The Multi-Round Balanced Traveling Tournament Problem

Given an n-team sports league, the Traveling Tournament Problem (TTP) seeks to determine an optimal double round-robin schedule minimizing the sum total of distances traveled by the n teams as they move from city to city. In the TTP, the number of "rounds" is fixed at r = 2. In this paper,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Conference on Automated Planning and Scheduling Vol. 21; pp. 106 - 113
Main Authors Hoshino, Richard, Kawarabayashi, Ken-ichi
Format Journal Article
LanguageEnglish
Published 22.03.2011
Online AccessGet full text
ISSN2334-0835
2334-0843
2334-0843
DOI10.1609/icaps.v21i1.13443

Cover

Abstract Given an n-team sports league, the Traveling Tournament Problem (TTP) seeks to determine an optimal double round-robin schedule minimizing the sum total of distances traveled by the n teams as they move from city to city. In the TTP, the number of "rounds" is fixed at r = 2. In this paper, we propose the Multi-Round Balanced Traveling Tournament Problem (mb-TTP), inspired by the actual league structure of Japanese professional baseball, where n = 6 teams play 120 intra-league games over r = 8 rounds, subject to various constraints that ensure competitive balance. These additional balancing constraints enable us to reformulate the 2k-round mb-TTP as a shortest path problem on a directed graph, for all k >= 1. We apply our theoretical algorithm to the 6-team Nippon (Japanese) Professional Baseball Central League, creating a distance-optimal schedule with 57836 kilometres of total travel, a 26.8% reduction compared to the 79067 kilometres traveled by these six teams during the 2010 regular season.
AbstractList Given an n-team sports league, the Traveling Tournament Problem (TTP) seeks to determine an optimal double round-robin schedule minimizing the sum total of distances traveled by the n teams as they move from city to city. In the TTP, the number of "rounds" is fixed at r = 2. In this paper, we propose the Multi-Round Balanced Traveling Tournament Problem (mb-TTP), inspired by the actual league structure of Japanese professional baseball, where n = 6 teams play 120 intra-league games over r = 8 rounds, subject to various constraints that ensure competitive balance. These additional balancing constraints enable us to reformulate the 2k-round mb-TTP as a shortest path problem on a directed graph, for all k >= 1. We apply our theoretical algorithm to the 6-team Nippon (Japanese) Professional Baseball Central League, creating a distance-optimal schedule with 57836 kilometres of total travel, a 26.8% reduction compared to the 79067 kilometres traveled by these six teams during the 2010 regular season.
Author Hoshino, Richard
Kawarabayashi, Ken-ichi
Author_xml – sequence: 1
  givenname: Richard
  surname: Hoshino
  fullname: Hoshino, Richard
– sequence: 2
  givenname: Ken-ichi
  surname: Kawarabayashi
  fullname: Kawarabayashi, Ken-ichi
BookMark eNqNz81Kw0AUhuFBKlhrL8BdbiB1zvwkmaUW_6CiSFyHM5OJDkwmZZJUevdqKi5ciKtzNs8H7ymZhS5YQs6BriCj6sIZ3ParHQMHK-BC8CMyZ5yLlBaCz35-Lk_Isu-dpkLkMlOSz4ks32zyMPrBpc_dGOrkCj0GY-ukjLiz3oXXpOzGGLC1YUieYqe9bc_IcYO-t8vvuyAvN9fl-i7dPN7ery83qWGU8xRqXcs607xgOSiJhhZS57kwWaFBWpVRbUFbVEZKJjSgVdhkjQJmm4IbwReEHXbHsMX9O3pfbaNrMe4roNVXezW1V1N7NbV_IjggE7u-j7b5l8l_GeMGHFwXhojO_yE_AMaEc1k
CitedBy_id crossref_primary_10_1016_j_cie_2019_07_016
crossref_primary_10_1111_j_1475_3995_2011_00819_x
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1609/icaps.v21i1.13443
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2334-0843
EndPage 113
ExternalDocumentID 10.1609/icaps.v21i1.13443
10_1609_icaps_v21i1_13443
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c2033-1dbd5d6b3827195ac085b774c68b15e960be1bea9c5524b1ae9af6f912ef83c43
IEDL.DBID UNPAY
ISSN 2334-0835
2334-0843
IngestDate Sun Aug 24 08:56:48 EDT 2025
Tue Jul 01 03:02:14 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2033-1dbd5d6b3827195ac085b774c68b15e960be1bea9c5524b1ae9af6f912ef83c43
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ojs.aaai.org/index.php/ICAPS/article/download/13443/13292
PageCount 8
ParticipantIDs unpaywall_primary_10_1609_icaps_v21i1_13443
crossref_primary_10_1609_icaps_v21i1_13443
crossref_citationtrail_10_1609_icaps_v21i1_13443
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-22
PublicationDateYYYYMMDD 2011-03-22
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-22
  day: 22
PublicationDecade 2010
PublicationTitle Proceedings of the International Conference on Automated Planning and Scheduling
PublicationYear 2011
SSID ssib044756953
Score 1.5206264
Snippet Given an n-team sports league, the Traveling Tournament Problem (TTP) seeks to determine an optimal double round-robin schedule minimizing the sum total of...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 106
Title The Multi-Round Balanced Traveling Tournament Problem
URI https://ojs.aaai.org/index.php/ICAPS/article/download/13443/13292
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2334-0843
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044756953
  issn: 2334-0835
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aHvTiAxXro-zBk7KvJPs61tJShZaiLehpyWtBLdtiW0UP_nYn2W19HBTxtofJsjsTJl-Sme9D6CTDXharOIS9SUhtwP_cjnEkbeFJj0rNZmKOLrq9sDOklzfBoppQ98KM76cOY6y4xDeEgZolwr1oNvrXbulMV2oe-TGTrk8oJa7WSocsXA0DgOMVVB32-o1bIypHqGZfDj6eKSlvNkMvccELk6nzhP073zFv-rI2rc3zCXt5ZqPRpwWnvYn44lOLOpMHZz7jjnj9xuL4r3_ZQhslHLUahdk2WlH5Dgpg7limM9e-0qpL1rmufxRKWgMtVqQb2K2BGamPFq1-oUmzi4bt1qDZsUt5BVtgreDmSy4DGXICwYGgMAHoiwMaFGHM_UCBL7nyuWKJCAJMuc9UwrIwS3ysspgISvZQJR_nah9ZAOIiyJMegEtMWZJwhQmDPMsZjrIoYTXkLRybipJ7XEtgjFK9B4FYpCYWqYlFajxRQ6fLIZOCeOMn47NltH63PviT9SFaL86RiY3xEarMHufqGIDIjNfRavetVS8n3DuMuNwd
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgNBEG0kOejFBRV35uBJmaW3WY4xGKJgCJqAnobeBtSQBJMo-vVW90ziclDE2xyqh5mqpvp1d9V7CB0XJCpSk8awN4mZD_hf-ilJtK8iHTFt2Uzc0cVVJ2732eUtn1cT2l6Y0cMkEEKUl_iOMNCyRIQXzUb3JqycGWrLIz8SOsSUMRparXTIwvWYAxyvoXq_023cOVE5yiz7Mv94ZrS62YyjLAQvjCfBM8H3OHBv-rI2Lc-GY_H6IgaDTwtOaw3J-aeWdSaPwWwqA_X2jcXxX_-yjlYrOOo1SrMNtGSGm4jD3PFcZ65_bVWXvDNb_6iM9npWrMg2sHs9N9IeLXrdUpNmC_Vb571m26_kFXxFrIIb1lJzHUsKwYGgCAXoSwIaVHEqMTfgS2mwNCJTnBMmsTCZKOIiw8QUKVWMbqPacDQ0O8gDEJdAnowAXBImskwaQgXkWSlIUiSZ2EXR3LG5qrjHrQTGILd7EIhF7mKRu1jkzhO76GQxZFwSb_xkfLqI1u_We3-y3kcr5Tky9Qk5QLXp08wcAhCZyqNqqr0DaJXa7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Multi-Round+Balanced+Traveling+Tournament+Problem&rft.jtitle=Proceedings+of+the+International+Conference+on+Automated+Planning+and+Scheduling&rft.au=Hoshino%2C+Richard&rft.au=Kawarabayashi%2C+Ken-ichi&rft.date=2011-03-22&rft.issn=2334-0835&rft.eissn=2334-0843&rft.volume=21&rft.spage=106&rft.epage=113&rft_id=info:doi/10.1609%2Ficaps.v21i1.13443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_icaps_v21i1_13443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-0835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-0835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-0835&client=summon