Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask
Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many peopl...
Saved in:
| Published in | Iraqi journal of science pp. 3196 - 3219 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
30.09.2021
|
| Online Access | Get full text |
| ISSN | 0067-2904 2312-1637 2312-1637 |
| DOI | 10.24996/ijs.2021.62.9.33 |
Cover
| Abstract | Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine learning. Machine learning technology can be used to predict the potential patients of heart disease by implementing the K-Nearest Neighbors (KNN). The algorithm results in 65.93% for its accuracy, which is then improved to 82.41% due to the z-score normalization. It shows that z-score can noticeably improve the accuracy of the KNN algorithm. The system is developed based on a website that uses the Flask micro-framework so that development is more efficient. Flask is a micro-framework based on the Python programming language that does not contain many tools and libraries, so it is more portable and does not utilize a lot of resources. |
|---|---|
| AbstractList | Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine learning. Machine learning technology can be used to predict the potential patients of heart disease by implementing the K-Nearest Neighbors (KNN). The algorithm results in 65.93% for its accuracy, which is then improved to 82.41% due to the z-score normalization. It shows that z-score can noticeably improve the accuracy of the KNN algorithm. The system is developed based on a website that uses the Flask micro-framework so that development is more efficient. Flask is a micro-framework based on the Python programming language that does not contain many tools and libraries, so it is more portable and does not utilize a lot of resources. |
| Author | Aziz, Nur Chudlori Anggoro, Dimas Aryo |
| Author_xml | – sequence: 1 givenname: Dimas Aryo surname: Anggoro fullname: Anggoro, Dimas Aryo – sequence: 2 givenname: Nur Chudlori surname: Aziz fullname: Aziz, Nur Chudlori |
| BookMark | eNqNkM1OAjEUhRuDiYg8gLu-wIzt7UyHLgmKEAmykHXTzrRQnB_S1hje3kFcuTCezU1O7ncW3y0atF1rELqnJIVMCP7gDiEFAjTlkIqUsSs0BEYhoZwVAzQkhBcJCJLdoHEIB9JnQkiWF0Mkl82xNo1po4qua3Fn8UuyNsqbEPHauN1edz7gab3rvIv7BtvO4403lSuja3d40b9G_OiCUcHgbTh3m1Pc91PzWoX3O3RtVR3M-OeO0Hb-9DZbJKvX5-VsukpKIIwlpqoAJmCsNiJXecUYcM0zTZRlFcs0qBxKwVmurWFCF2UOIs8qq2mPg2BshOCy-9Ee1elT1bU8etcof5KUyG9Lsrckz5YkBykkO0P0ApW-C8Eb-y-m-MWU7uIueuXqP8gv7LmAHQ |
| CitedBy_id | crossref_primary_10_33003_fjs_2024_0804_2624 crossref_primary_10_1016_j_procs_2024_11_124 crossref_primary_10_3389_fdgth_2023_1279644 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.24996/ijs.2021.62.9.33 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2312-1637 |
| EndPage | 3219 |
| ExternalDocumentID | 10.24996/ijs.2021.62.9.33 10_24996_ijs_2021_62_9_33 |
| GroupedDBID | .K5 AAYXX ABCQX ABDBF ACUHS AFWDF ALMA_UNASSIGNED_HOLDINGS CITATION L7B OK1 ~02 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2033-edd2282efbe95a5d3326b64b0af3d34b2a52c9635bfe39b7c52954dfb12032933 |
| IEDL.DBID | UNPAY |
| ISSN | 0067-2904 2312-1637 |
| IngestDate | Tue Aug 19 17:56:23 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Tue Jul 01 01:48:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2033-edd2282efbe95a5d3326b64b0af3d34b2a52c9635bfe39b7c52954dfb12032933 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ijs.uobaghdad.edu.iq/index.php/eijs/article/download/3397/1639 |
| PageCount | 24 |
| ParticipantIDs | unpaywall_primary_10_24996_ijs_2021_62_9_33 crossref_primary_10_24996_ijs_2021_62_9_33 crossref_citationtrail_10_24996_ijs_2021_62_9_33 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-30 |
| PublicationDateYYYYMMDD | 2021-09-30 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Iraqi journal of science |
| PublicationYear | 2021 |
| SSID | ssj0000800457 |
| Score | 2.1608431 |
| Snippet | Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 3196 |
| Title | Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask |
| URI | https://ijs.uobaghdad.edu.iq/index.php/eijs/article/download/3397/1639 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2312-1637 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800457 issn: 0067-2904 databaseCode: ABDBF dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5Be-DELiwIECAfOLCskrR2HOpjeUQVSFUPWwlOkR3b5VFStk2F4Nfv2AkVuwcQ4uyJnHjGnm8y428ADmJFW1q0eJDHthM4jB50Em4C9PVtZdsskdYXyPaT3jC-uOJXS5Au7sLczcI5WvLoRsvquvntn8gTBzq2iMjgeFSvaaQdnfxE6oihU40QWIhlaCYcMXkDmsP-oHvtj2E8CajwfQQRy9AA5Y6r9CZGHiLxM1L0dGFCQxEy9o-DWpkXj_L5SY7Hb7xO-g1Gr-9bFZvch_NShfnLf1SOX_-g77BaA1PSrYTWYMkU67BWb_0ZOaz5qX_-gMwzCj_Ul5YKMrHkMug7LtxZSfruVyva1Yx0x6PJ9La8eSCIi8lg6jJCrsaa9FC0JGdVZoj4mgUyeHYcBiRFLH-_AcP0_PdpL6j7NAQ5da3gjNYUIzdjlRFccs0QEqokVi1pmWZoDZLTHDc6V9YwoY5zn1zUVrVd-3bB2CY0iklhtoDgaIdLIYXCyLMTW1eF1baKWWqtyz1vQ-tVOVlek5i7XhrjDIMZr88MFzRz-swSmomMsW04WjzyWDF4vCf8a6Hxj6V3PiW9C41yOjd7CGJKtQ_N7snZSbpfW-pfpbDzTA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8QD55U_IgYNT148CPboF0nPRKVEE0IB0nwtLRriwoMhRGDf72v3STqQWM89y3d-l77fm_v9fcQOg4lqSleY14SmoZnMbrXiJj2wNfXpanTSBhXINuJ2r3wps_6JdRa3oV5mvlzsOTBgxL5dfPHl8ARB1q2iEDDeFCsaaAsnfxEqICCUw0AWPAVtBoxwORltNrrdJv37hiGk4Bw10cQsAzxQO4iT29C5MEjNyMBT-dHxOc-pV8c1No8fRaLVzEaffI6rQ00-HjfvNhk6M8z6Sdv36gc__9Bm2i9AKa4mQtVUEmnW6hSbP0ZPin4qU-3UewYhcfFpaUUTwy-9TqWC3eW4Y791Qp2NcPN0WAyfcwexhhwMe5ObUbI1ljjNohm-CrPDGFXs4C7C8thgFuA5Yc7qNe6vrtse0WfBi8hthWcVopA5KaN1JwJpihAQhmFsiYMVRSsQTCSwEZn0mjK5UXikovKyLpt384p3UXldJLqPYRhtMEEF1xC5NkIja3CqhtJDTHG5p6rqPahnDgpSMxtL41RDMGM02cMCxpbfcYRiXlMaRWdLR95zhk8fhI-X2r8d-n9P0kfoHI2netDADGZPCos9B0TdvHa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+K-Nearest+Neighbors+Algorithm+for+Predicting+Heart+Disease+Using+Python+Flask&rft.jtitle=Iraqi+journal+of+science&rft.au=Anggoro%2C+Dimas+Aryo&rft.au=Aziz%2C+Nur+Chudlori&rft.date=2021-09-30&rft.issn=0067-2904&rft.eissn=2312-1637&rft.spage=3196&rft.epage=3219&rft_id=info:doi/10.24996%2Fijs.2021.62.9.33&rft.externalDBID=n%2Fa&rft.externalDocID=10_24996_ijs_2021_62_9_33 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-2904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-2904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-2904&client=summon |