Development of a deep learning-based auto-segmentation algorithm for peritoneal metastases using CT image analysis of ovarian cancer
Saved in:
| Published in | Gynecologic oncology Vol. 190; p. S235 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0090-8258 |
| DOI | 10.1016/j.ygyno.2024.07.341 |
Cover
| Author | Park, Noh Hyun Kim, Jae-Weon Lee, Maria Kim, Se Ik Chung, Hyun Hoon |
|---|---|
| Author_xml | – sequence: 1 givenname: Noh Hyun surname: Park fullname: Park, Noh Hyun – sequence: 2 givenname: Se Ik surname: Kim fullname: Kim, Se Ik – sequence: 3 givenname: Maria surname: Lee fullname: Lee, Maria – sequence: 4 givenname: Jae-Weon surname: Kim fullname: Kim, Jae-Weon – sequence: 5 givenname: Hyun Hoon surname: Chung fullname: Chung, Hyun Hoon |
| BookMark | eNqFkc1q3TAQhbVIIT_NE2SjF7A7kvwjU1oot01bCHTRZC3G8tjVra90kXwveN8Hr9x0VSiBgZnFnDOHb67ZhQ-eGLsTUAoQzZt9uU6rD6UEWZXQlqoSF-wKoINCy1pfsuuU9gCgQMgr9usjnWkOxwP5hYeRIx-IjnwmjN75qegx0cDxtIQi0bRt4eKC5zhPIbrlx4GPIfIj5TnHwJkfaMGUixI_pezAd4_cHXAijh7nNbm0nQlnjA49t-gtxdfs1Yhzotu__YY93X963H0pHr59_rr78FBYCbUoKtS6qTV1jW0H6rWtRDsqgTXVfa3bttK2U70mJKGVtDQ2o6wGNcq-rVvVWXXD1LOvjSGlSKM5xpwtrkaA2eCZvfkDz2zwDLQmw8uqd88qytHOjqJJ1lHOPbhIdjFDcC_o3_-jt7PzzuL8k1ZK-3CKmUwywiRpwHzfXrV9SlYATdc02eDt_w1ePP8bzDWpew |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ygyno.2024.07.341 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EndPage | S235 |
| ExternalDocumentID | 10_1016_j_ygyno_2024_07_341 S0090825824006966 1_s2_0_S0090825824006966 |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29I 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IH2 IHE J1W K-O KOM L7B LG5 M29 M41 MO0 N9A O-L O9- OAUVE OQ. OZT P-8 P-9 P2P PC. PH~ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K UDS UHS UV1 WUQ X7M XPP Z5R ZGI ZMT ZU3 ZXP ~G- ~HD AFCTW AGCQF AGRNS RIG AACTN AAYXX CITATION |
| ID | FETCH-LOGICAL-c2051-4a88658e96c7deb8c417f31a5e5b587748c93b8eae1832cef6f24d3f2b75739c3 |
| IEDL.DBID | .~1 |
| ISSN | 0090-8258 |
| IngestDate | Wed Oct 01 06:25:27 EDT 2025 Sat May 03 15:57:12 EDT 2025 Fri May 16 03:43:15 EDT 2025 Tue Oct 14 19:24:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2051-4a88658e96c7deb8c417f31a5e5b587748c93b8eae1832cef6f24d3f2b75739c3 |
| ParticipantIDs | crossref_primary_10_1016_j_ygyno_2024_07_341 elsevier_sciencedirect_doi_10_1016_j_ygyno_2024_07_341 elsevier_clinicalkeyesjournals_1_s2_0_S0090825824006966 elsevier_clinicalkey_doi_10_1016_j_ygyno_2024_07_341 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Gynecologic oncology |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| SSID | ssj0003012 |
| Score | 2.451436 |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | S235 |
| SubjectTerms | Hematology, Oncology, and Palliative Medicine Obstetrics and Gynecology |
| Title | Development of a deep learning-based auto-segmentation algorithm for peritoneal metastases using CT image analysis of ovarian cancer |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0090825824006966 https://www.clinicalkey.es/playcontent/1-s2.0-S0090825824006966 https://dx.doi.org/10.1016/j.ygyno.2024.07.341 |
| Volume | 190 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0090-8258 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003012 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0090-8258 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003012 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0090-8258 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003012 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0090-8258 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003012 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0090-8258 databaseCode: AKRWK dateStart: 19721101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003012 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhgdJL6SfdtA069Fg1a2tsycewNGy6JIeS0NyEJI_dLV3vsnYKufTUH16NLacpCS30ZGwYJIaZ0ROe94axt4kFkCUogT4FAcXUCxcuYQJQgveJnpb9lIjTs3x-AR8vs8sdNhu5MNRWGWv_UNP7ah2_HEZvHm6WS-L40rjuTFMXZB5QOzHYQdEUg_c_frd5hAAeFMN7ynSmR-Whvsfrur5uiAGYAil4SkjuP51unTjHj9mjCBX50bCbJ2wHm6fswWn8Gf6M_bzV8MPXFbe8RNzwOAeiFnRAldxedWvRYr2KJKOG22_1ervsvqx4AKyclI5JkDustMLOBrDYYsupHb7ms3O-XIWCw22ULqFl1t_D9do23FO8bJ-zi-MP57O5iEMVhE9DAgqwWgfUgUXuVYlOe0hUJRObYeYyHcCg9oV0Gi1Ssnus8iqFUlapU5mShZcv2G4TdvWScVfk6C06nypP90Ia2SGtKyQmJRQeJuzd6EyzGbQzzNhU9tX0vjfkezNVJvh-wmB0uBlpoaGQmVDb_26m7jPDNiZjaxLTpmZq7gTMhOU3ln_E3L-W3P9fw1fsIb0NXMbXbLfbXuGbAGo6d9BH7QHbOzpZzM_oufj0efELrdj6aA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKkYAL4lNs-fKBI6abeBI7R7SiWqDb01bqzbKdSdiKza42KVIvPfHD8SQOFFGBxDXWyNZoPJ5R3nvD2JvEAsgSlECfgoBi6oULTZgAlOB9oqdlPyVicZLPT-HTWXa2x2YjF4ZglTH3Dzm9z9bxy2H05uF2tSKOL43rzjShIPNQtd9ityFLFXVg765-4TxCBA-S4T1nOtOj9FAP8rqsLxuiAKZAEp4Skpufp2tPztEDdj_Wivz9cJyHbA-bR-zOIv4Nf8y-X0P88E3FLS8RtzwOgqgFvVAltxfdRrRYryPLqOH2a73Zrbovax4qVk5Sx6TIHXZaY2dDtdhiywkPX_PZkq_WIeNwG7VLaJvNt9Bf24Z7CpjdE3Z69GE5m4s4VUH4NNxAAVbrUHZgkXtVotMeElXJxGaYuUyHalD7QjqNFum2e6zyKoVSVqlTmZKFl0_ZfhNO9YxxV-ToLTqfKk-NIc3skNYVEpMSCg8T9nZ0ptkO4hlmRJWdm973hnxvpsoE308YjA43Iy80ZDITkvvfzdRNZtjG29iaxLSpmZo_ImbC8p-WvwXdv7Y8-F_D1-zufLk4NscfTz4_Z_doZSA2vmD73e4CX4YKp3Ov-gj-AZ0Y-lo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep+learning-based+auto-segmentation+algorithm+for+peritoneal+metastases+using+CT+image+analysis+of+ovarian+cancer&rft.jtitle=Gynecologic+oncology&rft.au=Park%2C+Noh+Hyun&rft.au=Kim%2C+Se+Ik&rft.au=Lee%2C+Maria&rft.au=Kim%2C+Jae-Weon&rft.date=2024-11-01&rft.issn=0090-8258&rft.volume=190&rft.spage=S235&rft_id=info:doi/10.1016%2Fj.ygyno.2024.07.341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ygyno_2024_07_341 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00908258%2FS0090825824X00128%2Fcov150h.gif |