Developing an ANN Based Streamflow Forecast Model Utilizing Data-Mining Techniques to Improve Reservoir Streamflow Prediction Accuracy: A Case Study
This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indice...
Saved in:
Published in | Civil Engineering Journal Vol. 4; no. 5; pp. 1135 - 1156 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
03.06.2018
|
Online Access | Get full text |
ISSN | 2676-6957 2476-3055 |
DOI | 10.28991/cej-0309163 |
Cover
Abstract | This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indices were utilized as predictors of streamflow values. Correlation analysis of different models indicate that, for the period of January to June, using fewer predictors led to simpler modeling with equivalent accuracy on daily prediction models. This did not hold in all periods. For monthly prediction models, accuracy was improved compared to earlier works done to predict monthly streamflow for the same case of Elephant Butte Reservoir (EB), NM. Overall, superior prediction performance was achieved by utilizing data-mining techniques for pre-processing historical data, extracting the most effective predictors, correlation analysis, extracting and utilizing combined climate variability indices, physical indices, and employing several developed ANNs for different prediction periods of the year. |
---|---|
AbstractList | This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indices were utilized as predictors of streamflow values. Correlation analysis of different models indicate that, for the period of January to June, using fewer predictors led to simpler modeling with equivalent accuracy on daily prediction models. This did not hold in all periods. For monthly prediction models, accuracy was improved compared to earlier works done to predict monthly streamflow for the same case of Elephant Butte Reservoir (EB), NM. Overall, superior prediction performance was achieved by utilizing data-mining techniques for pre-processing historical data, extracting the most effective predictors, correlation analysis, extracting and utilizing combined climate variability indices, physical indices, and employing several developed ANNs for different prediction periods of the year. |
Author | Zamanisabzi, Hamed Dilekli, Naci Shoghli, Bahareh King, James Phillip Abudu, Shalamu |
Author_xml | – sequence: 1 givenname: Hamed surname: Zamanisabzi fullname: Zamanisabzi, Hamed – sequence: 2 givenname: James Phillip surname: King fullname: King, James Phillip – sequence: 3 givenname: Naci surname: Dilekli fullname: Dilekli, Naci – sequence: 4 givenname: Bahareh surname: Shoghli fullname: Shoghli, Bahareh – sequence: 5 givenname: Shalamu surname: Abudu fullname: Abudu, Shalamu |
BookMark | eNptkMFOAjEURRuDiYjs_IB-gKNtZ9ph3CGIkiAahfWkvHmjNcMU24LB7_CDHZSFMa7eXdxz78s9Jq3a1kjIKWfnopdl_ALwNWIxy7iKD0hbJKmKYiZlq9Gq0SqT6RHpem8WLEnSuHEmbfI5xA1WdmXqZ6pr2p9O6ZX2WNCn4FAvy8q-05F1CNoHemcLrOg8mMp87IChDjq6M_VOzxBeavO2Rk-DpePlytkN0kf06DbWuN95Dw4LA8HYpg9g7TRsL2mfDprexrYutifksNSVx-7-dsh8dD0b3EaT-5vxoD-JQLA4RAVyLkoAWUhkSkmlRJaUPE0kz6QGxhYcEgGp5hIkpqWOS40QZ9DjIFIl4g4RP7ngrPcOyxxM0LvHgtOmyjnLv6fNm2nz_bQNdPYHWjmz1G77v_0LEvx_BA |
CitedBy_id | crossref_primary_10_1038_s41598_024_84072_1 crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_3389_frwa_2020_551598 crossref_primary_10_3390_hydrology11050066 crossref_primary_10_1080_19942060_2018_1553742 crossref_primary_10_1007_s11220_019_0233_3 crossref_primary_10_1038_s41598_022_07693_4 crossref_primary_10_1016_j_scitotenv_2020_138015 crossref_primary_10_1007_s00343_019_9174_x crossref_primary_10_1016_j_asej_2020_03_015 crossref_primary_10_1007_s12517_022_10230_2 crossref_primary_10_3390_hydrology12030060 crossref_primary_10_1007_s12517_020_05772_2 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.28991/cej-0309163 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2476-3055 |
EndPage | 1156 |
ExternalDocumentID | 10_28991_cej_0309163 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION OK1 |
ID | FETCH-LOGICAL-c203t-de112fcc5d5e066566294f1745195ac00b1c42c7a15c5e7fa3faec39c81c27623 |
ISSN | 2676-6957 |
IngestDate | Thu Apr 24 23:00:25 EDT 2025 Thu Jul 24 02:06:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c203t-de112fcc5d5e066566294f1745195ac00b1c42c7a15c5e7fa3faec39c81c27623 |
OpenAccessLink | https://www.civilejournal.org/index.php/cej/article/download/800/pdf |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_28991_cej_0309163 crossref_primary_10_28991_cej_0309163 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-03 |
PublicationDateYYYYMMDD | 2018-06-03 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-03 day: 03 |
PublicationDecade | 2010 |
PublicationTitle | Civil Engineering Journal |
PublicationYear | 2018 |
SSID | ssib044733094 ssib046626805 |
Score | 2.1235754 |
Snippet | This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 1135 |
Title | Developing an ANN Based Streamflow Forecast Model Utilizing Data-Mining Techniques to Improve Reservoir Streamflow Prediction Accuracy: A Case Study |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbKcOGCQIAYBpAPcIoy1EmchVtnQSOkqThMpblVzotNA5kGZdJB9MCv4F_xp3i2s3hQDwOXqLJsN_X7-ha_jZA3uRIol4D7YsoBDRQZ-5nKYz8IM57GkKaR6Tx3Po_PFtHHS345mfx2opY2bX4I2515Jf9DVRxDuuos2X-g7LApDuBnpC8-kcL4vBONT8aMJ_ybzuZz7wiFUmFczeJKVfV3T7feBHHdmqZnlbdoy6rc6gUnohX-uWkPYe_XdSFXU-7B3jNIE5TX3NRl4-73qdGeHQOaGcCmEfCjS27HbzZRibf8xMflTVm5RQ97__dwYS10AY5rkW9t-2xx1WVbOf1WTCSv1_ktBs0b2dlXm9s9F1AON0Wr-vPKDh-JlWjkyr3XYKmJvwpH9hfESezHmS1ffSjtWJToSD1b2Lfn35EDU-7wYsZsIZROrqPqG--SGdri1EID5Bdf-5tYx3Bvleb-S2QOgYxoQpn1S1y97FbfI_eDBBU5HUf687RnblGUhKFjS0cxmpKpCbEdfqlNzDAbvnNex1GZHN3n4hF52JGMziwCH5OJXD8hv0b0UbGmiD5q0EdHtNAefdSgjw7oow766Ig-2ta0Qx8d0OfuN6KP9uh7T2dUY48a7D0liw-nF8dnftfjw4dgGrZ-IVHhVwC84FJ7AfFUskihmayrHgmYTnMGUQCJYBy4TJQIlZAQZpAywFMOwmdkb12v5XMdpBfyLFCpLBSLZKYylTAmiiAWSQphUewTrz_GJXQF8HUflmq5i4r75O0w-5st_LJz3os7zjsgD0aUvyR7bbORr1CfbfPXBid_AOlwo6I |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+an+ANN+Based+Streamflow+Forecast+Model+Utilizing+Data-Mining+Techniques+to+Improve+Reservoir+Streamflow+Prediction+Accuracy%3A+A+Case+Study&rft.jtitle=Civil+Engineering+Journal&rft.au=Zamanisabzi%2C+Hamed&rft.au=King%2C+James+Phillip&rft.au=Dilekli%2C+Naci&rft.au=Shoghli%2C+Bahareh&rft.date=2018-06-03&rft.issn=2676-6957&rft.eissn=2476-3055&rft.volume=4&rft.issue=5&rft.spage=1135&rft.epage=1156&rft_id=info:doi/10.28991%2Fcej-0309163&rft.externalDBID=n%2Fa&rft.externalDocID=10_28991_cej_0309163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2676-6957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2676-6957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2676-6957&client=summon |