Evolution of COVID-19 Vaccination-related Topics on Twitter Analysis based on Hypothesis Building through Reading of Tweets

The development of the COVID-19 vaccine and vaccination campaign was a significant concern for the people. In Japan, mass vaccination was initiated later than in other countries such as the United States, China, and Europe; however, vaccination coverage increased rapidly in this country, and in Octo...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japanese Society for Artificial Intelligence Vol. 39; no. 5; pp. C-N93_1 - 10
Main Authors Kobayashi, Ryota, Yoshinaga, Naoki, Suda, Towa, Kitsuregawa, Masaru, Uno, Takeaki, Hashimoto, Takako, Nakayama, Yuri, Toyoda, Masashi, Takedomi, Yuka
Format Journal Article
LanguageEnglish
Japanese
Published Tokyo The Japanese Society for Artificial Intelligence 01.09.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1346-0714
1346-8030
DOI10.1527/tjsai.39-5_C-N93

Cover

Abstract The development of the COVID-19 vaccine and vaccination campaign was a significant concern for the people. In Japan, mass vaccination was initiated later than in other countries such as the United States, China, and Europe; however, vaccination coverage increased rapidly in this country, and in October 2021, Japan ranked 14th out of 229 countries in terms of COVID-19 vaccination rates. How did public opinion and concerns evolve in the face of the uncertain COVID-19 vaccination period? To address this question, we collected over 100 million Japanese vaccine-related tweets from January 1 to October 31, 2021. Using the Latent Dirichlet Allocation (LDA) model, we identified 15 main topics from a subset of tweets. We manually grouped these topics into four themes based on typical tweet content: (1) personal issues, (2) breaking news, (3) politics, and (4) conspiracy and humor. Then, we constructed hypotheses about topic evolution by interpreting the narrative underlying the tweets. We carefully read approximately 15,000 representative tweets and the percentage of a word in each topic to interpret the narrative. Finally, we verified the hypotheses by visualizing the change in the percentage of a word during the vaccination period. There are three main findings in this paper. First, the percentage of tweets containing “fear” and “anxiety” was highest in January 2021 and then decreased. This finding suggests that Twitter users felt fear and anxiety in January, when the vaccination schedule was unclear and that their negative feelings subsided once vaccination began. Second, the Twitter discourse reflected changes in the target population for vaccination, transitioning from discussions about health care workers in February to older individuals in April, and later to general Twitter users after July. Third, as the vaccination process progressed, users increasingly shared their real-time experiences through the tweets.
AbstractList The development of the COVID-19 vaccine and vaccination campaign was a significant concern for the people. In Japan, mass vaccination was initiated later than in other countries such as the United States, China, and Europe; however, vaccination coverage increased rapidly in this country, and in October 2021, Japan ranked 14th out of 229 countries in terms of COVID-19 vaccination rates. How did public opinion and concerns evolve in the face of the uncertain COVID-19 vaccination period? To address this question, we collected over 100 million Japanese vaccine-related tweets from January 1 to October 31, 2021. Using the Latent Dirichlet Allocation (LDA) model, we identified 15 main topics from a subset of tweets. We manually grouped these topics into four themes based on typical tweet content: (1) personal issues, (2) breaking news, (3) politics, and (4) conspiracy and humor. Then, we constructed hypotheses about topic evolution by interpreting the narrative underlying the tweets. We carefully read approximately 15,000 representative tweets and the percentage of a word in each topic to interpret the narrative. Finally, we verified the hypotheses by visualizing the change in the percentage of a word during the vaccination period. There are three main findings in this paper. First, the percentage of tweets containing “fear” and “anxiety” was highest in January 2021 and then decreased. This finding suggests that Twitter users felt fear and anxiety in January, when the vaccination schedule was unclear and that their negative feelings subsided once vaccination began. Second, the Twitter discourse reflected changes in the target population for vaccination, transitioning from discussions about health care workers in February to older individuals in April, and later to general Twitter users after July. Third, as the vaccination process progressed, users increasingly shared their real-time experiences through the tweets.
ArticleNumber 39-5_C-N93
Author Suda, Towa
Yoshinaga, Naoki
Kobayashi, Ryota
Kitsuregawa, Masaru
Takedomi, Yuka
Nakayama, Yuri
Uno, Takeaki
Toyoda, Masashi
Hashimoto, Takako
Author_xml – sequence: 1
  fullname: Kobayashi, Ryota
  organization: The University of Tokyo
– sequence: 1
  fullname: Yoshinaga, Naoki
  organization: The University of Tokyo
– sequence: 1
  fullname: Suda, Towa
  organization: National Institute of Informatics
– sequence: 1
  fullname: Kitsuregawa, Masaru
  organization: The University of Tokyo
– sequence: 1
  fullname: Uno, Takeaki
  organization: National Institute of Informatics
– sequence: 1
  fullname: Hashimoto, Takako
  organization: Chiba University of Commerce
– sequence: 1
  fullname: Nakayama, Yuri
  organization: The University of Tokyo
– sequence: 1
  fullname: Toyoda, Masashi
  organization: The University of Tokyo
– sequence: 1
  fullname: Takedomi, Yuka
  organization: National Institute of Informatics
BookMark eNpNkEFPAjEQRhuDiYjcPW7iuThtd9ndeDIrKAmRC3JtZktXS9YttkXjv7cIQS8zk8n3ZpJ3SXqd7TQh1wxGLOP5bdh4NCNR0kxW9LkUZ6TPRDqmBQjoHWfIWXpBht6bGoBxkTLI-uRu8mnbXTC2S2yTVIvV7IGyMlmhUqbD_Z463WLQ62Rpt0b5JCaXXyYE7a7IeYOt18NjH5CX6WRZPdH54nFW3c-p4sADRWRYQ6GatC4KXpawRrFWyHTKdZrmok4VR8WQAWSIUOaoirwZ8ybTgLlSYkBuDne3zn7stA9yY3euiy-lYLzI4heRxxQcUspZ751u5NaZd3TfkoHcW5K_lqQoZbQko6WITA_Ixgd81ScAXTCq1f-BWP7AU0C9oZO6Ez-VfnZv
Cites_doi 10.1145/1772690.1772777
10.1145/2684822.2685324
10.1093/ofid/ofaa258
10.1609/icwsm.v10i1.14717
10.2196/24435
10.1609/icwsm.v5i1.14149
10.2196/32335
10.1017/CBO9780511586576
10.1109/BigData52589.2021.9671982
10.1126/science.1167742
10.1609/icwsm.v15i1.18063
10.2196/41928
10.1038/s41598-022-07067-w
10.1145/2502081.2502117
10.1016/S2589-7500(20)30315-0
ContentType Journal Article
Copyright The Japanese Society for Artificial Intelligence 2024
Copyright Japan Science and Technology Agency 2024
Copyright_xml – notice: The Japanese Society for Artificial Intelligence 2024
– notice: Copyright Japan Science and Technology Agency 2024
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1527/tjsai.39-5_C-N93
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1346-8030
EndPage 10
ExternalDocumentID 10_1527_tjsai_39_5_C_N93
article_tjsai_39_5_39_39_5_C_N93_article_char_en
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
JSF
KQ8
OK1
PQQKQ
RJT
XSB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c202t-aa1ab08cf4b882990da3dca1e42e4473b4c2ac1a1005aa097ac87f62f5e0a7cc3
ISSN 1346-0714
IngestDate Mon Jun 30 14:35:12 EDT 2025
Tue Jul 01 03:45:36 EDT 2025
Wed Sep 03 06:30:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c202t-aa1ab08cf4b882990da3dca1e42e4473b4c2ac1a1005aa097ac87f62f5e0a7cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/tjsai/39/5/39_39-5_C-N93/_article/-char/en
PQID 3128520237
PQPubID 2029095
ParticipantIDs proquest_journals_3128520237
crossref_primary_10_1527_tjsai_39_5_C_N93
jstage_primary_article_tjsai_39_5_39_39_5_C_N93_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 20240901
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Transactions of the Japanese Society for Artificial Intelligence
PublicationYear 2024
Publisher The Japanese Society for Artificial Intelligence
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society for Artificial Intelligence
– name: Japan Science and Technology Agency
References [Kudo 06] Kudo, T.: MeCab: Yet another part-of-speech and morphological analyzer, http://mecab.sourceforge.jp (2006)
[Medford 20] Medford, R. J., Saleh, S. N., Sumarsono, A., Perl, T. M., and Lehmann, C. U.: An ”infodemic”: leveraging high-volume Twitter data to understand early public sentiment for the coronavirus disease 2019 outbreak, Open Forum Infectious Diseases, Vol. 7, No. 7, ofaa258 (2020)
[鳥海20] 鳥海不二夫, 榊剛史, 吉田光男:ソーシャルメディアを用いた新型コロナ禍における感情変化の分析, 人工知能学会論文誌, Vol. 35, No. 4, pp. F–K45 1–7 (2020)
[Kobayashi 22] Kobayashi, R., Takedomi, Y., Nakayama, Y., Suda, T., Uno, T., Hashimoto, T., Toyoda, M., Yoshinaga, N., Kitsuregawa, M., and Rocha, L. E. C.: Evolution of public opinion on COVID-19 vaccination in Japan: Large-scale Twitter data analysis, Journal of Medical Internet Research, Vol. 24, No. 12, e41928 (2022)
[Lyu 21] Lyu, J. C., Han, E. L., and Luli, G. K.: COVID-19 vaccine–related discussion on Twitter: Topic modeling and sentiment analysis, Journal of Medical Internet Research, Vol. 23, No. 6, e24435 (2021)
[Althoff 13] Althoff, T., Borth, D., Hees, J., and Dengel, A.: Analysis and forecasting of trending topics in online media streams, in Proceedings of the 21st ACM International Conference on Multimedia, pp. 907–916 (2013)
[Sakaki 10] Sakaki, T., Okazaki, M., and Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors, in Proceedings of the 19th International Conference on World Wide Web, pp. 851–860 (2010)
[Hashimoto 21] Hashimoto, T., Uno, T., Takedomi, Y., Shepard, D., Toyoda, M., Yoshinaga, N., Kitsuregawa, M., and Kobayashi, R.: Two-stage clustering method for discovering people’s perceptions: A case study of the COVID-19 vaccine from Twitter, in 2021 IEEE International Conference on Big Data (Big Data), pp. 614–621 (2021)
[Petrovic 11] Petrovic, S., Osborne, M., and Lavrenko, V.: Rt to win! predicting message propagation in Twitter, in Proceedings of the International AAAI Conference on Web and Social Media, Vol. 5, pp. 586–589 (2011)
[成山09] 成山重子:日本語の省略がわかる本誰が?誰に?何を?,明治書院(2009)
[Crosby 03] Crosby, A. W.: America’s Forgotten Pandemic: The Influenza of 1918, Cambridge University Press, 2 edition (2003)
[Kobayashi 16] Kobayashi, R. and Lambiotte, R.: Tideh: Timedependent Hawkes process for predicting retweet dynamics, in Proceedings of the International AAAI Conference on Web and Social Media, Vol. 10, pp. 191–200 (2016)
[Niu 22] Niu, Q., Liu, J., Kato, M., Shinohara, Y., Matsumura, N., Aoyama, T., and Nagai-Tanima, M.: Public opinion and sentiment before and at the beginning of COVID-19 vaccinations in Japan: Twitter analysis, JMIR Infodemiology, Vol. 2, No. 1, e32335 (2022)
[NHK 21] NHK, : コロナワクチン国内初の副反応の疑い富山県でじんましん発生, https://www3.nhk.or.jp/news/html/20210220/k10012878071000.html (2021), [accessed 2023-08-14]
[OurWorld 21] Our World in Data., https://ourworldindata.org (2021), [accessed 2024-01-15]
[大曽01] 大曽美恵子:感情を表す動詞・形容詞に関する一考察, 言語文化論集, Vol. 22, No. 2, pp. 21–30 (2001)
[Tsao 21] Tsao, S.-F., Chen, H., Tisseverasinghe, T., Yang, Y., Li, L., and Butt, Z. A.: What social media told us in the time of COVID-19: a scoping review, The Lancet Digital Health, Vol. 3, No. 3, e175–e194 (2021)
[Blei 03] Blei, D. M., Ng, A. Y., and Jordan, M. I.: Latent Dirichlet allocation, Journal of Machine Learning Research, Vol. 3, pp. 993–1022 (2003)
[Kobayashi 21] Kobayashi, R., Gildersleve, P., Uno, T., and Lambiotte, R.: Modeling collective anticipation and response on Wikipedia, in Proceedings of the International AAAI Conference on Web and Social Media, Vol. 15, pp. 315–326 (2021)
[R¨oder 15] R¨oder, M., Both, A., and Hinneburg, A.: Exploring the space of topic coherence measures, in Proceedings of the 8th ACM International Conference on Web Search and Data Mining, pp. 399–408 (2015)
[Lazer 09] Lazer, D., Pentland, A., Adamic, L., Aral, S., Barab´asi, A.- L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Computational social science, Science, Vol. 323,No. 5915, pp. 721–723 (2009)
[Wu 22] Wu, Q., Sano, Y., Takayasu, H., and Takayasu, M.: Classification of endogenous and exogenous bursts in collective emotions based on Weibo comments during COVID-19, Scientific Reports, Vol. 12, No. 1, 3120 (2022)
11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: [Kobayashi 21] Kobayashi, R., Gildersleve, P., Uno, T., and Lambiotte, R.: Modeling collective anticipation and response on Wikipedia, in Proceedings of the International AAAI Conference on Web and Social Media, Vol. 15, pp. 315–326 (2021)
– reference: [Lazer 09] Lazer, D., Pentland, A., Adamic, L., Aral, S., Barab´asi, A.- L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Computational social science, Science, Vol. 323,No. 5915, pp. 721–723 (2009)
– reference: [Petrovic 11] Petrovic, S., Osborne, M., and Lavrenko, V.: Rt to win! predicting message propagation in Twitter, in Proceedings of the International AAAI Conference on Web and Social Media, Vol. 5, pp. 586–589 (2011)
– reference: [Wu 22] Wu, Q., Sano, Y., Takayasu, H., and Takayasu, M.: Classification of endogenous and exogenous bursts in collective emotions based on Weibo comments during COVID-19, Scientific Reports, Vol. 12, No. 1, 3120 (2022)
– reference: [Althoff 13] Althoff, T., Borth, D., Hees, J., and Dengel, A.: Analysis and forecasting of trending topics in online media streams, in Proceedings of the 21st ACM International Conference on Multimedia, pp. 907–916 (2013)
– reference: [Hashimoto 21] Hashimoto, T., Uno, T., Takedomi, Y., Shepard, D., Toyoda, M., Yoshinaga, N., Kitsuregawa, M., and Kobayashi, R.: Two-stage clustering method for discovering people’s perceptions: A case study of the COVID-19 vaccine from Twitter, in 2021 IEEE International Conference on Big Data (Big Data), pp. 614–621 (2021)
– reference: [Kudo 06] Kudo, T.: MeCab: Yet another part-of-speech and morphological analyzer, http://mecab.sourceforge.jp (2006)
– reference: [成山09] 成山重子:日本語の省略がわかる本誰が?誰に?何を?,明治書院(2009)
– reference: [Medford 20] Medford, R. J., Saleh, S. N., Sumarsono, A., Perl, T. M., and Lehmann, C. U.: An ”infodemic”: leveraging high-volume Twitter data to understand early public sentiment for the coronavirus disease 2019 outbreak, Open Forum Infectious Diseases, Vol. 7, No. 7, ofaa258 (2020)
– reference: [大曽01] 大曽美恵子:感情を表す動詞・形容詞に関する一考察, 言語文化論集, Vol. 22, No. 2, pp. 21–30 (2001)
– reference: [OurWorld 21] Our World in Data., https://ourworldindata.org (2021), [accessed 2024-01-15]
– reference: [Tsao 21] Tsao, S.-F., Chen, H., Tisseverasinghe, T., Yang, Y., Li, L., and Butt, Z. A.: What social media told us in the time of COVID-19: a scoping review, The Lancet Digital Health, Vol. 3, No. 3, e175–e194 (2021)
– reference: [Kobayashi 16] Kobayashi, R. and Lambiotte, R.: Tideh: Timedependent Hawkes process for predicting retweet dynamics, in Proceedings of the International AAAI Conference on Web and Social Media, Vol. 10, pp. 191–200 (2016)
– reference: [鳥海20] 鳥海不二夫, 榊剛史, 吉田光男:ソーシャルメディアを用いた新型コロナ禍における感情変化の分析, 人工知能学会論文誌, Vol. 35, No. 4, pp. F–K45 1–7 (2020)
– reference: [Kobayashi 22] Kobayashi, R., Takedomi, Y., Nakayama, Y., Suda, T., Uno, T., Hashimoto, T., Toyoda, M., Yoshinaga, N., Kitsuregawa, M., and Rocha, L. E. C.: Evolution of public opinion on COVID-19 vaccination in Japan: Large-scale Twitter data analysis, Journal of Medical Internet Research, Vol. 24, No. 12, e41928 (2022)
– reference: [R¨oder 15] R¨oder, M., Both, A., and Hinneburg, A.: Exploring the space of topic coherence measures, in Proceedings of the 8th ACM International Conference on Web Search and Data Mining, pp. 399–408 (2015)
– reference: [Crosby 03] Crosby, A. W.: America’s Forgotten Pandemic: The Influenza of 1918, Cambridge University Press, 2 edition (2003)
– reference: [Blei 03] Blei, D. M., Ng, A. Y., and Jordan, M. I.: Latent Dirichlet allocation, Journal of Machine Learning Research, Vol. 3, pp. 993–1022 (2003)
– reference: [Niu 22] Niu, Q., Liu, J., Kato, M., Shinohara, Y., Matsumura, N., Aoyama, T., and Nagai-Tanima, M.: Public opinion and sentiment before and at the beginning of COVID-19 vaccinations in Japan: Twitter analysis, JMIR Infodemiology, Vol. 2, No. 1, e32335 (2022)
– reference: [Sakaki 10] Sakaki, T., Okazaki, M., and Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors, in Proceedings of the 19th International Conference on World Wide Web, pp. 851–860 (2010)
– reference: [Lyu 21] Lyu, J. C., Han, E. L., and Luli, G. K.: COVID-19 vaccine–related discussion on Twitter: Topic modeling and sentiment analysis, Journal of Medical Internet Research, Vol. 23, No. 6, e24435 (2021)
– reference: [NHK 21] NHK, : コロナワクチン国内初の副反応の疑い富山県でじんましん発生, https://www3.nhk.or.jp/news/html/20210220/k10012878071000.html (2021), [accessed 2023-08-14]
– ident: 2
– ident: 19
  doi: 10.1145/1772690.1772777
– ident: 18
  doi: 10.1145/2684822.2685324
– ident: 11
  doi: 10.1093/ofid/ofaa258
– ident: 5
  doi: 10.1609/icwsm.v10i1.14717
– ident: 10
  doi: 10.2196/24435
– ident: 12
– ident: 17
  doi: 10.1609/icwsm.v5i1.14149
– ident: 14
  doi: 10.2196/32335
– ident: 3
  doi: 10.1017/CBO9780511586576
– ident: 13
– ident: 16
– ident: 15
– ident: 4
  doi: 10.1109/BigData52589.2021.9671982
– ident: 9
  doi: 10.1126/science.1167742
– ident: 6
  doi: 10.1609/icwsm.v15i1.18063
– ident: 7
  doi: 10.2196/41928
– ident: 22
  doi: 10.1038/s41598-022-07067-w
– ident: 1
  doi: 10.1145/2502081.2502117
– ident: 8
– ident: 20
– ident: 21
  doi: 10.1016/S2589-7500(20)30315-0
SSID ssib001234105
ssib008501343
ssib047348305
ssib000961560
ssj0057238
ssib006575950
Score 2.3028755
Snippet The development of the COVID-19 vaccine and vaccination campaign was a significant concern for the people. In Japan, mass vaccination was initiated later than...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage C-N93_1
SubjectTerms Anxiety
COVID-19
COVID-19 vaccines
Fear
Hypotheses
Immunization
narrative
Narratives
Real time
social media analysis
Social networks
Twitter
vaccine
Vaccines
Subtitle Analysis based on Hypothesis Building through Reading of Tweets
Title Evolution of COVID-19 Vaccination-related Topics on Twitter
URI https://www.jstage.jst.go.jp/article/tjsai/39/5/39_39-5_C-N93/_article/-char/en
https://www.proquest.com/docview/3128520237
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japanese Society for Artificial Intelligence, 2024/09/01, Vol.39(5), pp.C-N93_1-10
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1346-8030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057238
  issn: 1346-0714
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0AqFAxfeiEBBe0BIKHLJrtf7EAcUlVSllFRIm6qcrFnHQUnUJCQbKvgH_pnxYx-BCAEXK_JOLO_MeDyz8yLkuUpCFiSQ0xgvAIr6f0AhVoqmMvYDFfBRnuh85w-D6HgYnlzwi1brRyNqaVPkB_L7zryS_6EqziFddZbsP1C2WhQn8DfSF0ekMI5_ReP-V7e8Cao4O3_3lvpp5xyknNiPfNSkqigdLbPU5ZgRMruaFGVI7rRxX9kEh3UZM3CCl6huTrkV1tlbmcgiW5-jLuVZW_8zNVpcmviAT5tZJfAHMINvcAl2fjWpHVEjM5ctrirYoWkF3tFLoW7b_CaBRC6Drtx9obdYCSftAKj9BJ2eySltiFwWRiaNyt5I9VzSdR4bJ6dt0SPHj3yn-OeBdkAX0zVMDlhKuTikA9uAcbvS9uBMHA1PT0XWv8heLL9Q3YRMO-tdR5Zr5HoQR5FuiPH-Y0NbTSO_aU1qn1XacAonHPXpurpZqAsHGXFqFQOu-7sZ-9-9sPOa46Zf_brlLS3pxhQNhc-_awtGBcrukFvOdvF6lhHvkpaa3yO3y74gnqPEffK64ktvMfZKvvR28KVn-dJDSMeXD8jwqJ8dHlPXpINKpHxBAXzIu4kchzkaa6jbjICNJPgqDFSIKMhDGYD0wUcEAHTTGGQSj6NgzFUXYinZQ7I3X8zVI-L5jHclA5kzRF6URAnP8yhmDMUIyHCs2uRliRSxtLVYhLZhEYHCIFCwVCACBSKwTd5YrFWQ7pQ2IXGo_1EB6HRHlC5tsl-iW7gzvxYM1TmO783ix39-_ITcrA_GPtkrVhv1FNXXIn9mmOonOr6ZeQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+COVID-19+Vaccination-related+Topics+on+Twitter&rft.jtitle=Transactions+of+the+Japanese+Society+for+Artificial+Intelligence&rft.au=Takedomi%2C+Yuka&rft.au=Nakayama%2C+Yuri&rft.au=Suda%2C+Towa&rft.au=Uno%2C+Takeaki&rft.date=2024-09-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=39&rft.issue=5&rft_id=info:doi/10.1527%2Ftjsai.39-5_C-N93&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon