Solving Boundary Integral Problems with BEM

Many important partial differential equation problems in homogeneous media, such as those of acoustic or electromagnetic wave propagation, can be represented in the form of integral equations on the boundary of the domain of interest. In order to solve such problems, the boundary element method (BEM...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on mathematical software Vol. 41; no. 2; pp. 1 - 40
Main Authors Śmigaj, Wojciech, Betcke, Timo, Arridge, Simon, Phillips, Joel, Schweiger, Martin
Format Journal Article
LanguageEnglish
Published 01.01.2015
Subjects
Online AccessGet full text
ISSN0098-3500
1557-7295
1557-7295
DOI10.1145/2590830

Cover

Abstract Many important partial differential equation problems in homogeneous media, such as those of acoustic or electromagnetic wave propagation, can be represented in the form of integral equations on the boundary of the domain of interest. In order to solve such problems, the boundary element method (BEM) can be applied. The advantage compared to domain-discretisation-based methods such as finite element methods is that only a discretisation of the boundary is necessary, which significantly reduces the number of unknowns. Yet, BEM formulations are much more difficult to implement than finite element methods. In this article, we present BEM++, a novel open-source library for the solution of boundary integral equations for Laplace, Helmholtz and Maxwell problems in three space dimensions. BEM++ is a C++ library with Python bindings for all important features, making it possible to integrate the library into other C++ projects or to use it directly via Python scripts. The internal structure and design decisions for BEM++ are discussed. Several examples are presented to demonstrate the performance of the library for larger problems.
AbstractList Many important partial differential equation problems in homogeneous media, such as those of acoustic or electromagnetic wave propagation, can be represented in the form of integral equations on the boundary of the domain of interest. In order to solve such problems, the boundary element method (BEM) can be applied. The advantage compared to domain-discretisation-based methods such as finite element methods is that only a discretisation of the boundary is necessary, which significantly reduces the number of unknowns. Yet, BEM formulations are much more difficult to implement than finite element methods. In this article, we present BEM, a novel open-source library for the solution of boundary integral equations for Laplace, Helmholtz and Maxwell problems in three space dimensions. BEM is a C library with Python bindings for all important features, making it possible to integrate the library into other C projects or to use it directly via Python scripts. The internal structure and design decisions for BEM are discussed. Several examples are presented to demonstrate the performance of the library for larger problems.
Author Śmigaj, Wojciech
Phillips, Joel
Arridge, Simon
Schweiger, Martin
Betcke, Timo
Author_xml – sequence: 1
  givenname: Wojciech
  surname: Śmigaj
  fullname: Śmigaj, Wojciech
  organization: University College London and Adam Mickiewicz University in Poznań, Poland
– sequence: 2
  givenname: Timo
  surname: Betcke
  fullname: Betcke, Timo
  organization: University College London, London, UK
– sequence: 3
  givenname: Simon
  surname: Arridge
  fullname: Arridge, Simon
  organization: University College London, London, UK
– sequence: 4
  givenname: Joel
  surname: Phillips
  fullname: Phillips, Joel
  organization: University College London, London, UK
– sequence: 5
  givenname: Martin
  surname: Schweiger
  fullname: Schweiger, Martin
  organization: University College London, London, UK
BookMark eNp1j9FKwzAYRoNMcJviK_ROQap_mqZpLt2YOlAU1OuQNsmMZMlMWsfe3skGgujVd3P4OGeEBj54jdAphkuMS3pVUA41gQM0xJSynBWcDtAQgNc5oQBHaJTSOwAUmOEhungO7tP6RTYJvVcybrK57_QiSpc9xdA4vUzZ2nZv2WT2cIwOjXRJn-x3jF5vZi_Tu_z-8XY-vb7P2wIqyBtacQ2aMKIY59RoKqFmsiTMYDCSVk2rwNSsrhRmklAjFa8brSgpFSG0JWN0vvvt_Upu1tI5sYp2uZUTGMR3pNhH_qCrGD56nTqxtKnVzkmvQ58EZpwUJVS82qL5Dm1jSClqI1rbyc4G30Vp3R_XZ7_4_yS-AAeybQY
CitedBy_id crossref_primary_10_21105_joss_03145
crossref_primary_10_1007_s00211_021_01182_y
crossref_primary_10_1016_j_apm_2022_06_024
crossref_primary_10_1137_19M1279277
crossref_primary_10_1137_21M1393509
crossref_primary_10_1145_3152156
crossref_primary_10_1016_j_enganabound_2021_01_013
crossref_primary_10_1093_imanum_drw024
crossref_primary_10_1090_mcom_3279
crossref_primary_10_1016_j_jqsrt_2017_04_020
crossref_primary_10_1016_j_cpc_2022_108337
crossref_primary_10_1016_j_jcp_2022_111229
crossref_primary_10_1093_imanum_drv053
crossref_primary_10_1142_S0218396X15500162
crossref_primary_10_1016_j_wavemoti_2017_12_008
crossref_primary_10_1016_j_apnum_2021_09_016
crossref_primary_10_1016_j_advengsoft_2018_03_008
crossref_primary_10_1098_rspa_2019_0029
crossref_primary_10_1103_PhysRevA_111_013120
crossref_primary_10_1002_nme_6777
crossref_primary_10_1016_j_jqsrt_2019_04_019
crossref_primary_10_1121_1_5096171
crossref_primary_10_1155_2022_1889774
crossref_primary_10_1016_j_camwa_2017_11_028
crossref_primary_10_1093_icesjms_fsae048
crossref_primary_10_1016_j_softx_2020_100476
crossref_primary_10_1142_S0218202522500075
crossref_primary_10_1137_18M1174982
crossref_primary_10_1007_s10444_019_09667_z
crossref_primary_10_1016_j_camwa_2020_02_009
crossref_primary_10_1016_j_jcp_2022_111854
crossref_primary_10_1016_j_jsv_2022_117323
crossref_primary_10_1016_j_jcp_2019_108866
crossref_primary_10_1016_j_jcp_2022_111099
crossref_primary_10_1016_j_nima_2018_07_036
crossref_primary_10_1145_2897824_2925904
crossref_primary_10_1016_j_cma_2018_12_006
crossref_primary_10_1016_j_camwa_2015_06_025
crossref_primary_10_1088_1748_0221_13_07_P07006
crossref_primary_10_1121_10_0017650
crossref_primary_10_5802_smai_jcm_36
crossref_primary_10_1137_17M1150943
crossref_primary_10_1109_TAP_2024_3418199
crossref_primary_10_1016_j_jcp_2021_110511
crossref_primary_10_1088_1361_6420_aab45c
crossref_primary_10_1103_PhysRevE_100_063305
crossref_primary_10_1016_j_apacoust_2021_108570
crossref_primary_10_1016_j_procs_2017_05_263
crossref_primary_10_1142_S2591728518500226
crossref_primary_10_1515_cmam_2020_0052
crossref_primary_10_1109_ACCESS_2020_3045753
crossref_primary_10_1093_imanum_draa091
crossref_primary_10_1137_16M1065161
crossref_primary_10_1016_j_jcp_2018_10_002
crossref_primary_10_1088_1361_6420_ad466a
crossref_primary_10_1137_17M1137073
crossref_primary_10_1016_j_fishres_2025_107298
crossref_primary_10_1016_j_camwa_2021_11_021
crossref_primary_10_1007_s00211_019_01032_y
crossref_primary_10_1007_s00211_015_0727_4
crossref_primary_10_1137_16M106474X
crossref_primary_10_1109_MCSE_2021_3085420
crossref_primary_10_1002_jcc_26825
crossref_primary_10_1080_00268976_2023_2217744
crossref_primary_10_1016_j_jcp_2019_07_036
crossref_primary_10_1121_1_4932166
crossref_primary_10_1007_s10915_022_01849_0
crossref_primary_10_1140_epjb_e2019_90599_6
crossref_primary_10_1088_1361_6420_aa5bf2
crossref_primary_10_21105_joss_03982
crossref_primary_10_1016_j_jcp_2019_108881
crossref_primary_10_1088_0266_5611_31_8_085004
crossref_primary_10_1088_1361_6420_abb5e2
crossref_primary_10_1137_17M1127545
crossref_primary_10_1016_j_cpc_2021_108009
crossref_primary_10_1098_rspa_2022_0463
crossref_primary_10_1063_1_4998532
crossref_primary_10_1093_imanum_drae071
crossref_primary_10_1007_s42985_020_00049_5
crossref_primary_10_1007_s11075_022_01289_9
crossref_primary_10_1007_s10915_018_0786_7
crossref_primary_10_1088_1748_3190_11_5_055004
crossref_primary_10_1093_imanum_dru043
crossref_primary_10_1093_imanum_drz051
crossref_primary_10_1002_nme_6232
crossref_primary_10_1088_1361_6420_ab10cb
crossref_primary_10_1145_2590830
crossref_primary_10_1016_j_jcp_2020_109737
crossref_primary_10_1016_j_matcom_2015_09_012
crossref_primary_10_1016_j_jcp_2021_110867
crossref_primary_10_1016_j_jqsrt_2015_08_001
crossref_primary_10_1090_mcom_3914
crossref_primary_10_1007_s10543_014_0491_3
crossref_primary_10_1038_srep14855
crossref_primary_10_1093_imanum_drz046
crossref_primary_10_1016_j_cpc_2019_106965
crossref_primary_10_1016_j_jqsrt_2023_108793
crossref_primary_10_1016_j_cam_2024_115838
crossref_primary_10_1007_s00161_017_0578_6
crossref_primary_10_1145_3368618
crossref_primary_10_1121_10_0003921
crossref_primary_10_1088_1361_6420_abaa31
crossref_primary_10_1016_j_cpc_2023_108949
crossref_primary_10_1007_s00211_022_01277_0
crossref_primary_10_1145_3306346_3322976
crossref_primary_10_1007_s10444_022_09942_6
crossref_primary_10_1109_ACCESS_2020_2995358
crossref_primary_10_1007_s10092_016_0190_3
crossref_primary_10_1137_18M1234473
crossref_primary_10_1121_1_5121699
crossref_primary_10_1137_20M1369907
crossref_primary_10_1016_j_jcp_2016_12_009
crossref_primary_10_1103_PhysRevLett_121_246802
crossref_primary_10_1002_mma_4075
crossref_primary_10_1007_s10444_021_09911_5
crossref_primary_10_1016_j_ultras_2020_106240
crossref_primary_10_1016_j_jmps_2022_105066
crossref_primary_10_1016_j_jms_2016_12_003
crossref_primary_10_1121_10_0013426
crossref_primary_10_1002_jcc_26506
crossref_primary_10_1002_mma_4628
crossref_primary_10_1016_j_camwa_2017_07_049
Cites_doi 10.1002/nme.2579
10.1007/978-1-4757-4393-7
10.1038/35570
10.1137/S1064827503429387
10.1007/978-3-642-55483-4_3
10.1109/TAP.2008.926788
10.1103/PhysRevLett.101.084302
10.1016/S0167-739X(02)00171-1
10.1109/TAP.2013.2246854
10.1007/s00607-008-0004-9
10.1051/m2an/2010061
10.1093/qjmam/38.2.323
10.1137/120866567
10.1007/978-1-4614-4942-3
10.1002/nme.2877
10.1145/2590830
10.1007/s00607-008-0003-x
10.1007/978-0-387-68805-3
10.1002/0471764108
10.1007/978-3-540-68093-2
10.1098/rspa.1971.0097
10.1137/100812574
10.1137/0148016
10.1016/j.jcp.2005.12.001
10.1093/imanum/dri033
10.1002/nme.1620210612
10.1145/1089014.1089021
10.1038/nature06762
10.1103/RevModPhys.79.1267
10.1007/s00607-008-0002-y
ContentType Journal Article
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1145/2590830
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1557-7295
EndPage 40
ExternalDocumentID 10.1145/2590830
10_1145_2590830
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
6OB
85S
8US
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
AAYXX
ABFSI
ABPPZ
ACGFO
ACGOD
ACIWK
ACM
ACNCT
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AGHSJ
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HGAVV
H~9
I07
IAO
ICD
LHSKQ
MS~
P1C
P2P
PQQKQ
RNS
ROL
RXW
TAE
TWZ
U5U
UHB
UPT
X6Y
ZCA
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
9M8
ADTOC
AFFNX
AI.
E.L
HF~
IEA
IGS
IOF
ITC
MVM
NHB
OHT
UNPAY
VH1
XJT
XOL
ZY4
ID FETCH-LOGICAL-c2060-b569e0e373d7995fe5a087a437f10fa56bcd0f8786d17a35fad98bed534d335c3
IEDL.DBID UNPAY
ISSN 0098-3500
1557-7295
IngestDate Wed Oct 01 15:20:47 EDT 2025
Fri Sep 05 14:43:33 EDT 2025
Wed Oct 01 06:01:37 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2060-b569e0e373d7995fe5a087a437f10fa56bcd0f8786d17a35fad98bed534d335c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dl.acm.org/doi/pdf/10.1145/2590830
PQID 1793240696
PQPubID 23500
PageCount 40
ParticipantIDs unpaywall_primary_10_1145_2590830
proquest_miscellaneous_1793240696
crossref_citationtrail_10_1145_2590830
crossref_primary_10_1145_2590830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle ACM transactions on mathematical software
PublicationYear 2015
References e_1_2_1_20_1
e_1_2_1_41_1
Wieleba P. (e_1_2_1_58_1) 2011; 35
Bebendorf M. (e_1_2_1_6_1) 2008
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_31_1
e_1_2_1_54_1
Steinbach O. (e_1_2_1_53_1)
e_1_2_1_56_1
Betcke T. (e_1_2_1_8_1) 2013; 2013
e_1_2_1_12_1
Griffiths D. J. (e_1_2_1_24_1)
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Nédélec J.-C. (e_1_2_1_39_1)
Hiptmair R. (e_1_2_1_28_1) 2012
e_1_2_1_42_1
Šolín P. (e_1_2_1_52_1)
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
Bouwkamp C. J. (e_1_2_1_9_1) 1950; 5
e_1_2_1_29_1
Bartlett R. A. (e_1_2_1_2_1) 2007
Raviart P.-A. (e_1_2_1_46_1)
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_19_1
References_xml – ident: e_1_2_1_21_1
  doi: 10.1002/nme.2579
– volume-title: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
  ident: e_1_2_1_39_1
  doi: 10.1007/978-1-4757-4393-7
– ident: e_1_2_1_26_1
– ident: e_1_2_1_18_1
  doi: 10.1038/35570
– ident: e_1_2_1_25_1
  doi: 10.1137/S1064827503429387
– ident: e_1_2_1_10_1
  doi: 10.1007/978-3-642-55483-4_3
– ident: e_1_2_1_1_1
  doi: 10.1109/TAP.2008.926788
– ident: e_1_2_1_19_1
  doi: 10.1103/PhysRevLett.101.084302
– ident: e_1_2_1_5_1
  doi: 10.1016/S0167-739X(02)00171-1
– ident: e_1_2_1_57_1
– volume-title: Introduction to Electrodynamics
  ident: e_1_2_1_24_1
– ident: e_1_2_1_44_1
  doi: 10.1109/TAP.2013.2246854
– ident: e_1_2_1_42_1
– ident: e_1_2_1_50_1
– volume: 5
  start-page: 321
  year: 1950
  ident: e_1_2_1_9_1
  article-title: On Bethe's theory of diffraction by small holes
  publication-title: Philips Res. Rep.
– ident: e_1_2_1_45_1
– ident: e_1_2_1_3_1
  doi: 10.1007/s00607-008-0004-9
– ident: e_1_2_1_14_1
  doi: 10.1051/m2an/2010061
– ident: e_1_2_1_34_1
  doi: 10.1093/qjmam/38.2.323
– ident: e_1_2_1_48_1
– ident: e_1_2_1_56_1
– volume: 35
  start-page: 173
  year: 2011
  ident: e_1_2_1_58_1
  article-title: BEMLAB
  publication-title: Studies Appl. Electromagn. Mech.
– ident: e_1_2_1_35_1
  doi: 10.1137/120866567
– volume-title: Tech. Rep. SAND2007-5984
  year: 2007
  ident: e_1_2_1_2_1
– start-page: 2012
  year: 2012
  ident: e_1_2_1_28_1
  article-title: BETL — A generic boundary element template library
  publication-title: Tech. Rep.
– ident: e_1_2_1_32_1
– ident: e_1_2_1_7_1
– ident: e_1_2_1_15_1
  doi: 10.1007/978-1-4614-4942-3
– ident: e_1_2_1_43_1
  doi: 10.1002/nme.2877
– ident: e_1_2_1_38_1
– ident: e_1_2_1_51_1
  doi: 10.1145/2590830
– volume: 2013
  volume-title: Oberwolfach Report
  year: 2013
  ident: e_1_2_1_8_1
– ident: e_1_2_1_4_1
  doi: 10.1007/s00607-008-0003-x
– volume-title: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems
  year: 2008
  ident: e_1_2_1_6_1
– ident: e_1_2_1_23_1
– volume-title: Numerical Approximation Methods for Elliptic Boundary Value Problems
  ident: e_1_2_1_53_1
  doi: 10.1007/978-0-387-68805-3
– ident: e_1_2_1_37_1
– volume-title: Partial Differential Equations and the Finite Element Method
  ident: e_1_2_1_52_1
  doi: 10.1002/0471764108
– ident: e_1_2_1_29_1
– ident: e_1_2_1_49_1
  doi: 10.1007/978-3-540-68093-2
– ident: e_1_2_1_54_1
– ident: e_1_2_1_31_1
– ident: e_1_2_1_11_1
  doi: 10.1098/rspa.1971.0097
– ident: e_1_2_1_13_1
  doi: 10.1137/100812574
– volume-title: Mathematical Aspects of Finite Element Methods
  ident: e_1_2_1_46_1
– ident: e_1_2_1_33_1
  doi: 10.1137/0148016
– ident: e_1_2_1_17_1
– ident: e_1_2_1_12_1
  doi: 10.1016/j.jcp.2005.12.001
– ident: e_1_2_1_41_1
  doi: 10.1093/imanum/dri033
– ident: e_1_2_1_22_1
– ident: e_1_2_1_16_1
  doi: 10.1002/nme.1620210612
– ident: e_1_2_1_47_1
– ident: e_1_2_1_27_1
  doi: 10.1145/1089014.1089021
– ident: e_1_2_1_36_1
  doi: 10.1038/nature06762
– ident: e_1_2_1_20_1
  doi: 10.1103/RevModPhys.79.1267
– ident: e_1_2_1_30_1
– ident: e_1_2_1_40_1
  doi: 10.1007/s00607-008-0002-y
– ident: e_1_2_1_55_1
SSID ssj0002171
Score 2.500167
Snippet Many important partial differential equation problems in homogeneous media, such as those of acoustic or electromagnetic wave propagation, can be represented...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Boundaries
Boundary element method
Finite element method
Integral equations
Libraries
Mathematical analysis
Programming languages
Source code
Title Solving Boundary Integral Problems with BEM
URI https://www.proquest.com/docview/1793240696
https://dl.acm.org/doi/pdf/10.1145/2590830
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1557-7295
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171
  issn: 1557-7295
  databaseCode: AMVHM
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4MHPQighrxB6mJMRoz7Oi6bkcwEjQZIVEMnpZ27S7OQRjE4F9vuxVEjQm3Hd6ape-9vW-ve98HwIUvbIkdylWm-Z7lENGyOEPUihQ4QLFjU5aT-gR9tzd0HkdkZGhy9CyMSNQ67_kRvs7piYgNoS25bWl5bqw-z8suUbi7BMrD_qD9uiTFxCSfN1H1kWp9VlJMyK7f-bP0fOPJ7Xk6YYsPliRrpaVbKTSKspyRUP9R8tacz3gz-vzF17jZU--BXYMwYbsIiSrYkmkNVJbqDdAkcw1UzVUGrwz39PU-uHkaJ7rFADu53NJ0AR8KPokEDgrpmQzq1i3s3AcHYNi9f77rWUZPwYpayEUWJ64vkcQUC00DF0vCkEeZg2lso5gRl0cCxR71XKF8hEnMhO9xKQh2BMYkwoeglI5TeQSgQi3C5zSKhZSORMKLmIJmmEqEBebcroPL5VaHkSEb15oXSVgMQpPQ7EsdwJXhpODX-GtyvvRVqGJfH2iwVI7nWahfLvnorqtsVk78b53jDWxOwI5CRKTosZyC0mw6l2cKdcx4A5TbwUsvaJiw-wL6_9AW
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6yHfTi3FScv4ggokg1XZqmPW6yMYWNgQ7mqSRNerF2Y12R-debtOmcirBbD6-h5L3X9_Wl7_sAuPSFLbFDuco037McIloWZ4haoQIHKHJsynJSn8HQ7Y-dpwmZGJocPQsjYrXOe36Er3N6JiJDaEvuW1qeG6vP86pLFO6ugOp4OGq_lqSYmOTzJqo-Uq3PSooJ2fU7f5aebzy5nSUztvxgcbxWWnq1QqMozRkJ9R8lb3fZgt-Fn7_4Gjd76j2waxAmbBchUQdbMmmAWqneAE0yN0DdXKXw2nBP3-yD2-dprFsMsJPLLc2X8LHgk4jhqJCeSaFu3cJOd3AAxr3uy0PfMnoKVthCLrI4cX2JJKZYaBq4SBKGPMocTCMbRYy4PBQo8qjnCuUjTCImfI9LQbAjMCYhPgSVZJrIIwAVahE-p2EkpHQkEl7IFDTDVCIsMOd2E1yVWx2Ehmxca17EQTEITQKzL00AV4azgl_jr8lF6atAxb4-0GCJnGZpoF8u-eiuq2xWTvxvneMNbE7AjkJEpOixnILKYp7JM4U6FvzchNsXgg_Oeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Boundary+Integral+Problems+with+BEM&rft.jtitle=ACM+transactions+on+mathematical+software&rft.au=Smigaj%2C+Wojciech&rft.au=Betcke%2C+Timo&rft.au=Arridge%2C+Simon&rft.au=Phillips%2C+Joel&rft.date=2015-01-01&rft.issn=0098-3500&rft.eissn=1557-7295&rft.volume=41&rft.issue=2&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1145%2F2590830&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3500&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3500&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3500&client=summon