Unprecedented Long‐Term Thermal Stability of 1D/2A Terpolymer‐Based Polymer Solar Cells Processed with Nonhalogenated Solvent

Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐te...

Full description

Saved in:
Bibliographic Details
Published inSolar RRL Vol. 5; no. 11
Main Authors Jung, Hyeonwoo, Yu, Gyeonghwa, Kim, Jongyoun, Bae, Hyejeong, Kim, Minkyoung, Kim, Kwangmin, Kim, BongSoo, Lee, Youngu
Format Journal Article
LanguageEnglish
Published 01.11.2021
Subjects
Online AccessGet full text
ISSN2367-198X
2367-198X
DOI10.1002/solr.202100513

Cover

Abstract Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐term stability owing to excessive molecular aggregation and unfavorable phase separation. Thus, novel p‐type polymers are required for high‐efficiency and long‐lived PSCs that can be processed in ecofriendly nonhalogenated solvents. Herein, a novel series of 1D/2A terpolymers (PBTPBD) composed of 4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐F), 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo‐[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD), and 1,3‐bis‐(4‐hexylthiophen‐2‐yl)‐5‐octyl‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (HT‐TPD) is synthesized and characterized for high‐efficiency and long‐lived PSCs. A PBTPBD‐50:IT‐4F blended film exhibits a favorable face‐on orientation and superior hole and electron mobility. Therefore, the corresponding PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, exhibits a high PCE of 13.64%, which is 13% higher than that of the related nonhalogenated solvent‐processed PSCs. Furthermore, the PBTPBD‐50:IT‐4F PSC maintains 82% of the initial PCE even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. The high‐efficiency and superior long‐term thermal stability of the PBTPBD‐50:IT‐4F PSC are attributed to the excellent miscibility of PBTPBD‐50 and IT‐4F and the suppression of the morphological changes in the photoactive layer. A novel series of 1D/2A PBTPBD terpolymers is developed for high‐efficiency and long‐lived polymer solar cells (PSCs). The PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, maintains 82% of the initial power conversion efficiency even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents.
AbstractList Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies (PCE) due to undesirable morphological properties, including high aggregation and unfavorable orientation. Moreover, they show very poor long‐term stability owing to excessive molecular aggregation and unfavorable phase separation. Thus, novel p‐type polymers are required for high‐efficiency and long‐lived PSCs that can be processed in ecofriendly nonhalogenated solvents. Herein, a novel series of 1D/2A terpolymers (PBTPBD) composed of 4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐F), 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo‐[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD), and 1,3‐bis‐(4‐hexylthiophen‐2‐yl)‐5‐octyl‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (HT‐TPD) is synthesized and characterized for high‐efficiency and long‐lived PSCs. A PBTPBD‐50:IT‐4F blended film exhibits a favorable face‐on orientation and superior hole and electron mobility. Therefore, the corresponding PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, exhibits a high PCE of 13.64%, which is 13% higher than that of the related nonhalogenated solvent‐processed PSCs. Furthermore, the PBTPBD‐50:IT‐4F PSC maintains 82% of the initial PCE even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents. The high‐efficiency and superior long‐term thermal stability of the PBTPBD‐50:IT‐4F PSC are attributed to the excellent miscibility of PBTPBD‐50 and IT‐4F and the suppression of the morphological changes in the photoactive layer. A novel series of 1D/2A PBTPBD terpolymers is developed for high‐efficiency and long‐lived polymer solar cells (PSCs). The PBTPBD‐50:IT‐4F PSC, processed with a nonhalogenated solvent, maintains 82% of the initial power conversion efficiency even after 204 days at 85 °C, which is the highest thermal stability achieved among PSCs processed with nonhalogenated solvents.
Author Kim, BongSoo
Kim, Jongyoun
Kim, Minkyoung
Lee, Youngu
Bae, Hyejeong
Jung, Hyeonwoo
Kim, Kwangmin
Yu, Gyeonghwa
Author_xml – sequence: 1
  givenname: Hyeonwoo
  surname: Jung
  fullname: Jung, Hyeonwoo
  organization: DGIST
– sequence: 2
  givenname: Gyeonghwa
  surname: Yu
  fullname: Yu, Gyeonghwa
  organization: DGIST
– sequence: 3
  givenname: Jongyoun
  surname: Kim
  fullname: Kim, Jongyoun
  organization: DGIST
– sequence: 4
  givenname: Hyejeong
  surname: Bae
  fullname: Bae, Hyejeong
  organization: DGIST
– sequence: 5
  givenname: Minkyoung
  surname: Kim
  fullname: Kim, Minkyoung
  organization: DGIST
– sequence: 6
  givenname: Kwangmin
  surname: Kim
  fullname: Kim, Kwangmin
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 7
  givenname: BongSoo
  surname: Kim
  fullname: Kim, BongSoo
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 8
  givenname: Youngu
  orcidid: 0000-0001-5014-1117
  surname: Lee
  fullname: Lee, Youngu
  email: youngulee@dgist.ac.kr
  organization: DGIST
BookMark eNqFkN1KAzEQhYNUsNbeep0X2DbJ_l_W-guLLbYF75Zkd9KupJuSLJa90zfwGX0Ss1RUBPFmZg4z3xw4p6hX6xoQOqdkRAlhY6uVGTHCnAipf4T6zI9ij6bJY-_HfIKG1j4RBwRBnES0j15X9c5AASXUDZQ40_X6_eVtCWaLlxtXucKLhotKVU2LtcT0cswm2O13WrVbMO74gltHzg8aL7TiBk9BKYvnRhdgu-2-ajb4XtcbrvQaat55uctn53qGjiVXFoaffYBW11fL6a2XzW7uppPMKxgJfC8MhZAAJGKBlIykpSgSkvCQyggSGQlIw5DEEAkRxQRCP4iokEEhUx6UBZfcH6DR4W9htLUGZL4z1ZabNqck7zLMuwzzrwwdEPwCiqrhTaXrxvBK_Y2lB2xfKWj_MckXs-zhm_0A9YSONQ
CitedBy_id crossref_primary_10_1002_aenm_202405451
crossref_primary_10_3390_nano12010084
crossref_primary_10_1007_s11426_024_2243_8
crossref_primary_10_1002_bkcs_12606
crossref_primary_10_1002_solr_202300146
crossref_primary_10_1002_solr_202200147
crossref_primary_10_1039_D4TA01923G
crossref_primary_10_1002_adma_202301732
crossref_primary_10_1039_D4TA00117F
crossref_primary_10_1002_eom2_12421
crossref_primary_10_1002_adfm_202208950
crossref_primary_10_1039_D3NJ05210A
Cites_doi 10.1007/s13233-020-8079-z
10.1016/j.nanoen.2020.104896
10.1002/adma.202100474
10.1021/jacs.9b09939
10.1007/s13233-020-8002-7
10.1002/aenm.201802832
10.1039/D1TA00971K
10.1007/s13233-019-7067-7
10.1021/acs.chemrev.5b00098
10.1038/s41467-020-20431-6
10.1039/C8TA09383K
10.1016/j.dyepig.2018.05.047
10.1002/adfm.202102361
10.1002/aenm.201902688
10.1038/s41467-019-11001-6
10.1002/aenm.201900168
10.1038/nphoton.2012.11
10.1016/j.orgel.2020.105929
10.1002/aenm.201902430
10.1016/j.scib.2020.01.001
10.1002/adma.201707170
10.1002/aenm.201900041
10.1002/advs.201903419
10.1038/s41467-020-14926-5
10.1007/s13233-020-8086-0
10.1039/D0EE02034F
10.1002/advs.201903259
10.1039/C9TA10610C
10.1002/aenm.201601320
10.1002/advs.201900565
10.1002/aenm.201802686
10.1002/adfm.201001771
10.1039/D0TA05787H
10.1039/D0TA09354H
10.1007/s13233-018-6030-3
10.1002/aenm.201902065
10.1039/D0TA06146H
10.1021/acsami.7b09757
10.1007/s13233-020-8167-0
10.1002/aenm.202003390
10.1002/solr.201900077
10.1002/anie.201914874
10.1021/acsami.9b18963
10.1038/s41467-020-20580-8
10.1038/s41467-020-18378-9
10.1039/D0TA07887E
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/solr.202100513
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2367-198X
EndPage n/a
ExternalDocumentID 10_1002_solr_202100513
SOLR202100513
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2018R1A5A1025594
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c2043-55bbfee0624ff209dbc808a51f6e8f6be95507e6bb670e53461bf4cf9a4dcafa3
ISSN 2367-198X
IngestDate Tue Jul 01 04:12:27 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Wed Jan 22 16:56:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2043-55bbfee0624ff209dbc808a51f6e8f6be95507e6bb670e53461bf4cf9a4dcafa3
ORCID 0000-0001-5014-1117
PageCount 11
ParticipantIDs crossref_primary_10_1002_solr_202100513
crossref_citationtrail_10_1002_solr_202100513
wiley_primary_10_1002_solr_202100513_SOLR202100513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Solar RRL
PublicationYear 2021
References 2021; 9
2019; 7
2017; 7
2019; 9
2019; 3
2019; 6
2020; 86
2020; 142
2019; 10
2020; 59
2020; 13
2020; 12
2020; 11
2020; 10
2017; 9
2018; 26
2020; 8
2020; 7
2021; 31
2021; 12
2021; 33
2021; 11
2015; 115
2020; 75
2018; 158
2020; 28
2019; 27
2011; 21
2018; 30
2020; 65
2012; 6
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 6
  start-page: 1900565
  year: 2019
  publication-title: Adv. Sci.
– volume: 13
  start-page: 4381
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 1297
  year: 2020
  publication-title: Macromol. Res.
– volume: 26
  start-page: 238
  year: 2018
  publication-title: Macromol. Res.
– volume: 86
  start-page: 105929
  year: 2020
  publication-title: Org. Electron.
– volume: 9
  start-page: 32939
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1707170
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1900041
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1218
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 27
  start-page: 1268
  year: 2019
  publication-title: Macromol. Res
– volume: 10
  start-page: 1902430
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 179
  year: 2020
  publication-title: Macromol. Res.
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 21
  start-page: 718
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 142
  start-page: 1465
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 17706
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 12666
  year: 2015
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2003390
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 4612
  year: 2020
  publication-title: Nat. Commun.
– volume: 59
  start-page: 1
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1900077
  year: 2019
  publication-title: Sol. RRL
– volume: 8
  start-page: 25208
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1802832
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1601320
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1902065
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1802686
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 2100474
  year: 2021
  publication-title: Adv. Mater.
– volume: 158
  start-page: 249
  year: 2018
  publication-title: Dyes Pigment.
– volume: 9
  start-page: 1902688
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1903419
  year: 2020
  publication-title: Adv. Sci.
– volume: 9
  start-page: 9238
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 75
  start-page: 104896
  year: 2020
  publication-title: Nano Energy
– volume: 12
  start-page: 309
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 22907
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 4659
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3038
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1360
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 470
  year: 2019
  publication-title: Macromol. Res
– volume: 7
  start-page: 64
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 22155
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 178
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1900168
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1903259
  year: 2020
  publication-title: Adv. Sci.
– volume: 31
  start-page: 2102361
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 727
  year: 2020
  publication-title: Macromol. Res.
– ident: e_1_2_8_38_1
  doi: 10.1007/s13233-020-8079-z
– ident: e_1_2_8_36_1
  doi: 10.1016/j.nanoen.2020.104896
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202100474
– ident: e_1_2_8_27_1
  doi: 10.1021/jacs.9b09939
– ident: e_1_2_8_41_1
  doi: 10.1007/s13233-020-8002-7
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201802832
– ident: e_1_2_8_20_1
  doi: 10.1039/D1TA00971K
– ident: e_1_2_8_40_1
  doi: 10.1007/s13233-019-7067-7
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.5b00098
– ident: e_1_2_8_5_1
  doi: 10.1038/s41467-020-20431-6
– ident: e_1_2_8_6_1
  doi: 10.1039/C8TA09383K
– ident: e_1_2_8_26_1
  doi: 10.1016/j.dyepig.2018.05.047
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202102361
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201902688
– ident: e_1_2_8_47_1
  doi: 10.1038/s41467-019-11001-6
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201900168
– ident: e_1_2_8_3_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_8_32_1
  doi: 10.1016/j.orgel.2020.105929
– ident: e_1_2_8_31_1
  doi: 10.1002/aenm.201902430
– ident: e_1_2_8_8_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201707170
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.201900041
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.201903419
– ident: e_1_2_8_46_1
  doi: 10.1038/s41467-020-14926-5
– ident: e_1_2_8_4_1
  doi: 10.1007/s13233-020-8086-0
– ident: e_1_2_8_14_1
  doi: 10.1039/D0EE02034F
– ident: e_1_2_8_35_1
  doi: 10.1002/advs.201903259
– ident: e_1_2_8_24_1
  doi: 10.1039/C9TA10610C
– ident: e_1_2_8_34_1
  doi: 10.1002/aenm.201601320
– ident: e_1_2_8_37_1
  doi: 10.1002/advs.201900565
– ident: e_1_2_8_45_1
  doi: 10.1002/aenm.201802686
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201001771
– ident: e_1_2_8_39_1
  doi: 10.1039/D0TA05787H
– ident: e_1_2_8_13_1
  doi: 10.1039/D0TA09354H
– ident: e_1_2_8_28_1
  doi: 10.1007/s13233-018-6030-3
– ident: e_1_2_8_43_1
  doi: 10.1002/aenm.201902065
– ident: e_1_2_8_17_1
  doi: 10.1039/D0TA06146H
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.7b09757
– ident: e_1_2_8_25_1
  doi: 10.1007/s13233-020-8167-0
– ident: e_1_2_8_29_1
  doi: 10.1002/aenm.202003390
– ident: e_1_2_8_33_1
  doi: 10.1002/solr.201900077
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.201914874
– ident: e_1_2_8_44_1
  doi: 10.1021/acsami.9b18963
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-020-20580-8
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-020-18378-9
– ident: e_1_2_8_42_1
  doi: 10.1039/D0TA07887E
SSID ssj0002447861
Score 2.1661494
Snippet Donor–acceptor (D–A) copolymer‐based polymer solar cells (PSCs) processed with nonhalogenated solvents exhibit relatively low power conversion efficiencies...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms nonhalogenated solvents
polymer solar cells
terpolymers
thermal stability
Title Unprecedented Long‐Term Thermal Stability of 1D/2A Terpolymer‐Based Polymer Solar Cells Processed with Nonhalogenated Solvent
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202100513
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay9LIdij2x7gUdBuxQeLUUP49ZsyEI0g7IA-jNsGxpRWHYQZd0yE7bP9jv2M_aLxkpy4qNda9eDIOhbET8TFIUSRHykqvYd2XAHKVADJ6IMidVeeawSEYKlCaXKcY7Tk6D8dKbnPlnvd73VtbSZi1eZ5-vrSu5iVSBBnLFKtn_kKx9KBDgHuQLV5AwXP9JxstyBQpLYq0t-I1TzK5tchcWoHExnQL0Lm4919249W46G2F5BgbVL1dVscXTU5pBb8Ck5ZgSh9TDOa56D49lUXxs6gmaXPXTqjzHqI8sU-2xVsVVk0Bz0ZT94uDZzMaWJ0arjLeywkQfq242OjSP1A_nn6yRMKc8T4C6BYW0C7hK85ALHNCOWXBmivesasO2cQ6L9aHCYIWuoRnd7LchyFpW2tqwX0xA3VIWxIvdXmFBC1pnsDN2zQa_5fT_zKst_fz9dGZ_v0X2eAh-Wp_sDUcn07mN6IGjFEa6Qa_9K02XUJcfdV_S8YLaqyLt1izukn2zHqHDGlz3SE-W98mdVpfKB-RrB2YUYfbjyzcEGDUAoxZgtFKUjY74kO7gBcwaWNQAi2psUA0saoFFEVi0CyxqgPWQLN-9XRyPHXNyh5NhrbXj-0IoKd2Ae0pxN85FFrlR6jMVgAoIhIyxjZ4MhAhCV_oDL2BCeZmKUy_PUpUOHpF-WZXyMaFciUBkIWY3hV6uwJ9OZZi6PFYRU5EnD4jTzGSSmbb2eLpKkdQNuXmCM5_YmT8gryz_qm7o8ltOrgXzF7akg44nNxn0lNzefSXPSH99uZHPwdddixcGZD8BbgOoAw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unprecedented+Long%E2%80%90Term+Thermal+Stability+of+1D%2F2A+Terpolymer%E2%80%90Based+Polymer+Solar+Cells+Processed+with+Nonhalogenated+Solvent&rft.jtitle=Solar+RRL&rft.au=Jung%2C+Hyeonwoo&rft.au=Yu%2C+Gyeonghwa&rft.au=Kim%2C+Jongyoun&rft.au=Bae%2C+Hyejeong&rft.date=2021-11-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=5&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202100513&rft.externalDBID=10.1002%252Fsolr.202100513&rft.externalDocID=SOLR202100513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon