Tumura-Clunie Theorem Concerning Differential Polynomials

In this article we prove Tumura-Clunie type theorems which improve some earlier results and as consequences of the main results we extend a theorem of Hayman.

Saved in:
Bibliographic Details
Published inComplex variables, theory & application Vol. 49; no. 6; pp. 391 - 403
Main Authors Lahiri, Indrajit, Banerjee †, Abhijit
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 15.05.2004
Subjects
Online AccessGet full text
ISSN0278-1077
1563-5066
DOI10.1080/02781070410001710362

Cover

Abstract In this article we prove Tumura-Clunie type theorems which improve some earlier results and as consequences of the main results we extend a theorem of Hayman.
AbstractList In this article we prove Tumura-Clunie type theorems which improve some earlier results and as consequences of the main results we extend a theorem of Hayman.
Author Banerjee †, Abhijit
Lahiri, Indrajit
Author_xml – sequence: 1
  givenname: Indrajit
  surname: Lahiri
  fullname: Lahiri, Indrajit
  email: indrajit@cal2.vsnl.net.in, ilahiri@hotmail.com
  organization: Department of Mathemetics , University of Kalyani
– sequence: 2
  givenname: Abhijit
  surname: Banerjee †
  fullname: Banerjee †, Abhijit
  organization: Department of Mathematics , Kalyani Government Engineering College
BookMark eNqNj81KxDAUhYOM4MzoG7joC1RvkiZp3YjUXxjQxbgu1_ZGI20iaYvO29tBVzKoq3MX5zuXb8FmPnhi7JjDCYccTkGYnIOBjAMANxykFntszpWWqQKtZ2y-raRTxxywRd-_Tj2pZD5nxXrsxohp2Y7eUbJ-oRCpS8rga4re-efk0llLkfzgsE0eQrvxoZvO_pDt2yno6DuX7PH6al3epqv7m7vyYpXWAqRINagsE9oooAYNmoK0oCIneJKNbGpta5EhkhLGkrIaeTEpNEorRM1zzuWSZV-7dQx9H8lWb9F1GDcVh2qrX-3Sn7CzH1jtBhxc8ENE1_4Tdt6G2OF7iG1TDbhpQ7QRfe36nWA1fAwTfP4nLH99_wmTZIYd
CitedBy_id crossref_primary_10_1080_10236190902962244
Cites_doi 10.1090/conm/025/730049
10.2140/pjm.1982.98.55
10.1112/jlms/s1-37.1.17
10.1080/17476939408814734
10.1155/S0161171201011036
10.1080/17476938208814467
10.1112/blms/18.4.371
10.1007/BF01182271
10.2307/1969890
10.1112/jlms/s2-23.1.113
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2004
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2004
DBID AAYXX
CITATION
DOI 10.1080/02781070410001710362
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5066
EndPage 403
ExternalDocumentID 10_1080_02781070410001710362
10054692
GroupedDBID -~X
.7F
.QJ
0BK
29F
4.4
5GY
AALDU
AAMIU
AAPUL
AAQRR
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACAGQ
ACGEJ
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
H13
IPNFZ
KYCEM
M4Z
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWZ
UPT
UT5
UU3
ZGOLN
~S~
AAGDL
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
ID FETCH-LOGICAL-c2032-6054426750eda7a79e62e98e0b3d3dc6fc24aae527fe5f6a19001d565aa618113
ISSN 0278-1077
IngestDate Thu Apr 24 22:58:36 EDT 2025
Tue Jul 01 03:50:34 EDT 2025
Mon May 13 12:10:06 EDT 2019
Wed Dec 25 09:03:24 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2032-6054426750eda7a79e62e98e0b3d3dc6fc24aae527fe5f6a19001d565aa618113
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_02781070410001710362
crossref_primary_10_1080_02781070410001710362
informaworld_taylorfrancis_310_1080_02781070410001710362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 5/15/2004
2004-05-15
PublicationDateYYYYMMDD 2004-05-15
PublicationDate_xml – month: 05
  year: 2004
  text: 5/15/2004
  day: 15
PublicationDecade 2000
PublicationTitle Complex variables, theory & application
PublicationYear 2004
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Bhattacharjee NR (bib1) 1996; 39
Zhang Z (bib14) 1996; 20
bib13
Toda N (bib10) 1983; 25
Tumura Y (bib11) 1937; 19
bib8
Doeringer W (bib3) 1982; 98
Mues E (bib9) 1981; 23
bib4
Hua XH (bib6) 1991; 16
Lahiri I (bib7) 2001; 28
Weissenborn G (bib12) 1986; 20
bib2
Hayman WK (bib5) 1964
References_xml – volume-title: Meromorphic Functions, The Clarendon Press
  year: 1964
  ident: bib5
– volume: 20
  start-page: 9
  issue: 4
  year: 1996
  ident: bib14
  publication-title: Southeast Asian Bull. Math.
– volume: 25
  start-page: 215
  year: 1983
  ident: bib10
  publication-title: Contemp. Math.
  doi: 10.1090/conm/025/730049
– volume: 98
  start-page: 55
  issue: 1
  year: 1982
  ident: bib3
  publication-title: Pacific J. Math
  doi: 10.2140/pjm.1982.98.55
– volume: 19
  start-page: 29
  year: 1937
  ident: bib11
  publication-title: Proc. Phys-Math. Soc. Japan
– ident: bib2
  doi: 10.1112/jlms/s1-37.1.17
– ident: bib13
  doi: 10.1080/17476939408814734
– volume: 28
  start-page: 83
  issue: 2
  year: 2001
  ident: bib7
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/S0161171201011036
– volume: 16
  start-page: 69
  issue: 1
  year: 1991
  ident: bib6
  publication-title: Complex Variables
  doi: 10.1080/17476938208814467
– volume: 20
  start-page: 371
  year: 1986
  ident: bib12
  publication-title: Bull. London Math. Soc.
  doi: 10.1112/blms/18.4.371
– volume: 39
  start-page: 85
  issue: 1
  year: 1996
  ident: bib1
  publication-title: Bull. Math. Soc. Sci. Math. Roumanie
– ident: bib8
  doi: 10.1007/BF01182271
– ident: bib4
  doi: 10.2307/1969890
– volume: 23
  start-page: 113
  issue: 1
  year: 1981
  ident: bib9
  publication-title: J. London Math. Soc
  doi: 10.1112/jlms/s2-23.1.113
SSID ssj0003538
Score 1.3324336
Snippet In this article we prove Tumura-Clunie type theorems which improve some earlier results and as consequences of the main results we extend a theorem of Hayman.
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms AMS SUbject Classification: 30D35
Differential polynomial
Tumura-Clunie theorem
Title Tumura-Clunie Theorem Concerning Differential Polynomials
URI https://www.tandfonline.com/doi/abs/10.1080/02781070410001710362
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELVge4FDRQuIbQHl0BsKcmI7TsRpaUFbpCIOrai4rGxnom6VptU2i1pO_AN_2C_pOHayKawWyiWKothOMpPx83jeDCE7Aqj1VUCYpakOuVXjNDcqlFEu04gVSiSWnHzwORkf8U_H4ngRVtSwS2r91vxYyiv5H6niNZSrZcneQ7Jdp3gBz1G-eEQJ4_HfZDw_m89UG6_Adst5NQVHt4czS-Yz4Pwee74MSm3941_Oy2tLRlblZR-aWstQwtWb77h6tnyqRsANz9EF1fS2ursoHnUydUz1_SqfqdNpF0PzXlUwOwUEsO7hRrQxQvpk2t7Uehq43SR3XEtvkGK74qS-7Ap4g5mwUFBXOaW1qC4JqdecvnlkrjKXn2l5k93gTyPuox5xNByM8sgl9bFT7WLSajfqf5vLugjDqE19uqSXh2Qtloi0BmRtNN779rWbuZloKp9379lSLW0u9iX93IEydxLd9iDK4ROy7tcWwcgpygZ5ANUmeXzQJea9fEreOZW5-fnLKUvglSVYKEvQV5agpyzPyNHHD4e749DXzwhNTFkc4kqVIwBDTAi5kkpmkMSQpUA1y1luksLEXCkQsSxAFIlCbEijHBG-UgkCv4g9J4PqvIIXJMgSAKW50bqQHESWSaq5MkLmOjaFiYaEtZ9iYnxyeVvjpJysEsSQhF2rC5dc5S_3s_5XntSNU6twFWiWtpjUV_WQpCtasVUDbt3zAbfJo8WP85IM6tkcXiForfVrr2u3kwGIvQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumura%E2%80%93Clunie+Theorem+Concerning+Differential+Polynomials&rft.jtitle=Complex+variables%2C+theory+%26+application&rft.au=Lahiri%2C+Indrajit&rft.au=Banerjee+%E2%80%A0%2C+Abhijit&rft.date=2004-05-15&rft.issn=0278-1077&rft.eissn=1563-5066&rft.volume=49&rft.issue=6&rft.spage=391&rft.epage=403&rft_id=info:doi/10.1080%2F02781070410001710362&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02781070410001710362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-1077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-1077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-1077&client=summon