3
– volume: 20
  start-page: 2305
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0042
  article-title: A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous No-wait flowshop scheduling problem with sequence-dependent setup times
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2022.3212786
– volume: 22
  start-page: 9934
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0041
  article-title: A learning-based hybrid artificial bee colony algorithm for energy-efficient distributed heterogeneous type-2 fuzzy welding shop scheduling problem with factory eligibility
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2024.3514863
– volume: 26
  start-page: 625
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0003
  article-title: Technology, distributed scheduling problems in intelligent manufacturing systems
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2021.9010009
– volume: 17
  start-page: 6687
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0006
  article-title: Energy-efficient scheduling of distributed flow shop with heterogeneous factories: A real-world case from automobile industry in China
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3043734
– volume: 264
  start-page: 12
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0047
  article-title: Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2023.108971
– volume: 41
  start-page: 157
  year: 1993
  ident: 10.1016/j.swevo.2025.102134_bib0054
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02023073
– volume: 49
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0031
  article-title: Integrated scheduling and flexible maintenance in deteriorating multi-state single machine system using a reinforcement learning approach
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101339
– volume: 157
  start-page: 17
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0008
  article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107318
– volume: 54
  start-page: 2914
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0017
  article-title: Reinforcement learning-based multiobjective evolutionary algorithm for mixed-model multimanned assembly line balancing under uncertain demand
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2022.3229666
– volume: 15
  start-page: 205
  year: 1994
  ident: 10.1016/j.swevo.2025.102134_bib0053
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: Operat.-Res.-Spektrum
  doi: 10.1007/BF01719451
– volume: 127
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0058
  article-title: An improved genetic algorithm with an overlapping strategy for solving a combination of order batching and flexible job shop scheduling problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107321
– volume: 19
  start-page: 3379
  year: 2022
  ident: 10.1016/j.swevo.2025.102134_bib0022
  article-title: An ant colony optimization behavior-based MOEA/D for distributed heterogeneous hybrid flow shop scheduling problem under nonidentical time-of-use electricity tariffs
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3119353
– volume: 200
  start-page: 1
  year: 2005
  ident: 10.1016/j.swevo.2025.102134_bib0015
– volume: 78
  start-page: 94
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0040
  article-title: A dynamic artificial bee colony for fuzzy distributed energy-efficient hybrid flow shop scheduling with batch processing machines
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.10.019
– volume: 189
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0007
  article-title: Shared manufacturing-based distributed flexible job shop scheduling with supply-demand matching
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.109950
– volume: 57
  start-page: 61
  year: 2019
  ident: 10.1016/j.swevo.2025.102134_bib0014
  article-title: A mixed-integer linear programming model for integrated production and preventive maintenance scheduling in the capital goods industry
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1459923
– volume: 92
  start-page: 530
  year: 2007
  ident: 10.1016/j.swevo.2025.102134_bib0055
  article-title: Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2006.01.006
– year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0033
  article-title: A learning-assisted Bi-population evolutionary algorithm for distributed flexible job-shop scheduling with maintenance decisions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2024.3400043
– volume: 157
  year: 2021
  ident: 10.1016/j.swevo.2025.102134_bib0004
  article-title: A multi-objective scheduling method for distributed and flexible job shop based on hybrid genetic algorithm and tabu search considering operation outsourcing and carbon emission
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107318
– volume: 64
  start-page: 19
  year: 1999
  ident: 10.1016/j.swevo.2025.102134_bib0045
  article-title: Age-dependent reliability model considering effects of maintenance and working conditions
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(98)00050-7
– volume: 19
  start-page: 6692
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0001
  article-title: A population-based iterated greedy algorithm for distributed assembly No-wait flow-shop scheduling problem
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3192881
– volume: 94
  start-page: 10
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0059
  article-title: An improved adaptive hybrid algorithm for solving distributed flexible job shop scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2025.101873
– volume: 58
  start-page: 196
  year: 2019
  ident: 10.1016/j.swevo.2025.102134_bib0032
  article-title: Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.01.005
– year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0051
  article-title: An evolutionary multitasking memetic algorithm for multi-objective distributed heterogeneous welding flow shop scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 16
  start-page: 307
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0039
  article-title: A hybrid artificial bee colony algorithm with an iterated local search mechanism for distributed no-wait flowshop problems with preventive maintenance
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 168
  start-page: 105
  year: 2017
  ident: 10.1016/j.swevo.2025.102134_bib0046
  article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.05.014
– volume: 54
  start-page: 201
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0025
  article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2023.3305541
– volume: 57
  start-page: 231
  year: 2020
  ident: 10.1016/j.swevo.2025.102134_bib0013
  article-title: Joint optimization of job scheduling and maintenance planning for a two-machine flow shop considering job-dependent operating condition
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.08.013
– volume: 120
  year: 2022
  ident: 10.1016/j.swevo.2025.102134_bib0018
  article-title: A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108694
– volume: 56-57
  start-page: 150
  year: 2015
  ident: 10.1016/j.swevo.2025.102134_bib0048
  article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2014.10.014
– volume: 417
  start-page: 169
  year: 2017
  ident: 10.1016/j.swevo.2025.102134_bib0050
  article-title: A ranking-based adaptive artificial bee colony algorithm for global numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.011
– volume: 78
  start-page: 176
  year: 2019
  ident: 10.1016/j.swevo.2025.102134_bib0057
  article-title: Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete PSO-SA: an application from a casting workshop
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.011
– volume: 22
  start-page: 142
  year: 1966
  ident: 10.1016/j.swevo.2025.102134_bib0044
  article-title: A method of analysis of a certain class of experiments in carcinogenesis
  publication-title: Biometrics
  doi: 10.2307/2528221
– volume: 201
  start-page: 16
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0011
  article-title: MILP modeling and optimization of flexible job shop scheduling problem with preventive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2025.110861
– volume: 71
  start-page: 82
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0019
  article-title: A hybrid genetic tabu search algorithm for distributed flexible job shop scheduling problems
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2023.09.002
– volume: 166
  start-page: 26
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0052
  article-title: Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112247
– volume: 92
  start-page: 11
  year: 2025
  ident: 10.1016/j.swevo.2025.102134_bib0060
  article-title: A learning-based memetic algorithm for energy-efficient distributed flow-shop scheduling with preventive maintenance
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101772
– volume: 141
  year: 2020
  ident: 10.1016/j.swevo.2025.102134_bib0028
  article-title: An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106320
– volume: 65
  start-page: 2105
  year: 2022
  ident: 10.1016/j.swevo.2025.102134_bib0020
  article-title: Improved gray wolf optimizer for distributed flexible job shop scheduling problem
  publication-title: Sci. China-Technol. Sci.
  doi: 10.1007/s11431-022-2096-6
– volume: 232
  start-page: 17
  year: 2023
  ident: 10.1016/j.swevo.2025.102134_bib0038
  article-title: Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with flexible preventive maintenance
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120837
– volume: 258
  start-page: 17
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0016
  article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for green flexible shop scheduling problem considering machine speed
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125189
– volume: 269
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0030
  article-title: Joint optimization of flexible job shop scheduling and preventive maintenance under high-frequency production switching
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2024.109163
– volume: 47
  start-page: 12
  year: 2018
  ident: 10.1016/j.swevo.2025.102134_bib0009
  article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.02.003
– volume: 134
  start-page: 19
  year: 2019
  ident: 10.1016/j.swevo.2025.102134_bib0043
  article-title: Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.106302
– volume: 21
  start-page: 6550
  year: 2024
  ident: 10.1016/j.swevo.2025.102134_bib0024
  article-title: Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2023.3327792
– volume: 168
  start-page: 105
  year: 2017
  ident: 10.1016/j.swevo.2025.102134_bib0056
  article-title: Preventive maintenance of a single machine system working under piecewise constant operating condition
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.05.014
SSID ssj0000602559
Score 2.37113
Snippet •A corresponding accelerated failure time model is proposed in DHFJSP-PM.•A preventive maintenance strategy is proposed according to the degradation model.•The...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102134
SubjectTerms Artificial bee colony algorithm
Distributed heterogeneous flexible job shop scheduling
Preventive maintenance
Q-learning
Title Hybrid artificial bee colony algorithm with Q-learning for distributed heterogeneous flexible job shop scheduling problem considering machine preventive maintenance
URI https://dx.doi.org/10.1016/j.swevo.2025.102134
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2210-6502
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  issn: 2210-6502
  databaseCode: AIKHN
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 2210-6502
  databaseCode: ACRLP
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 2210-6502
  databaseCode: .~1
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2210-6502
  databaseCode: AKRWK
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4muHDhjRgv-cCRsj7StD1OCDRAICGYtFvVtM42NNaJPdAu_Bp-KHYfCCTEgWPTRI1iJ7ZT-_uEOLW9lMy8kpYbZGhJNI5FeqMszXzWSeJHuqBvu7tXna686fm9hrioa2E4rbI6-8szvTitq5ZWtZqtyXDYenQpWiH_ghSSfy25XGguZcAsBufvztc9i60Kr5k55qi_xQNq8KEizWv6hgsuAnR9RjFwPPm7gfpmdK42xXrlLUK7nNCWaOB4W2zUTAxQbcwd8dFZcuUV8MxLSAjQiMCI1OMlJKN-_jqcDV6Ab13hwaqoIvpAHitkDJ3LrFeYwYCTY3LSKcznUzAMlqlHCM-5hukgnwCFwmSauIIdKiYa-kbJ-MltL0VmJtK7EhdqgdTEgBSM6oG7ont1-XTRsSr-BSt1ycxTVJl6FFFodIxMlQpNZpS2Dbk4foQB6ixyQhNpmXmeh25G2zmhjoadCD9VUnl7YmWcj3FfAKMIJqHDDlAowywIZRKS8YyMrT2VpGFTnNWLHk9KmI24zj97jgsZxSyjuJRRU6haMPEPbYnJEPw18OC_Aw_FGj-VaXxHYmX2Osdjckdm-qTQtxOx2r6-7dx_Anck4lY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HODCG_HGB46UrW2atUeEQAO2SYhN2q1qWodtGuu0B4gLv4Yfit0HAglx4JrUbRQ7sZ063yfEWdWNyc0raTm1BC2JxrbIbpSlmc86irxAZ_RtzZaqd-Rd1-suiKvyLgyXVRZ7f76nZ7t10VIpZrMy7vcrjw5lKxRfkEHyryXHWxTL9P4aZ2AX7_bXQUtVZWEzk8yRgMUSJfpQVuc1fcUXvgXoeAxjYLvydw_1zevcbIi1IlyEy3xEm2IBR1tivaRigGJlbouP-htfvQIeeo4JARoRGJJ69AbR8Cmd9Ge9Z-BjV3iwCq6IJ6CQFRLGzmXaK0ygx9UxKRkVpvMpGEbL1EOEQaph2kvHQLkw-Sa-wg4FFQ19I6f85LbnrDQTqS8HhnpBamJECob1wB3RubluX9WtgoDBih3y85RWxi6lFBptI2OlfJMYpauGYhwvwBrqJLB9E2iZuK6LTkLrOaIHDUcRXqykcnfF0igd4Z4AhhGMfJsjIF_6Sc2XkU_eMzBV7aoo9vfFeTnp4TjH2QjLArRBmOkoZB2FuY72hSoVE_4wl5A8wV-CB_8VPBUr9XazETZuW_eHYpV78pq-I7E0m8zxmGKTmT7JbO8TyNbj6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+artificial+bee+colony+algorithm+with+Q-learning+for+distributed+heterogeneous+flexible+job+shop+scheduling+problem+considering+machine+preventive+maintenance&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wu%2C+Rui&rft.au=Luo%2C+Enzhuang&rft.au=Li%2C+Xixing&rft.au=Tang%2C+Hongtao&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=98&rft_id=info:doi/10.1016%2Fj.swevo.2025.102134&rft.externalDocID=S2210650225002925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon