High-Dimensional Covariance Regression with Application to Co-Expression QTL Detection

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association pp. 1 - 14
Main Authors Kim, Rakheon, Zhang, Jingfei
Format Journal Article
LanguageEnglish
Published 21.08.2025
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1080/01621459.2025.2520996

Cover

Author Kim, Rakheon
Zhang, Jingfei
Author_xml – sequence: 1
  givenname: Rakheon
  surname: Kim
  fullname: Kim, Rakheon
– sequence: 2
  givenname: Jingfei
  surname: Zhang
  fullname: Zhang, Jingfei
BookMark eNo1kF1LwzAUhoNMsJv-BKF_IDOfTXM5uumEgihTvAtpPN0iXVua4se_t8Ht3Bx434cD55mjWdu1gNAtJUtKcnJHaMaokHrJCJNLJhnROrtACZVcYabE-wwlkcERukLzED7JNCrPE_S29fsDXvsjtMF3rW3Sovuyg7etg_QF9gOEmKfffjykq75vvLNjDMZuIvHmpz8Tz7syXcMILtbX6LK2TYCb016g1_vNrtji8unhsViV2DHCRyxqRyvnavphBVWaWqgyx2xFlBA5CJnx6aXKMq5cLiyVrNaWqUqA0wqmlC-Q_L_rhi6EAWrTD_5oh19DiYlyzFmOiXLMSQ7_A0e0WfA
Cites_doi 10.1080/01621459.1996.10476677
10.3390/cancers11020145
10.1109/tit.2022.3175455
10.1093/nar/28.1.27
10.1080/10618600.2012.681250
10.5705/ss.2010.051
10.1214/009053607000000758
10.1198/jasa.2009.0101
10.1038/nature07385
10.1080/01621459.2012.725386
10.1007/s10994-007-5040-8
10.1214/09-AOS720
10.1111/1541-0420.00015
10.1038/s41467-023-40503-7
10.1200/JCO.2021.39.15_suppl.e14023
10.1214/08-AOS600
10.1080/01621459.2015.1131699
10.1080/10618600.2019.1648271
10.1002/bimj.202000312
10.1016/j.jgg.2023.05.003
10.1038/sdata.2018.158
10.1093/biostatistics/kxae023
10.1016/j.jeconom.2021.05.004
10.1017/9781108231596
10.1093/biomet/93.1.85
10.1111/j.1467-9868.2005.00490.x
10.1214/10-AOS795
10.1214/aos/1193342389
10.1038/s41586-020-2528-x
10.1111/j.1467-9868.2005.00532.x
10.1080/01621459.2019.1677242
10.1111/biom.13531
10.1158/1078-0432.CCR-17-0803
10.1016/S0047-259X(03)00096-4
10.1186/s13073-018-0608-4
10.1214/15-EJS1041
10.1093/biomet/86.3.677
10.1093/biostatistics/kxz057
10.1023/A:1017501703105
10.1186/s12859-023-05377-y
10.3389/fonc.2015.00259
10.1016/s0898-6568(02)00007-4
10.1080/01621459.2022.2034632
10.1093/biomet/90.4.831
10.1080/10618600.2022.2074434
10.1126/science.1081900
10.1038/s41598-019-47021-x
10.1073/pnas.220392197
10.1186/1471-2105-9-559
10.1093/biomet/asr054
10.1198/jasa.2010.tm09313
10.1111/biom.12292
10.1093/biomet/asac011
10.1093/neuonc/noq052
10.1111/biom.13048
10.1111/rssb.12026
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1080/01621459.2025.2520996
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 14
ExternalDocumentID 10_1080_01621459_2025_2520996
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CITATION
CJ0
CS3
D0L
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
ID FETCH-LOGICAL-c203t-4fc1bccf1da41791aeb6c2ab07448e4563202ba237c84a152f9a27b4ec97e2373
ISSN 0162-1459
IngestDate Wed Oct 01 05:33:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c203t-4fc1bccf1da41791aeb6c2ab07448e4563202ba237c84a152f9a27b4ec97e2373
PageCount 14
ParticipantIDs crossref_primary_10_1080_01621459_2025_2520996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-21
PublicationDateYYYYMMDD 2025-08-21
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-21
  day: 21
PublicationDecade 2020
PublicationTitle Journal of the American Statistical Association
PublicationYear 2025
References e_1_3_3_52_1
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_5_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
Fox E. B. (e_1_3_3_16_1) 2015; 16
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_41_1
Javanmard A. (e_1_3_3_23_1) 2014; 15
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_14_1
  doi: 10.1080/01621459.1996.10476677
– ident: e_1_3_3_31_1
  doi: 10.3390/cancers11020145
– ident: e_1_3_3_13_1
  doi: 10.1109/tit.2022.3175455
– ident: e_1_3_3_24_1
  doi: 10.1093/nar/28.1.27
– ident: e_1_3_3_39_1
  doi: 10.1080/10618600.2012.681250
– ident: e_1_3_3_21_1
  doi: 10.5705/ss.2010.051
– ident: e_1_3_3_9_1
  doi: 10.1214/009053607000000758
– ident: e_1_3_3_37_1
  doi: 10.1198/jasa.2009.0101
– ident: e_1_3_3_32_1
  doi: 10.1038/nature07385
– ident: e_1_3_3_49_1
  doi: 10.1080/01621459.2012.725386
– ident: e_1_3_3_6_1
  doi: 10.1007/s10994-007-5040-8
– ident: e_1_3_3_26_1
  doi: 10.1214/09-AOS720
– ident: e_1_3_3_18_1
  doi: 10.1111/1541-0420.00015
– ident: e_1_3_3_40_1
  doi: 10.1038/s41467-023-40503-7
– ident: e_1_3_3_50_1
  doi: 10.1200/JCO.2021.39.15_suppl.e14023
– ident: e_1_3_3_8_1
  doi: 10.1214/08-AOS600
– ident: e_1_3_3_59_1
  doi: 10.1080/01621459.2015.1131699
– ident: e_1_3_3_41_1
  doi: 10.1080/10618600.2019.1648271
– ident: e_1_3_3_25_1
  doi: 10.1002/bimj.202000312
– ident: e_1_3_3_56_1
  doi: 10.1016/j.jgg.2023.05.003
– ident: e_1_3_3_20_1
  doi: 10.1038/sdata.2018.158
– ident: e_1_3_3_34_1
  doi: 10.1093/biostatistics/kxae023
– ident: e_1_3_3_58_1
  doi: 10.1016/j.jeconom.2021.05.004
– ident: e_1_3_3_45_1
  doi: 10.1017/9781108231596
– ident: e_1_3_3_22_1
  doi: 10.1093/biomet/93.1.85
– ident: e_1_3_3_42_1
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: e_1_3_3_15_1
  doi: 10.1214/10-AOS795
– ident: e_1_3_3_5_1
  doi: 10.1214/aos/1193342389
– volume: 15
  start-page: 2869
  year: 2014
  ident: e_1_3_3_23_1
  article-title: “Confidence Intervals and Hypothesis Testing for High-Dimensional Regression,”
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_3_46_1
  doi: 10.1038/s41586-020-2528-x
– ident: e_1_3_3_51_1
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: e_1_3_3_54_1
  doi: 10.1080/01621459.2019.1677242
– ident: e_1_3_3_17_1
  doi: 10.1111/biom.13531
– ident: e_1_3_3_33_1
  doi: 10.1158/1078-0432.CCR-17-0803
– ident: e_1_3_3_28_1
  doi: 10.1016/S0047-259X(03)00096-4
– ident: e_1_3_3_44_1
  doi: 10.1186/s13073-018-0608-4
– ident: e_1_3_3_11_1
  doi: 10.1214/15-EJS1041
– volume: 16
  start-page: 2501
  year: 2015
  ident: e_1_3_3_16_1
  article-title: “Bayesian Nonparametric Covariance Regression,”
  publication-title: The Journal of Machine Learning Research
– ident: e_1_3_3_35_1
  doi: 10.1093/biomet/86.3.677
– ident: e_1_3_3_57_1
  doi: 10.1093/biostatistics/kxz057
– ident: e_1_3_3_43_1
  doi: 10.1023/A:1017501703105
– ident: e_1_3_3_4_1
  doi: 10.1186/s12859-023-05377-y
– ident: e_1_3_3_38_1
  doi: 10.3389/fonc.2015.00259
– ident: e_1_3_3_2_1
  doi: 10.1016/s0898-6568(02)00007-4
– ident: e_1_3_3_53_1
  doi: 10.1080/01621459.2022.2034632
– ident: e_1_3_3_47_1
  doi: 10.1093/biomet/90.4.831
– ident: e_1_3_3_55_1
  doi: 10.1080/10618600.2022.2074434
– ident: e_1_3_3_19_1
  doi: 10.1126/science.1081900
– ident: e_1_3_3_7_1
  doi: 10.1038/s41598-019-47021-x
– ident: e_1_3_3_12_1
  doi: 10.1073/pnas.220392197
– ident: e_1_3_3_27_1
  doi: 10.1186/1471-2105-9-559
– ident: e_1_3_3_10_1
  doi: 10.1093/biomet/asr054
– ident: e_1_3_3_30_1
  doi: 10.1198/jasa.2010.tm09313
– ident: e_1_3_3_29_1
  doi: 10.1111/biom.12292
– ident: e_1_3_3_48_1
  doi: 10.1093/biomet/asac011
– ident: e_1_3_3_3_1
  doi: 10.1093/neuonc/noq052
– ident: e_1_3_3_36_1
  doi: 10.1111/biom.13048
– ident: e_1_3_3_52_1
  doi: 10.1111/rssb.12026
SSID ssj0000788
Score 2.4772835
SecondaryResourceType online_first
SourceID crossref
SourceType Index Database
StartPage 1
Title High-Dimensional Covariance Regression with Application to Co-Expression QTL Detection
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XnoRn_hmD143JJs0mxylVkrRgqWV3sLudqMipEWjiL_e2Wxe1ijWSwhLM0n6TWa-HeaB0LnuGiY81yaB7zHYoOhvDrwmsVXgwgVBrGK9UbwZ-v2JN5h2plUSe1ZdkgpLfjTWlfwHVVgDXHWV7ArIlkJhAc4BXzgCwnD8E8Y6SYNc6v78prcGfN1vsPfNqgBG6t6kuJo6bUM3TXxO883unPTeF8UvbsfXYHnSLC0r-YGv1mpQsqm_adbiuQFhXs5oHvGnB1WtlsHpAfjLWD3WIw60o0Oopoy5CEL6lDhe3slbFYaTEdjhTmvG0Kl5VVMp-s1e5wmOIFDLs_TdLKozc8KG_thLfqvMJnSKNqe5mEiLiXIx62iDgsHXUz1ce1g5aZaNJC1fpSju0m3Xm56mRltq_GO8hTZzIPCF0YJttKaSHdQucXjZRXfL6oArdcCVOmCtDrimDjid4y_qgEEdcKkOe2hy1Rt3-yQfm0Ektd2UeLF0hJSxM-N6vJzDlfAl5QLIohcoIMwuvJjg1GUy8DjwtzjklAlPyZApWHX3USuZJ-oAYSCAknPlhIIqYK42D4HxKDabcQYWKPYPkVX8K9HCdEeJfkXjaNULjlG7UsET1EqfX9Up0MBUnGWAfgJveVYr
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Covariance+Regression+with+Application+to+Co-Expression+QTL+Detection&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Kim%2C+Rakheon&rft.au=Zhang%2C+Jingfei&rft.date=2025-08-21&rft.issn=0162-1459&rft.eissn=1537-274X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1080%2F01621459.2025.2520996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2025_2520996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon