Intracardiac mass detection and classification using double convolutional neural network classifier
Identification and classification of intracardiac masses in echocardiogram is one of the significant processes in the diagnosis ofcardiovascular disease. Initially, the cropping over the specific region is done in order to make the definition of the mass area. Later on, as the second step the proces...
Saved in:
| Published in | Maǧallaẗ al-abḥath al-handasiyyaẗ Vol. 11; no. 2 A; pp. 272 - 280 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Kuwait
Kuwait University, Academic Publication Council
01.06.2023
|
| Online Access | Get full text |
| ISSN | 2307-1877 2307-1885 2307-1885 |
| DOI | 10.36909/jer.12237 |
Cover
| Abstract | Identification and classification of intracardiac masses in echocardiogram is one of the significant processes in the diagnosis ofcardiovascular disease. Initially, the cropping over the specific region is done in order to make the definition of the mass area. Later on, as the second step the processing of globally unique denoising technique is being implied for the removal of speckle and in order to make the preservation of anatomical structured component in the image. This is defined in terms of preprocessing and it is carried out by Patch-based sparse representation. Subsequently the description of the mass contour and its interconnected wall of the artery are being done by the segmentation mechanism denoted as Linear Iterative Vessel Segmentation model. As the prefinal stage, the processing of boundary, texture and the motion features are being carried out through the processing by double convolutional neural network (DCNN) classifier in order to determine the classification of two different masses. Totally 108 cardiac masses images are being collected for accessing the effectiveness of the classifier. It is also realized with the various state of the art classifiers as projected the demonstration of the greatest performance that has been disclosed with an achievement of 98.98% of accuracy, 98.89% of sensitivity and 99.16% of specificity that has been resulted for DCNN classifier. It determines the explication that the proposed method is capable of performing the classification of intracardiac thrombi and tumors in the echocardiography and ensures for potentially assisting the medical doctors who are in the clinical practice. |
|---|---|
| AbstractList | Identification and classification of intracardiac masses in echocardiogram is one of the significant processes in the diagnosis ofcardiovascular disease. Initially, the cropping over the specific region is done in order to make the definition of the mass area. Later on, as the second step the processing of globally unique denoising technique is being implied for the removal of speckle and in order to make the preservation of anatomical structured component in the image. This is defined in terms of preprocessing and it is carried out by Patch-based sparse representation. Subsequently the description of the mass contour and its interconnected wall of the artery are being done by the segmentation mechanism denoted as Linear Iterative Vessel Segmentation model. As the prefinal stage, the processing of boundary, texture and the motion features are being carried out through the processing by double convolutional neural network (DCNN) classifier in order to determine the classification of two different masses. Totally 108 cardiac masses images are being collected for accessing the effectiveness of the classifier. It is also realized with the various state of the art classifiers as projected the demonstration of the greatest performance that has been disclosed with an achievement of 98.98% of accuracy, 98.89% of sensitivity and 99.16% of specificity that has been resulted for DCNN classifier. It determines the explication that the proposed method is capable of performing the classification of intracardiac thrombi and tumors in the echocardiography and ensures for potentially assisting the medical doctors who are in the clinical practice. |
| Author | PonniBala, M. Manikandan, A. |
| Author_xml | – sequence: 1 fullname: Manikandan, A. organization: Assistant Professor, Department of ECE, SSM Institute of Engineering and Technology, Dindigul, India – sequence: 2 fullname: PonniBala, M. organization: Professor, Department of Biomedical Engineering, Velalar College of Engineering and Technology, Erode, India |
| BookMark | eNp9kF9LwzAUxYNMcM69-AGkz0pn0jRN-yjDP4OBL_pcbtMbyczSkbSOfXtrKxNEfDqXe885XH7nZOIah4RcMrrgWUGL2w36BUsSLk_INOFUxizPxeQ4S3lG5iFsKKWM8lRwMSVq5VoPCnxtQEVbCCGqsUXVmsZF4OpI2X5ntFEwrLpg3FtUN11lMVKN-2hs93UAGzns_CDtvvHvxyD6C3KqwQacf-uMvD7cvyyf4vXz42p5t45VQoWMq0yJClNZpKpm_UuSMc0qzlhaJVRrhFpkCrjM8iKhwCRCJaWqJHItOOQpn5GbsbdzOzjswdpy580W_KFktBwQlT2ickDUu69Ht_JNCB71_2b6y6xMOxDp6Rn7d-RqjGBfihp-6jOWcCH5J9Tehqw |
| CitedBy_id | crossref_primary_10_1007_s00521_024_10861_4 crossref_primary_10_1007_s00542_025_05855_8 crossref_primary_10_1007_s40031_024_01062_7 crossref_primary_10_1186_s44147_023_00349_8 crossref_primary_10_1007_s13198_024_02311_0 crossref_primary_10_1007_s40031_024_01073_4 crossref_primary_10_1038_s41598_024_57393_4 crossref_primary_10_1007_s40031_023_00916_w crossref_primary_10_1007_s00521_024_10962_0 crossref_primary_10_1007_s44227_024_00029_w crossref_primary_10_55529_jipirs_11_5_14 crossref_primary_10_1007_s44196_024_00651_0 crossref_primary_10_1007_s40031_024_01142_8 crossref_primary_10_1007_s40031_024_01027_w crossref_primary_10_1186_s44147_024_00399_6 crossref_primary_10_1007_s42979_024_02981_4 |
| Cites_doi | 10.1155/2022/8616535 10.1166/jmihi.2016.1959 10.1590/1678-4324-2022210316 10.25083/rbl/27.2/3407.3415 |
| ContentType | Journal Article |
| DBID | ADJCN AHFXO AAYXX CITATION ADTOC UNPAY |
| DOI | 10.36909/jer.12237 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2307-1885 |
| EndPage | 280 |
| ExternalDocumentID | 10.36909/jer.12237 10_36909_jer_12237 1612357 |
| GroupedDBID | 0R~ 4.4 AAKKN AALRI AAXUO AAYWO ABDBF ABEEZ ABJIA ACACY ACVFH ADCNI ADJCN ADVLN AENEX AEUPX AFGXO AFKAO AFPUW AFWDF AHFXO AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ C24 C6C EBS EJD EOJEC FDB GROUPED_DOAJ OBODZ OK1 RNS SES TUS AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2057-b6c5be4794cd1aca711f1b3114b20ffead56ca3768920a17eab77cb7e3f53a843 |
| IEDL.DBID | UNPAY |
| ISSN | 2307-1877 2307-1885 |
| IngestDate | Sun Oct 19 05:41:24 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Sat Oct 25 05:17:05 EDT 2025 Thu Sep 25 15:24:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 A |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2057-b6c5be4794cd1aca711f1b3114b20ffead56ca3768920a17eab77cb7e3f53a843 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://kuwaitjournals.org/jer/index.php/JER/article/download/12237/2995 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_36909_jer_12237 crossref_primary_10_36909_jer_12237 crossref_citationtrail_10_36909_jer_12237 emarefa_primary_1612357 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kuwait |
| PublicationPlace_xml | – name: Kuwait |
| PublicationTitle | Maǧallaẗ al-abḥath al-handasiyyaẗ |
| PublicationYear | 2023 |
| Publisher | Kuwait University, Academic Publication Council |
| Publisher_xml | – name: Kuwait University, Academic Publication Council |
| References | Karpagalakshmi (10.36909/jer.12237_bb0050) 2016; 6 Ramalingam (10.36909/jer.12237_bb0060) 2021; 7 Namrata (10.36909/jer.12237_bb0055) 2017; 117 Manikandan (10.36909/jer.12237_bb0035) 2017; 5 Knrckddt (10.36909/jer.12237_bb0045) 2016; 4 10.36909/jer.12237_bb0025 Ashokkumar (10.36909/jer.12237_bb0040) 2022; 2022 Sheikdavood (10.36909/jer.12237_bb0015) 2016; 13 Manikandan (10.36909/jer.12237_bb0030) 2017; 9 Vijayalakshmi (10.36909/jer.12237_bb0005) 2022; 27 Gopalan (10.36909/jer.12237_bb0065) 2021 Rufus (10.36909/jer.12237_bb0070) 2022 Annamalai (10.36909/jer.12237_bb0010) 2022; 65 Dhanasekaran (10.36909/jer.12237_bb0020) 2021 |
| References_xml | – ident: 10.36909/jer.12237_bb0025 – volume: 2022 year: 2022 ident: 10.36909/jer.12237_bb0040 article-title: Deep Learning Mechanism for Predicting the Axillary Lymph Node Metastasis in Patients with Primary Breast Cancer publication-title: BioMed Research International. doi: 10.1155/2022/8616535 – volume: 6 start-page: 1972 issue: 8 year: 2016 ident: 10.36909/jer.12237_bb0050 article-title: Image Localization using Deformable Model and its Application in Health Informatics publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2016.1959 – volume: 9 start-page: 23 issue: 2 year: 2017 ident: 10.36909/jer.12237_bb0030 article-title: Single Image Super Resolution via FRI Reconstruction Method publication-title: Journal of Advanced Research in Dynamical and Control Systems – volume: 65 year: 2022 ident: 10.36909/jer.12237_bb0010 article-title: An Early Prediction of Tumor in Heart by Cardiac Masses Classification in Echocardiogram Images Using Robust Back Propagation Neural Network Classifier publication-title: Brazilian Archives of Biology and Technology. doi: 10.1590/1678-4324-2022210316 – start-page: 826 year: 2022 ident: 10.36909/jer.12237_bb0070 – volume: 5 start-page: 101 year: 2017 ident: 10.36909/jer.12237_bb0035 article-title: Assessment of Intracardiac Masses Classification publication-title: Journal of Chemical and Pharmaceutical Sciences – volume: 117 start-page: 221 issue: 16 year: 2017 ident: 10.36909/jer.12237_bb0055 article-title: Implementation of Novel Technique for Image Watermarking Using 2D-DCT publication-title: International Journal of Pure and Applied Mathematics – start-page: 817 year: 2021 ident: 10.36909/jer.12237_bb0065 article-title: Dynamic Clinical Trials Management in Anunreliable Environment using Blockchain publication-title: Design Engineering – volume: 13 start-page: 59 issue: 31 year: 2016 ident: 10.36909/jer.12237_bb0015 article-title: Certain Investigation on Latent Fingerprint Improvement through Multi-Scale Patch Based Sparse Representation publication-title: Indian Journal of Engineering. – volume: 4 start-page: 161 issue: 10 year: 2016 ident: 10.36909/jer.12237_bb0045 article-title: Survey on 2D-DCT Based Image Watermarking With High Implanting Limit and Robustness publication-title: International Journal on Recent and Innovation Trends in Computing and Communication – start-page: 17468 year: 2021 ident: 10.36909/jer.12237_bb0020 article-title: Automatic Segmentation of Lung Tumors Using Adaptive Neuron-Fuzzy Inference System publication-title: Annals of RSCB – volume: 27 start-page: 3407 issue: 2 year: 2022 ident: 10.36909/jer.12237_bb0005 article-title: Early detection of breast cancer using robust back propagation neural network classifier. Rom publication-title: Biotechnol Lett. doi: 10.25083/rbl/27.2/3407.3415 – volume: 7 issue: 3 year: 2021 ident: 10.36909/jer.12237_bb0060 article-title: Location of plant Leaf maladies utilizing picture division. Journal of Image processing and Artificial publication-title: Intelligence. |
| SSID | ssj0001034535 |
| Score | 2.4559402 |
| Snippet | Identification and classification of intracardiac masses in echocardiogram is one of the significant processes in the diagnosis ofcardiovascular disease.... |
| SourceID | unpaywall crossref emarefa |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 272 |
| Title | Intracardiac mass detection and classification using double convolutional neural network classifier |
| URI | https://search.emarefa.net/detail/BIM-1612357 https://kuwaitjournals.org/jer/index.php/JER/article/download/12237/2995 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: [Open Access] DOAJ 오픈액세스 저널 디렉토리 customDbUrl: eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: ABDBF dateStart: 20130901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: AKRWK dateStart: 20230301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: C24 dateStart: 20140601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEB60IuqD91EvAvriw3bPbLqPxYMiKCIW9KnkWlDrVupW0V_vJJvWAxEffNrAzibZmSEzk0y-AdgPEomWVHGPMy68JFfKy3IpPKmzSCSJRiNv7g6fnaftTnJ6Ta8noD26C3M_fOG3pePjkz3Kv9MD30IHGrwI__T40ndM9ZXBk-9z5Ydo5JiPKyudhKmUoldeg6nO-UXrxtaWMziITVuE0bWbtEIqjTE2zMwADdvDF9s0rR84NtBgzQyLR_76wnu9T6bnZAFuR5OuMk7uG8NSNOTbNzzH__irRZh3_ilpVVRLMKGLZZj7hFq4AmbresClVS1JztD7Jke6tCldBeGFIrbQpklBslInNiuBoKcuepoc9otnp-04jIEGsQ-biz7-UA9WoXNyfHXY9lytBk9G6PJ5IpVUaANXL1WIU2BhmIcixmhLREGeo77SVHJczZpZFPCQaS4Yk4LpOKcxbybxGtSKfqE3gPBIKmY0iJpT3IBlGBLGuY5UKgMhBa3DwUhKXemAzE09jV4XAxor0S4yt2u5V4e9Me1jBd_xI9W6E_YHkYGlofhmfyz8XzrY_BvZFsyaavVVptk21MrBUO-gT1OKXbsXsOuU9h0V2Pqd |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEB60IuqD91EvAvriw3bPbLqPxYMiKCIW9KnkWlDrVupW0V_vJJvWAxEffNrAzibZmSEzk0y-AdgPEomWVHGPMy68JFfKy3IpPKmzSCSJRiNv7g6fnaftTnJ6Ta8noD26C3M_fOG3pePjkz3Kv9MD30IHGrwI__T40ndM9ZXBk-9z5Ydo5JiPKyudhKmUoldeg6nO-UXrxtaWMziITVuE0bWbtEIqjTE2zMwADdvDF9s0rR84NtBgzQyLR_76wnu9T6bnZAFuR5OuMk7uG8NSNOTbNzzH__irRZh3_ilpVVRLMKGLZZj7hFq4AmbresClVS1JztD7Jke6tCldBeGFIrbQpklBslInNiuBoKcuepoc9otnp-04jIEGsQ-biz7-UA9WoXNyfHXY9lytBk9G6PJ5IpVUaANXL1WIU2BhmIcixmhLREGeo77SVHJczZpZFPCQaS4Yk4LpOKcxbybxGtSKfqE3gPBIKmY0iJpT3IBlGBLGuY5UKgMhBa3DwUhKXemAzE09jV4XAxor0S4yt2u5V4e9Me1jBd_xI9W6E_YHkYGlofhmfyz8XzrY_BvZFsyaavVVptk21MrBUO-gT1OKXaeu7zub-ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracardiac+Mass+Detection+and+Classification+Using+Double+Convolutional+Neural+Network+Classifier&rft.jtitle=Ma%C7%A7alla%E1%BA%97+al-ab%E1%B8%A5ath+al-handasiyya%E1%BA%97&rft.au=Manikandan%2C+A.&rft.au=PonniBala%2C+M.&rft.date=2023-06-01&rft.issn=2307-1877&rft.volume=11&rft.issue=2&rft.spage=272&rft.epage=280&rft_id=info:doi/10.36909%2Fjer.12237&rft.externalDBID=n%2Fa&rft.externalDocID=10_36909_jer_12237 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2307-1877&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2307-1877&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2307-1877&client=summon |