Developing an ANN Based Streamflow Forecast Model Utilizing Data-Mining Techniques to Improve Reservoir Streamflow Prediction Accuracy: A Case Study

This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indice...

Full description

Saved in:
Bibliographic Details
Published inCivil Engineering Journal Vol. 4; no. 5; pp. 1135 - 1156
Main Authors Zamanisabzi, Hamed, King, James Phillip, Dilekli, Naci, Shoghli, Bahareh, Abudu, Shalamu
Format Journal Article
LanguageEnglish
Published 03.06.2018
Online AccessGet full text
ISSN2676-6957
2476-3055
DOI10.28991/cej-0309163

Cover

Abstract This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indices were utilized as predictors of streamflow values.  Correlation analysis of different models indicate that, for the period of January to June, using fewer predictors led to simpler modeling with equivalent accuracy on daily prediction models. This did not hold in all periods. For monthly prediction models, accuracy was improved compared to earlier works done to predict monthly streamflow for the same case of Elephant Butte Reservoir (EB), NM. Overall, superior prediction performance was achieved by utilizing data-mining techniques for pre-processing historical data, extracting the most effective predictors, correlation analysis, extracting and utilizing combined climate variability indices, physical indices, and employing several developed ANNs for different prediction periods of the year.
AbstractList This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indices were utilized as predictors of streamflow values.  Correlation analysis of different models indicate that, for the period of January to June, using fewer predictors led to simpler modeling with equivalent accuracy on daily prediction models. This did not hold in all periods. For monthly prediction models, accuracy was improved compared to earlier works done to predict monthly streamflow for the same case of Elephant Butte Reservoir (EB), NM. Overall, superior prediction performance was achieved by utilizing data-mining techniques for pre-processing historical data, extracting the most effective predictors, correlation analysis, extracting and utilizing combined climate variability indices, physical indices, and employing several developed ANNs for different prediction periods of the year.
Author Zamanisabzi, Hamed
Dilekli, Naci
Shoghli, Bahareh
King, James Phillip
Abudu, Shalamu
Author_xml – sequence: 1
  givenname: Hamed
  surname: Zamanisabzi
  fullname: Zamanisabzi, Hamed
– sequence: 2
  givenname: James Phillip
  surname: King
  fullname: King, James Phillip
– sequence: 3
  givenname: Naci
  surname: Dilekli
  fullname: Dilekli, Naci
– sequence: 4
  givenname: Bahareh
  surname: Shoghli
  fullname: Shoghli, Bahareh
– sequence: 5
  givenname: Shalamu
  surname: Abudu
  fullname: Abudu, Shalamu
BookMark eNptkMFOAjEURRuDiYjs_IB-gKNtZ9ph3CGIkiAahfWkvHmjNcMU24LB7_CDHZSFMa7eXdxz78s9Jq3a1kjIKWfnopdl_ALwNWIxy7iKD0hbJKmKYiZlq9Gq0SqT6RHpem8WLEnSuHEmbfI5xA1WdmXqZ6pr2p9O6ZX2WNCn4FAvy8q-05F1CNoHemcLrOg8mMp87IChDjq6M_VOzxBeavO2Rk-DpePlytkN0kf06DbWuN95Dw4LA8HYpg9g7TRsL2mfDprexrYutifksNSVx-7-dsh8dD0b3EaT-5vxoD-JQLA4RAVyLkoAWUhkSkmlRJaUPE0kz6QGxhYcEgGp5hIkpqWOS40QZ9DjIFIl4g4RP7ngrPcOyxxM0LvHgtOmyjnLv6fNm2nz_bQNdPYHWjmz1G77v_0LEvx_BA
CitedBy_id crossref_primary_10_1038_s41598_024_84072_1
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_3389_frwa_2020_551598
crossref_primary_10_3390_hydrology11050066
crossref_primary_10_1080_19942060_2018_1553742
crossref_primary_10_1007_s11220_019_0233_3
crossref_primary_10_1038_s41598_022_07693_4
crossref_primary_10_1016_j_scitotenv_2020_138015
crossref_primary_10_1007_s00343_019_9174_x
crossref_primary_10_1016_j_asej_2020_03_015
crossref_primary_10_1007_s12517_022_10230_2
crossref_primary_10_3390_hydrology12030060
crossref_primary_10_1007_s12517_020_05772_2
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.28991/cej-0309163
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2476-3055
EndPage 1156
ExternalDocumentID 10_28991_cej_0309163
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
OK1
ID FETCH-LOGICAL-c203t-de112fcc5d5e066566294f1745195ac00b1c42c7a15c5e7fa3faec39c81c27623
ISSN 2676-6957
IngestDate Thu Apr 24 23:00:25 EDT 2025
Thu Jul 24 02:06:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c203t-de112fcc5d5e066566294f1745195ac00b1c42c7a15c5e7fa3faec39c81c27623
OpenAccessLink https://www.civilejournal.org/index.php/cej/article/download/800/pdf
PageCount 22
ParticipantIDs crossref_citationtrail_10_28991_cej_0309163
crossref_primary_10_28991_cej_0309163
PublicationCentury 2000
PublicationDate 2018-06-03
PublicationDateYYYYMMDD 2018-06-03
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-03
  day: 03
PublicationDecade 2010
PublicationTitle Civil Engineering Journal
PublicationYear 2018
SSID ssib044733094
ssib046626805
Score 2.1235754
Snippet This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1135
Title Developing an ANN Based Streamflow Forecast Model Utilizing Data-Mining Techniques to Improve Reservoir Streamflow Prediction Accuracy: A Case Study
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKcOGCQIAYBpAPcIoy1EmchVtnQSOkqThMpblVzotNA5kGZdJB9MCv4F_xp3i2s3hQDwOXqLJsN_X7-ha_jZA3uRIol4D7YsoBDRQZ-5nKYz8IM57GkKaR6Tx3Po_PFtHHS345mfx2opY2bX4I2515Jf9DVRxDuuos2X-g7LApDuBnpC8-kcL4vBONT8aMJ_ybzuZz7wiFUmFczeJKVfV3T7feBHHdmqZnlbdoy6rc6gUnohX-uWkPYe_XdSFXU-7B3jNIE5TX3NRl4-73qdGeHQOaGcCmEfCjS27HbzZRibf8xMflTVm5RQ97__dwYS10AY5rkW9t-2xx1WVbOf1WTCSv1_ktBs0b2dlXm9s9F1AON0Wr-vPKDh-JlWjkyr3XYKmJvwpH9hfESezHmS1ffSjtWJToSD1b2Lfn35EDU-7wYsZsIZROrqPqG--SGdri1EID5Bdf-5tYx3Bvleb-S2QOgYxoQpn1S1y97FbfI_eDBBU5HUf687RnblGUhKFjS0cxmpKpCbEdfqlNzDAbvnNex1GZHN3n4hF52JGMziwCH5OJXD8hv0b0UbGmiD5q0EdHtNAefdSgjw7oow766Ig-2ta0Qx8d0OfuN6KP9uh7T2dUY48a7D0liw-nF8dnftfjw4dgGrZ-IVHhVwC84FJ7AfFUskihmayrHgmYTnMGUQCJYBy4TJQIlZAQZpAywFMOwmdkb12v5XMdpBfyLFCpLBSLZKYylTAmiiAWSQphUewTrz_GJXQF8HUflmq5i4r75O0w-5st_LJz3os7zjsgD0aUvyR7bbORr1CfbfPXBid_AOlwo6I
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+an+ANN+Based+Streamflow+Forecast+Model+Utilizing+Data-Mining+Techniques+to+Improve+Reservoir+Streamflow+Prediction+Accuracy%3A+A+Case+Study&rft.jtitle=Civil+Engineering+Journal&rft.au=Zamanisabzi%2C+Hamed&rft.au=King%2C+James+Phillip&rft.au=Dilekli%2C+Naci&rft.au=Shoghli%2C+Bahareh&rft.date=2018-06-03&rft.issn=2676-6957&rft.eissn=2476-3055&rft.volume=4&rft.issue=5&rft.spage=1135&rft.epage=1156&rft_id=info:doi/10.28991%2Fcej-0309163&rft.externalDBID=n%2Fa&rft.externalDocID=10_28991_cej_0309163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2676-6957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2676-6957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2676-6957&client=summon