Unprecedented Long‐Term Thermal Stability of 1D/2A Terpolymer‐Based Polymer Solar Cells Processed with Nonhalogenated Solvent
Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐te...
Saved in:
Published in | Solar RRL Vol. 5; no. 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2367-198X 2367-198X |
DOI | 10.1002/solr.202100513 |
Cover
Abstract | Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐term stability owing to excessive molecular aggregation and unfavorable phase separation. Thus, novel p‐type polymers are required for high‐efficiency and long‐lived PSCs that can be processed in ecofriendly nonhalogenated solvents. Herein, a novel series of 1D/2A terpolymers (PBTPBD) composed of 4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐F), 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo‐[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD), and 1,3‐bis‐(4‐hexylthiophen‐2‐yl)‐5‐octyl‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (HT‐TPD) is synthesized and characterized for high‐efficiency and long‐lived PSCs. A PBTPBD‐50:IT‐4F blended film exhibits a favorable face‐on orientation and superior hole and electron mobility. Therefore, the corresponding PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, exhibits a high PCE of 13.64%, which is 13% higher than that of the related nonhalogenated solvent‐processed PSCs. Furthermore, the PBTPBD‐50:IT‐4F PSC maintains 82% of the initial PCE even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. The high‐efficiency and superior long‐term thermal stability of the PBTPBD‐50:IT‐4F PSC are attributed to the excellent miscibility of PBTPBD‐50 and IT‐4F and the suppression of the morphological changes in the photoactive layer.
A novel series of 1D/2A PBTPBD terpolymers is developed for high‐efficiency and long‐lived polymer solar cells (PSCs). The PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, maintains 82% of the initial power conversion efficiency even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. |
---|---|
AbstractList | Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐term stability owing to excessive molecular aggregation and unfavorable phase separation. Thus, novel p‐type polymers are required for high‐efficiency and long‐lived PSCs that can be processed in ecofriendly nonhalogenated solvents. Herein, a novel series of 1D/2A terpolymers (PBTPBD) composed of 4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐F), 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo‐[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD), and 1,3‐bis‐(4‐hexylthiophen‐2‐yl)‐5‐octyl‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (HT‐TPD) is synthesized and characterized for high‐efficiency and long‐lived PSCs. A PBTPBD‐50:IT‐4F blended film exhibits a favorable face‐on orientation and superior hole and electron mobility. Therefore, the corresponding PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, exhibits a high PCE of 13.64%, which is 13% higher than that of the related nonhalogenated solvent‐processed PSCs. Furthermore, the PBTPBD‐50:IT‐4F PSC maintains 82% of the initial PCE even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. The high‐efficiency and superior long‐term thermal stability of the PBTPBD‐50:IT‐4F PSC are attributed to the excellent miscibility of PBTPBD‐50 and IT‐4F and the suppression of the morphological changes in the photoactive layer.
A novel series of 1D/2A PBTPBD terpolymers is developed for high‐efficiency and long‐lived polymer solar cells (PSCs). The PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, maintains 82% of the initial power conversion efficiency even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. |
Author | Kim, BongSoo Kim, Jongyoun Kim, Minkyoung Lee, Youngu Bae, Hyejeong Jung, Hyeonwoo Kim, Kwangmin Yu, Gyeonghwa |
Author_xml | – sequence: 1 givenname: Hyeonwoo surname: Jung fullname: Jung, Hyeonwoo organization: DGIST – sequence: 2 givenname: Gyeonghwa surname: Yu fullname: Yu, Gyeonghwa organization: DGIST – sequence: 3 givenname: Jongyoun surname: Kim fullname: Kim, Jongyoun organization: DGIST – sequence: 4 givenname: Hyejeong surname: Bae fullname: Bae, Hyejeong organization: DGIST – sequence: 5 givenname: Minkyoung surname: Kim fullname: Kim, Minkyoung organization: DGIST – sequence: 6 givenname: Kwangmin surname: Kim fullname: Kim, Kwangmin organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 7 givenname: BongSoo surname: Kim fullname: Kim, BongSoo organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 8 givenname: Youngu orcidid: 0000-0001-5014-1117 surname: Lee fullname: Lee, Youngu email: youngulee@dgist.ac.kr organization: DGIST |
BookMark | eNqFkN1KAzEQhYNUsNbeep0X2DbJ_l_W-guLLbYF75Zkd9KupJuSLJa90zfwGX0Ss1RUBPFmZg4z3xw4p6hX6xoQOqdkRAlhY6uVGTHCnAipf4T6zI9ij6bJY-_HfIKG1j4RBwRBnES0j15X9c5AASXUDZQ40_X6_eVtCWaLlxtXucKLhotKVU2LtcT0cswm2O13WrVbMO74gltHzg8aL7TiBk9BKYvnRhdgu-2-ajb4XtcbrvQaat55uctn53qGjiVXFoaffYBW11fL6a2XzW7uppPMKxgJfC8MhZAAJGKBlIykpSgSkvCQyggSGQlIw5DEEAkRxQRCP4iokEEhUx6UBZfcH6DR4W9htLUGZL4z1ZabNqck7zLMuwzzrwwdEPwCiqrhTaXrxvBK_Y2lB2xfKWj_MckXs-zhm_0A9YSONQ |
CitedBy_id | crossref_primary_10_1002_aenm_202405451 crossref_primary_10_3390_nano12010084 crossref_primary_10_1007_s11426_024_2243_8 crossref_primary_10_1002_bkcs_12606 crossref_primary_10_1002_solr_202300146 crossref_primary_10_1002_solr_202200147 crossref_primary_10_1039_D4TA01923G crossref_primary_10_1002_adma_202301732 crossref_primary_10_1039_D4TA00117F crossref_primary_10_1002_eom2_12421 crossref_primary_10_1002_adfm_202208950 crossref_primary_10_1039_D3NJ05210A |
Cites_doi | 10.1007/s13233-020-8079-z 10.1016/j.nanoen.2020.104896 10.1002/adma.202100474 10.1021/jacs.9b09939 10.1007/s13233-020-8002-7 10.1002/aenm.201802832 10.1039/D1TA00971K 10.1007/s13233-019-7067-7 10.1021/acs.chemrev.5b00098 10.1038/s41467-020-20431-6 10.1039/C8TA09383K 10.1016/j.dyepig.2018.05.047 10.1002/adfm.202102361 10.1002/aenm.201902688 10.1038/s41467-019-11001-6 10.1002/aenm.201900168 10.1038/nphoton.2012.11 10.1016/j.orgel.2020.105929 10.1002/aenm.201902430 10.1016/j.scib.2020.01.001 10.1002/adma.201707170 10.1002/aenm.201900041 10.1002/advs.201903419 10.1038/s41467-020-14926-5 10.1007/s13233-020-8086-0 10.1039/D0EE02034F 10.1002/advs.201903259 10.1039/C9TA10610C 10.1002/aenm.201601320 10.1002/advs.201900565 10.1002/aenm.201802686 10.1002/adfm.201001771 10.1039/D0TA05787H 10.1039/D0TA09354H 10.1007/s13233-018-6030-3 10.1002/aenm.201902065 10.1039/D0TA06146H 10.1021/acsami.7b09757 10.1007/s13233-020-8167-0 10.1002/aenm.202003390 10.1002/solr.201900077 10.1002/anie.201914874 10.1021/acsami.9b18963 10.1038/s41467-020-20580-8 10.1038/s41467-020-18378-9 10.1039/D0TA07887E |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/solr.202100513 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2367-198X |
EndPage | n/a |
ExternalDocumentID | 10_1002_solr_202100513 SOLR202100513 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2018R1A5A1025594 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS EJD HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2043-55bbfee0624ff209dbc808a51f6e8f6be95507e6bb670e53461bf4cf9a4dcafa3 |
ISSN | 2367-198X |
IngestDate | Tue Jul 01 04:12:27 EDT 2025 Thu Apr 24 23:13:08 EDT 2025 Wed Jan 22 16:56:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2043-55bbfee0624ff209dbc808a51f6e8f6be95507e6bb670e53461bf4cf9a4dcafa3 |
ORCID | 0000-0001-5014-1117 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1002_solr_202100513 crossref_citationtrail_10_1002_solr_202100513 wiley_primary_10_1002_solr_202100513_SOLR202100513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Solar RRL |
PublicationYear | 2021 |
References | 2021; 9 2019; 7 2017; 7 2019; 9 2019; 3 2019; 6 2020; 86 2020; 142 2019; 10 2020; 59 2020; 13 2020; 12 2020; 11 2020; 10 2017; 9 2018; 26 2020; 8 2020; 7 2021; 31 2021; 12 2021; 33 2021; 11 2015; 115 2020; 75 2018; 158 2020; 28 2019; 27 2011; 21 2018; 30 2020; 65 2012; 6 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 6 start-page: 1900565 year: 2019 publication-title: Adv. Sci. – volume: 13 start-page: 4381 year: 2020 publication-title: Energy Environ. Sci. – volume: 28 start-page: 1297 year: 2020 publication-title: Macromol. Res. – volume: 26 start-page: 238 year: 2018 publication-title: Macromol. Res. – volume: 86 start-page: 105929 year: 2020 publication-title: Org. Electron. – volume: 9 start-page: 32939 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1707170 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 1900041 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 start-page: 1218 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 27 start-page: 1268 year: 2019 publication-title: Macromol. Res – volume: 10 start-page: 1902430 year: 2020 publication-title: Adv. Energy Mater. – volume: 28 start-page: 179 year: 2020 publication-title: Macromol. Res. – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 21 start-page: 718 year: 2011 publication-title: Adv. Funct. Mater. – volume: 142 start-page: 1465 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 17706 year: 2020 publication-title: J. Mater. Chem. A – volume: 115 start-page: 12666 year: 2015 publication-title: Chem. Rev. – volume: 11 start-page: 2003390 year: 2021 publication-title: Adv. Energy Mater. – volume: 11 start-page: 4612 year: 2020 publication-title: Nat. Commun. – volume: 59 start-page: 1 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1900077 year: 2019 publication-title: Sol. RRL – volume: 8 start-page: 25208 year: 2020 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1802832 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601320 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1902065 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1802686 year: 2019 publication-title: Adv. Energy Mater. – volume: 33 start-page: 2100474 year: 2021 publication-title: Adv. Mater. – volume: 158 start-page: 249 year: 2018 publication-title: Dyes Pigment. – volume: 9 start-page: 1902688 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1903419 year: 2020 publication-title: Adv. Sci. – volume: 9 start-page: 9238 year: 2021 publication-title: J. Mater. Chem. A – volume: 75 start-page: 104896 year: 2020 publication-title: Nano Energy – volume: 12 start-page: 309 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 22907 year: 2020 publication-title: J. Mater. Chem. A – volume: 12 start-page: 4659 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3038 year: 2019 publication-title: Nat. Commun. – volume: 8 start-page: 1360 year: 2020 publication-title: J. Mater. Chem. A – volume: 27 start-page: 470 year: 2019 publication-title: Macromol. Res – volume: 7 start-page: 64 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 start-page: 22155 year: 2020 publication-title: J. Mater. Chem. A – volume: 12 start-page: 178 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 1900168 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1903259 year: 2020 publication-title: Adv. Sci. – volume: 31 start-page: 2102361 year: 2021 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 727 year: 2020 publication-title: Macromol. Res. – ident: e_1_2_8_38_1 doi: 10.1007/s13233-020-8079-z – ident: e_1_2_8_36_1 doi: 10.1016/j.nanoen.2020.104896 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202100474 – ident: e_1_2_8_27_1 doi: 10.1021/jacs.9b09939 – ident: e_1_2_8_41_1 doi: 10.1007/s13233-020-8002-7 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201802832 – ident: e_1_2_8_20_1 doi: 10.1039/D1TA00971K – ident: e_1_2_8_40_1 doi: 10.1007/s13233-019-7067-7 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.5b00098 – ident: e_1_2_8_5_1 doi: 10.1038/s41467-020-20431-6 – ident: e_1_2_8_6_1 doi: 10.1039/C8TA09383K – ident: e_1_2_8_26_1 doi: 10.1016/j.dyepig.2018.05.047 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202102361 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201902688 – ident: e_1_2_8_47_1 doi: 10.1038/s41467-019-11001-6 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201900168 – ident: e_1_2_8_3_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_8_32_1 doi: 10.1016/j.orgel.2020.105929 – ident: e_1_2_8_31_1 doi: 10.1002/aenm.201902430 – ident: e_1_2_8_8_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201707170 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.201900041 – ident: e_1_2_8_18_1 doi: 10.1002/advs.201903419 – ident: e_1_2_8_46_1 doi: 10.1038/s41467-020-14926-5 – ident: e_1_2_8_4_1 doi: 10.1007/s13233-020-8086-0 – ident: e_1_2_8_14_1 doi: 10.1039/D0EE02034F – ident: e_1_2_8_35_1 doi: 10.1002/advs.201903259 – ident: e_1_2_8_24_1 doi: 10.1039/C9TA10610C – ident: e_1_2_8_34_1 doi: 10.1002/aenm.201601320 – ident: e_1_2_8_37_1 doi: 10.1002/advs.201900565 – ident: e_1_2_8_45_1 doi: 10.1002/aenm.201802686 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201001771 – ident: e_1_2_8_39_1 doi: 10.1039/D0TA05787H – ident: e_1_2_8_13_1 doi: 10.1039/D0TA09354H – ident: e_1_2_8_28_1 doi: 10.1007/s13233-018-6030-3 – ident: e_1_2_8_43_1 doi: 10.1002/aenm.201902065 – ident: e_1_2_8_17_1 doi: 10.1039/D0TA06146H – ident: e_1_2_8_23_1 doi: 10.1021/acsami.7b09757 – ident: e_1_2_8_25_1 doi: 10.1007/s13233-020-8167-0 – ident: e_1_2_8_29_1 doi: 10.1002/aenm.202003390 – ident: e_1_2_8_33_1 doi: 10.1002/solr.201900077 – ident: e_1_2_8_16_1 doi: 10.1002/anie.201914874 – ident: e_1_2_8_44_1 doi: 10.1021/acsami.9b18963 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-020-20580-8 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-020-18378-9 – ident: e_1_2_8_42_1 doi: 10.1039/D0TA07887E |
SSID | ssj0002447861 |
Score | 2.1661494 |
Snippet | Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | nonhalogenated solvents polymer solar cells terpolymers thermal stability |
Title | Unprecedented Long‐Term Thermal Stability of 1D/2A Terpolymer‐Based Polymer Solar Cells Processed with Nonhalogenated Solvent |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202100513 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9LIdij2x7gUdBuxQeLUUP49ZsyEI0g7IA-jNsGxpRWHYQZd0yE7bP9jv2M_aLxkpy4qNda9eDIOhbET8TFIUSRHykqvYd2XAHKVADJ6IMidVeeawSEYKlCaXKcY7Tk6D8dKbnPlnvd73VtbSZi1eZ5-vrSu5iVSBBnLFKtn_kKx9KBDgHuQLV5AwXP9JxstyBQpLYq0t-I1TzK5tchcWoHExnQL0Lm4919249W46G2F5BgbVL1dVscXTU5pBb8Ck5ZgSh9TDOa56D49lUXxs6gmaXPXTqjzHqI8sU-2xVsVVk0Bz0ZT94uDZzMaWJ0arjLeywkQfq242OjSP1A_nn6yRMKc8T4C6BYW0C7hK85ALHNCOWXBmivesasO2cQ6L9aHCYIWuoRnd7LchyFpW2tqwX0xA3VIWxIvdXmFBC1pnsDN2zQa_5fT_zKst_fz9dGZ_v0X2eAh-Wp_sDUcn07mN6IGjFEa6Qa_9K02XUJcfdV_S8YLaqyLt1izukn2zHqHDGlz3SE-W98mdVpfKB-RrB2YUYfbjyzcEGDUAoxZgtFKUjY74kO7gBcwaWNQAi2psUA0saoFFEVi0CyxqgPWQLN-9XRyPHXNyh5NhrbXj-0IoKd2Ae0pxN85FFrlR6jMVgAoIhIyxjZ4MhAhCV_oDL2BCeZmKUy_PUpUOHpF-WZXyMaFciUBkIWY3hV6uwJ9OZZi6PFYRU5EnD4jTzGSSmbb2eLpKkdQNuXmCM5_YmT8gryz_qm7o8ltOrgXzF7akg44nNxn0lNzefSXPSH99uZHPwdddixcGZD8BbgOoAw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unprecedented+Long%E2%80%90Term+Thermal+Stability+of+1D%2F2A+Terpolymer%E2%80%90Based+Polymer+Solar+Cells+Processed+with+Nonhalogenated+Solvent&rft.jtitle=Solar+RRL&rft.au=Jung%2C+Hyeonwoo&rft.au=Yu%2C+Gyeonghwa&rft.au=Kim%2C+Jongyoun&rft.au=Bae%2C+Hyejeong&rft.date=2021-11-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=5&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202100513&rft.externalDBID=10.1002%252Fsolr.202100513&rft.externalDocID=SOLR202100513 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon |