High-Dimensional Covariance Regression with Application to Co-Expression QTL Detection
Saved in:
| Published in | Journal of the American Statistical Association pp. 1 - 14 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
21.08.2025
|
| Online Access | Get full text |
| ISSN | 0162-1459 1537-274X |
| DOI | 10.1080/01621459.2025.2520996 |
Cover
| Author | Kim, Rakheon Zhang, Jingfei |
|---|---|
| Author_xml | – sequence: 1 givenname: Rakheon surname: Kim fullname: Kim, Rakheon – sequence: 2 givenname: Jingfei surname: Zhang fullname: Zhang, Jingfei |
| BookMark | eNo1kF1LwzAUhoNMsJv-BKF_IDOfTXM5uumEgihTvAtpPN0iXVua4se_t8Ht3Bx434cD55mjWdu1gNAtJUtKcnJHaMaokHrJCJNLJhnROrtACZVcYabE-wwlkcERukLzED7JNCrPE_S29fsDXvsjtMF3rW3Sovuyg7etg_QF9gOEmKfffjykq75vvLNjDMZuIvHmpz8Tz7syXcMILtbX6LK2TYCb016g1_vNrtji8unhsViV2DHCRyxqRyvnavphBVWaWqgyx2xFlBA5CJnx6aXKMq5cLiyVrNaWqUqA0wqmlC-Q_L_rhi6EAWrTD_5oh19DiYlyzFmOiXLMSQ7_A0e0WfA |
| Cites_doi | 10.1080/01621459.1996.10476677 10.3390/cancers11020145 10.1109/tit.2022.3175455 10.1093/nar/28.1.27 10.1080/10618600.2012.681250 10.5705/ss.2010.051 10.1214/009053607000000758 10.1198/jasa.2009.0101 10.1038/nature07385 10.1080/01621459.2012.725386 10.1007/s10994-007-5040-8 10.1214/09-AOS720 10.1111/1541-0420.00015 10.1038/s41467-023-40503-7 10.1200/JCO.2021.39.15_suppl.e14023 10.1214/08-AOS600 10.1080/01621459.2015.1131699 10.1080/10618600.2019.1648271 10.1002/bimj.202000312 10.1016/j.jgg.2023.05.003 10.1038/sdata.2018.158 10.1093/biostatistics/kxae023 10.1016/j.jeconom.2021.05.004 10.1017/9781108231596 10.1093/biomet/93.1.85 10.1111/j.1467-9868.2005.00490.x 10.1214/10-AOS795 10.1214/aos/1193342389 10.1038/s41586-020-2528-x 10.1111/j.1467-9868.2005.00532.x 10.1080/01621459.2019.1677242 10.1111/biom.13531 10.1158/1078-0432.CCR-17-0803 10.1016/S0047-259X(03)00096-4 10.1186/s13073-018-0608-4 10.1214/15-EJS1041 10.1093/biomet/86.3.677 10.1093/biostatistics/kxz057 10.1023/A:1017501703105 10.1186/s12859-023-05377-y 10.3389/fonc.2015.00259 10.1016/s0898-6568(02)00007-4 10.1080/01621459.2022.2034632 10.1093/biomet/90.4.831 10.1080/10618600.2022.2074434 10.1126/science.1081900 10.1038/s41598-019-47021-x 10.1073/pnas.220392197 10.1186/1471-2105-9-559 10.1093/biomet/asr054 10.1198/jasa.2010.tm09313 10.1111/biom.12292 10.1093/biomet/asac011 10.1093/neuonc/noq052 10.1111/biom.13048 10.1111/rssb.12026 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1080/01621459.2025.2520996 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 14 |
| ExternalDocumentID | 10_1080_01621459_2025_2520996 |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CITATION CJ0 CS3 D0L DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ |
| ID | FETCH-LOGICAL-c203t-4fc1bccf1da41791aeb6c2ab07448e4563202ba237c84a152f9a27b4ec97e2373 |
| ISSN | 0162-1459 |
| IngestDate | Wed Oct 01 05:33:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c203t-4fc1bccf1da41791aeb6c2ab07448e4563202ba237c84a152f9a27b4ec97e2373 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1080_01621459_2025_2520996 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-21 |
| PublicationDateYYYYMMDD | 2025-08-21 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2025 |
| References | e_1_3_3_52_1 e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_5_1 e_1_3_3_42_1 e_1_3_3_30_1 e_1_3_3_51_1 Fox E. B. (e_1_3_3_16_1) 2015; 16 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_59_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_57_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_41_1 Javanmard A. (e_1_3_3_23_1) 2014; 15 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_14_1 doi: 10.1080/01621459.1996.10476677 – ident: e_1_3_3_31_1 doi: 10.3390/cancers11020145 – ident: e_1_3_3_13_1 doi: 10.1109/tit.2022.3175455 – ident: e_1_3_3_24_1 doi: 10.1093/nar/28.1.27 – ident: e_1_3_3_39_1 doi: 10.1080/10618600.2012.681250 – ident: e_1_3_3_21_1 doi: 10.5705/ss.2010.051 – ident: e_1_3_3_9_1 doi: 10.1214/009053607000000758 – ident: e_1_3_3_37_1 doi: 10.1198/jasa.2009.0101 – ident: e_1_3_3_32_1 doi: 10.1038/nature07385 – ident: e_1_3_3_49_1 doi: 10.1080/01621459.2012.725386 – ident: e_1_3_3_6_1 doi: 10.1007/s10994-007-5040-8 – ident: e_1_3_3_26_1 doi: 10.1214/09-AOS720 – ident: e_1_3_3_18_1 doi: 10.1111/1541-0420.00015 – ident: e_1_3_3_40_1 doi: 10.1038/s41467-023-40503-7 – ident: e_1_3_3_50_1 doi: 10.1200/JCO.2021.39.15_suppl.e14023 – ident: e_1_3_3_8_1 doi: 10.1214/08-AOS600 – ident: e_1_3_3_59_1 doi: 10.1080/01621459.2015.1131699 – ident: e_1_3_3_41_1 doi: 10.1080/10618600.2019.1648271 – ident: e_1_3_3_25_1 doi: 10.1002/bimj.202000312 – ident: e_1_3_3_56_1 doi: 10.1016/j.jgg.2023.05.003 – ident: e_1_3_3_20_1 doi: 10.1038/sdata.2018.158 – ident: e_1_3_3_34_1 doi: 10.1093/biostatistics/kxae023 – ident: e_1_3_3_58_1 doi: 10.1016/j.jeconom.2021.05.004 – ident: e_1_3_3_45_1 doi: 10.1017/9781108231596 – ident: e_1_3_3_22_1 doi: 10.1093/biomet/93.1.85 – ident: e_1_3_3_42_1 doi: 10.1111/j.1467-9868.2005.00490.x – ident: e_1_3_3_15_1 doi: 10.1214/10-AOS795 – ident: e_1_3_3_5_1 doi: 10.1214/aos/1193342389 – volume: 15 start-page: 2869 year: 2014 ident: e_1_3_3_23_1 article-title: “Confidence Intervals and Hypothesis Testing for High-Dimensional Regression,” publication-title: The Journal of Machine Learning Research – ident: e_1_3_3_46_1 doi: 10.1038/s41586-020-2528-x – ident: e_1_3_3_51_1 doi: 10.1111/j.1467-9868.2005.00532.x – ident: e_1_3_3_54_1 doi: 10.1080/01621459.2019.1677242 – ident: e_1_3_3_17_1 doi: 10.1111/biom.13531 – ident: e_1_3_3_33_1 doi: 10.1158/1078-0432.CCR-17-0803 – ident: e_1_3_3_28_1 doi: 10.1016/S0047-259X(03)00096-4 – ident: e_1_3_3_44_1 doi: 10.1186/s13073-018-0608-4 – ident: e_1_3_3_11_1 doi: 10.1214/15-EJS1041 – volume: 16 start-page: 2501 year: 2015 ident: e_1_3_3_16_1 article-title: “Bayesian Nonparametric Covariance Regression,” publication-title: The Journal of Machine Learning Research – ident: e_1_3_3_35_1 doi: 10.1093/biomet/86.3.677 – ident: e_1_3_3_57_1 doi: 10.1093/biostatistics/kxz057 – ident: e_1_3_3_43_1 doi: 10.1023/A:1017501703105 – ident: e_1_3_3_4_1 doi: 10.1186/s12859-023-05377-y – ident: e_1_3_3_38_1 doi: 10.3389/fonc.2015.00259 – ident: e_1_3_3_2_1 doi: 10.1016/s0898-6568(02)00007-4 – ident: e_1_3_3_53_1 doi: 10.1080/01621459.2022.2034632 – ident: e_1_3_3_47_1 doi: 10.1093/biomet/90.4.831 – ident: e_1_3_3_55_1 doi: 10.1080/10618600.2022.2074434 – ident: e_1_3_3_19_1 doi: 10.1126/science.1081900 – ident: e_1_3_3_7_1 doi: 10.1038/s41598-019-47021-x – ident: e_1_3_3_12_1 doi: 10.1073/pnas.220392197 – ident: e_1_3_3_27_1 doi: 10.1186/1471-2105-9-559 – ident: e_1_3_3_10_1 doi: 10.1093/biomet/asr054 – ident: e_1_3_3_30_1 doi: 10.1198/jasa.2010.tm09313 – ident: e_1_3_3_29_1 doi: 10.1111/biom.12292 – ident: e_1_3_3_48_1 doi: 10.1093/biomet/asac011 – ident: e_1_3_3_3_1 doi: 10.1093/neuonc/noq052 – ident: e_1_3_3_36_1 doi: 10.1111/biom.13048 – ident: e_1_3_3_52_1 doi: 10.1111/rssb.12026 |
| SSID | ssj0000788 |
| Score | 2.4772835 |
| SecondaryResourceType | online_first |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 1 |
| Title | High-Dimensional Covariance Regression with Application to Co-Expression QTL Detection |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60XnoRn_hmD143JJs0mxylVkrRgqWV3sLudqMipEWjiL_e2Wxe1ijWSwhLM0n6TWa-HeaB0LnuGiY81yaB7zHYoOhvDrwmsVXgwgVBrGK9UbwZ-v2JN5h2plUSe1ZdkgpLfjTWlfwHVVgDXHWV7ArIlkJhAc4BXzgCwnD8E8Y6SYNc6v78prcGfN1vsPfNqgBG6t6kuJo6bUM3TXxO883unPTeF8UvbsfXYHnSLC0r-YGv1mpQsqm_adbiuQFhXs5oHvGnB1WtlsHpAfjLWD3WIw60o0Oopoy5CEL6lDhe3slbFYaTEdjhTmvG0Kl5VVMp-s1e5wmOIFDLs_TdLKozc8KG_thLfqvMJnSKNqe5mEiLiXIx62iDgsHXUz1ce1g5aZaNJC1fpSju0m3Xm56mRltq_GO8hTZzIPCF0YJttKaSHdQucXjZRXfL6oArdcCVOmCtDrimDjid4y_qgEEdcKkOe2hy1Rt3-yQfm0Ektd2UeLF0hJSxM-N6vJzDlfAl5QLIohcoIMwuvJjg1GUy8DjwtzjklAlPyZApWHX3USuZJ-oAYSCAknPlhIIqYK42D4HxKDabcQYWKPYPkVX8K9HCdEeJfkXjaNULjlG7UsET1EqfX9Up0MBUnGWAfgJveVYr |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Dimensional+Covariance+Regression+with+Application+to+Co-Expression+QTL+Detection&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Kim%2C+Rakheon&rft.au=Zhang%2C+Jingfei&rft.date=2025-08-21&rft.issn=0162-1459&rft.eissn=1537-274X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1080%2F01621459.2025.2520996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01621459_2025_2520996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |