High-Quality Wavelets Features Extraction for Handwritten Arabic Numerals Recognition

Arabic handwritten digit recognition is the science of recognition and classification of handwritten Arabic digits. It has been a subject of research for many years with rich literature available on the subject.  Handwritten digits written by different people are not of the same size, thickness, sty...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on advanced science, engineering and information technology Vol. 9; no. 2; pp. 700 - 710
Main Authors Akhtar, M. Suhail, A. Qureshi, Hammad, Al-Quhayz, Hani
Format Journal Article
LanguageEnglish
Published 07.04.2019
Online AccessGet full text
ISSN2088-5334
2460-6952
2088-5334
DOI10.18517/ijaseit.9.2.6809

Cover

Abstract Arabic handwritten digit recognition is the science of recognition and classification of handwritten Arabic digits. It has been a subject of research for many years with rich literature available on the subject.  Handwritten digits written by different people are not of the same size, thickness, style, position or orientation. Hence, many different challenges have to overcome for resolving the problem of handwritten digit recognition.  The variation in the digits is due to the writing styles of different people which can differ significantly.  Automatic handwritten digit recognition has wide application such as automatic processing of bank cheques, postal addresses, and tax forms. A typical handwritten digit recognition application consists of three main stages namely features extraction, features selection, and classification. One of the most important problems is feature extraction. In this paper, a novel feature extraction approach for off-line handwritten digit recognition is presented. Wavelets-based analysis of image data is carried out for feature extraction, and then classification is performed using various classifiers. To further reduce the size of training data-set, high entropy subbands are selected. To increase the recognition rate, individual subbands providing high classification accuracies are selected from the over-complete tree. The features extracted are also normalized to standardize the range of independent variables before providing them to the classifier. Classification is carried out using k-NN and SVMs. The results show that the quality of extracted features is high as almost equivalently high classification accuracies are acquired for both classifiers, i.e. k-NNs and SVMs.
AbstractList Arabic handwritten digit recognition is the science of recognition and classification of handwritten Arabic digits. It has been a subject of research for many years with rich literature available on the subject.  Handwritten digits written by different people are not of the same size, thickness, style, position or orientation. Hence, many different challenges have to overcome for resolving the problem of handwritten digit recognition.  The variation in the digits is due to the writing styles of different people which can differ significantly.  Automatic handwritten digit recognition has wide application such as automatic processing of bank cheques, postal addresses, and tax forms. A typical handwritten digit recognition application consists of three main stages namely features extraction, features selection, and classification. One of the most important problems is feature extraction. In this paper, a novel feature extraction approach for off-line handwritten digit recognition is presented. Wavelets-based analysis of image data is carried out for feature extraction, and then classification is performed using various classifiers. To further reduce the size of training data-set, high entropy subbands are selected. To increase the recognition rate, individual subbands providing high classification accuracies are selected from the over-complete tree. The features extracted are also normalized to standardize the range of independent variables before providing them to the classifier. Classification is carried out using k-NN and SVMs. The results show that the quality of extracted features is high as almost equivalently high classification accuracies are acquired for both classifiers, i.e. k-NNs and SVMs.
Author A. Qureshi, Hammad
Akhtar, M. Suhail
Al-Quhayz, Hani
Author_xml – sequence: 1
  givenname: M. Suhail
  surname: Akhtar
  fullname: Akhtar, M. Suhail
– sequence: 2
  givenname: Hammad
  surname: A. Qureshi
  fullname: A. Qureshi, Hammad
– sequence: 3
  givenname: Hani
  surname: Al-Quhayz
  fullname: Al-Quhayz, Hani
BookMark eNqFkM9OwzAMxiM0JMbYA3DLC7QkaZukx2naGNIEAjFxjNL8GZm6dkpSxt6eju2AOIAvtiz__NnfNRg0bWMAuMUoxbzA7M5tZDAupmVKUspReQGGBHGeFFmWD37UV2Acwgb1wXJEOB2C1cKt35PnTtYuHuCb_DC1iQHOjYydNwHOPqOXKrq2gbb1cCEbvfcuRtPAiZeVU_Cx2xov6wBfjGrXjTvO3oBL27fM-JxHYDWfvU4XyfLp_mE6WSaKoKxMuKKV1rnGhCJsMKkYkdJmBcUV06QsdKUMI9ZYrLjOmGKE0JwWObWWF0rSbATIaW_X7ORhL-ta7LzbSn8QGIlvb8TZG1EKIo7e9BA7Qcq3IXhjhXJRHs_uX3X1nyT-Rf6v9gVGW4Bw
CitedBy_id crossref_primary_10_1007_s11227_020_03388_7
crossref_primary_10_1007_s11042_022_12717_2
crossref_primary_10_3390_sym12101742
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.18517/ijaseit.9.2.6809
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2088-5334
EndPage 710
ExternalDocumentID 10.18517/ijaseit.9.2.6809
10_18517_ijaseit_9_2_6809
GroupedDBID 5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
KQ8
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c2039-8c6bdd4d12601e12b72aaf3561b7d295dbce72fef1c8d37c722646546ff85ca63
IEDL.DBID UNPAY
ISSN 2088-5334
2460-6952
IngestDate Tue Aug 19 19:53:46 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 02:45:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2039-8c6bdd4d12601e12b72aaf3561b7d295dbce72fef1c8d37c722646546ff85ca63
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/6809/1941
PageCount 11
ParticipantIDs unpaywall_primary_10_18517_ijaseit_9_2_6809
crossref_citationtrail_10_18517_ijaseit_9_2_6809
crossref_primary_10_18517_ijaseit_9_2_6809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-07
PublicationDateYYYYMMDD 2019-04-07
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-07
  day: 07
PublicationDecade 2010
PublicationTitle International journal on advanced science, engineering and information technology
PublicationYear 2019
SSID ssj0000740286
Score 2.0879524
Snippet Arabic handwritten digit recognition is the science of recognition and classification of handwritten Arabic digits. It has been a subject of research for many...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 700
Title High-Quality Wavelets Features Extraction for Handwritten Arabic Numerals Recognition
URI http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/6809/1941
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2088-5334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740286
  issn: 2088-5334
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB7s-dC-tNW21NbKPvhgK8ldNskmeRRRDsXDlh7Vp7C_AmmPnFwSrP3rO5NspEVQBF_DZEl2NjPfZGa-AdhFlywCFRkPoUToRTKIPWWN9KKQjJ8IdNj1V5zNxHQenVzEF2swjEulqsqyqikurfuqxS6bv_yJJr1sxh2DINFGjEt3xe3v2BC1_FISZ-okG2NkjhHRuogRn49gfT47P7ikKXP4SdFDUaqZRwLjpizmLtVJM-qHVf3M5z4t9J-zet5WV_LmWi4W_3ig41dQD308feHJL79tlK__3KV1fMKXew0vHWBlB73QBqzZahM2nEmo2Z7jrf78BuZUM-L1pBw37IekkRZNzQhkthjUs6Pfzapvo2CIlNlUVuZ6VTYI2nF1qUrNZm33i6xm34aypmX1FubHR98Pp56b2uBpTmnlVAtlTGQCIiuzAVcJl7II8VCoxPAsNkrbhBe2CHRqwkQn1MpLLVVFkcZaivAdjKplZd8DU6lEycRkgS0iyQtlUyuEwmOktY2SyRZMBvXk2lGa02SNRU6hDWk0d1uZZznPafe24MvtLVc9n8d9wvu3On9Y-sOjpD_CC8ReXWJqkmzDqFm19hPim0btwLPTr-mOO7Z_AcHBAW8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF6CfWguadImxE1S9tBDHki2VtJKOpoQYwo1JcQ0OYl9CZQY2VgSefz6zEgr0xJoKeQqRou0s5r5RjPzDSHfwCVzTwbaASjhO4HwQkcaLZzAR-PHPeU3_RU_Znw6D77fhrdbpBuXilWVeVFiXFq2VYtNNn95DyY9r4YNgyDSRgxze8Xu71AjtfxSIGfqKBlCZA4RUZ-HgM97pD-f_Rzf4ZQ5-KTwoTDVzAIOcVMSMpvqxBn13apu4jIXF_rDWX2oi5V4fhSLxW8eaPKRlF0fT1t48uDWlXTVy1tax3d8uV2yYwErHbdCe2TLFJ_InjUJJT21vNVnn8kca0aclpTjmf4SONKiKimCzBqCenr1VK3bNgoKSJlORaEf13kFoB1WFzJXdFY3v8hKet2VNS2LfTKfXN1cTh07tcFRDNPKseJS60B7SFZmPCYjJkTmw6GQkWZJqKUyEctM5qlY-5GKsJUXW6qyLA6V4P4B6RXLwhwSKmMBkpFOPJMFgmXSxIZzCcdIKRNEowEZdepJlaU0x8kaixRDG9RoarcyTVKW4u4NyPnmllXL5_E34YuNzv8t_eW_pI_INmCvJjE1io5Jr1rX5gTwTSW_2gP7Cr7iAHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Quality+Wavelets+Features+Extraction+for+Handwritten+Arabic+Numerals+Recognition&rft.jtitle=International+journal+on+advanced+science%2C+engineering+and+information+technology&rft.au=Akhtar%2C+M.+Suhail&rft.au=A.+Qureshi%2C+Hammad&rft.au=Al-Quhayz%2C+Hani&rft.date=2019-04-07&rft.issn=2088-5334&rft.eissn=2088-5334&rft.volume=9&rft.issue=2&rft.spage=700&rft.epage=710&rft_id=info:doi/10.18517%2Fijaseit.9.2.6809&rft.externalDBID=n%2Fa&rft.externalDocID=10_18517_ijaseit_9_2_6809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-5334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-5334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-5334&client=summon