Development of Fractional Genetic PSO Algorithm for Multi Objective Data Clustering
Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within different groups. The performance of the traditional K-Means and Bisecting K-Means algorithm degrades as the dimensionality of the data increases. In...
        Saved in:
      
    
          | Published in | International journal of applied evolutionary computation Vol. 7; no. 3; pp. 1 - 16 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hershey
          IGI Global
    
        01.07.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1942-3594 1942-3608  | 
| DOI | 10.4018/IJAEC.2016070101 | 
Cover
| Abstract | Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within different groups. The performance of the traditional K-Means and Bisecting K-Means algorithm degrades as the dimensionality of the data increases. In order to find better clustering results, it is important to enhance the traditional algorithms by incorporating various constraints. Hence it is planned to develop a Multi-Objective Optimization (MOO) technique by including different objectives, like MSE, Stability measure, DB index, XB-index and sym-index. These five objectives will be used as fitness function for the proposed Fractional Genetic PSO algorithm (FGPSO) which is the hybrid optimization algorithm to do the clustering process. The performance of the proposed multi objective FGPSO algorithm will be evaluated based on clustering accuracy. Finally, the applicability of the proposed algorithm will be checked for some benchmark data sets available in the UCI machine learning repository. | 
    
|---|---|
| AbstractList | Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within different groups. The performance of the traditional K-Means and Bisecting K-Means algorithm degrades as the dimensionality of the data increases. In order to find better clustering results, it is important to enhance the traditional algorithms by incorporating various constraints. Hence it is planned to develop a Multi-Objective Optimization (MOO) technique by including different objectives, like MSE, Stability measure, DB index, XB-index and sym-index. These five objectives will be used as fitness function for the proposed Fractional Genetic PSO algorithm (FGPSO) which is the hybrid optimization algorithm to do the clustering process. The performance of the proposed multi objective FGPSO algorithm will be evaluated based on clustering accuracy. Finally, the applicability of the proposed algorithm will be checked for some benchmark data sets available in the UCI machine learning repository. | 
    
| Audience | Academic | 
    
| Author | K, Aparna Nair, Mydhili K  | 
    
| AuthorAffiliation | Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India B. M. S. Institute of Technology, Bangalore, India  | 
    
| AuthorAffiliation_xml | – name: Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India – name: B. M. S. Institute of Technology, Bangalore, India  | 
    
| Author_xml | – sequence: 1 givenname: Mydhili surname: Nair middlename: K fullname: Nair, Mydhili K organization: Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India – sequence: 2 givenname: Aparna surname: K fullname: K, Aparna organization: B. M. S. Institute of Technology, Bangalore, India  | 
    
| BookMark | eNp1kE1PAyEQhonRxM-7RxIvHqzCwhb22NTWj2hqop4JhdmVZrtUYE3896LVNDHKYWCSZ14mzz7a7nwHCB1Tcs4JlRc3t6PJ-LwgdEgEoYRuoT1a8WLAhkRu_7zLiu-ioxgXJJ-SCy7oHnq8hDdo_WoJXcK-xtOgTXK-0y2-gg6SM_jhcYZHbeODSy9LXPuA7_s2OTybLyCzb4AvddJ43PYxQXBdc4h2at1GOPq-D9DzdPI0vh7cza5uxqO7gSlIwQaWMVFZbitd0lJUTAhDpTGWE5BlPReWQj3MHROltWZuqGCZJoKVwDmzhB2gk3XuKvjXHmJSC9-HvHpURcWolJwNWabO1lSjW1DzProOYi7RNS8pNrqPUY1Emf-XspIZJ2vcBB9jgFqtglvq8K4oUZ-y1ZdstZGdR6brEde4zQrfUpWv1UaqylL_yxE56PSPoN-cWtmafQDSxZZB | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2016 IGI Global Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2016 IGI Global – notice: Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.  | 
    
| DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS  | 
    
| DOI | 10.4018/IJAEC.2016070101 | 
    
| DatabaseName | CrossRef Gale Business: Insights Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1942-3608 | 
    
| EndPage | 16 | 
    
| ExternalDocumentID | A759378898 10_4018_IJAEC_2016070101 lopment_of_Fractional_Gen10_4018_IJAEC_20160701017  | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GroupedDBID | 0R ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS COVLG EBS EJD H13 HZ JRD MV1 NEEBM O9- RIF 0R~ 4.4 AAYVP AAYXX ACOJC AFKRA ARAPS ARCSS BAAKF BENPR BGLVJ BYHXH CBWLS CCPQU CDTDJ CIGCI CITATION CKMBR CNQXE CTSEY HCIFZ HZ~ IAO ICD ITC K7- N95 PHGZM PHGZT PQGLB PUEGO 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS  | 
    
| ID | FETCH-LOGICAL-c2023-d3379d4d9a51579377c18ccd40e85fb7d1ef6d40375ddcbc173d4d0735e443d03 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1942-3594 | 
    
| IngestDate | Sun Jul 13 04:39:59 EDT 2025 Fri May 23 02:28:46 EDT 2025 Wed Oct 01 01:48:41 EDT 2025 Tue Jan 05 23:30:12 EST 2021 Thu May 09 18:56:43 EDT 2019  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2023-d3379d4d9a51579377c18ccd40e85fb7d1ef6d40375ddcbc173d4d0735e443d03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2931884363 | 
    
| PQPubID | 2045865 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | igi_journals_lopment_of_Fractional_Gen10_4018_IJAEC_20160701017 crossref_primary_10_4018_IJAEC_2016070101 proquest_journals_2931884363 gale_businessinsightsgauss_A759378898  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-07-01T00:00:00 | 
    
| PublicationDateYYYYMMDD | 2016-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01T00:00:00 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hershey | 
    
| PublicationPlace_xml | – name: Hershey | 
    
| PublicationTitle | International journal of applied evolutionary computation | 
    
| PublicationYear | 2016 | 
    
| Publisher | IGI Global | 
    
| Publisher_xml | – name: IGI Global | 
    
| SSID | ssj0000547471 | 
    
| Score | 1.956579 | 
    
| Snippet | Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within... | 
    
| SourceID | proquest gale crossref igi  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Clustering Datasets Machine learning Mathematical optimization Multiple objective analysis Optimization  | 
    
| Title | Development of Fractional Genetic PSO Algorithm for Multi Objective Data Clustering | 
    
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEC.2016070101 https://www.proquest.com/docview/2931884363  | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1942-3608 dateEnd: 20220131 omitProxy: true ssIdentifier: ssj0000547471 issn: 1942-3594 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED_R8rIXxsYQAYY8CR72ENHUzocfEOpKO4ZEQQMk3qzEHwXE2kLa_393ibOCEHuJlMS2kp9957N99zuA_ULSYV4chYk03VBY1wkzaUyoLbGPdZzlCUUjn4-S0xtxdhvfrsCoiYUht8pGJ1aK2kw17ZEf4rQUZZngCT-ePYWUNYpOV5sUGrlPrWCOKoqxFqx2iRmrDas_BqPL3_92XdBAaVZhUpAbuxT12SUuM7LDX2e9QZ_cvRIUhMjniWnmKq-xW_fj-zd6u5qMhuuw5q1I1qu7_ROs2Mln-NhkaGBeYDfg6oVPEJs6Nnyu4xiwLvFNY212eXXBeo9j_NX53R-GJiyrYnLZRfFQ60J2ks9z1n9cEKUCTnRf4GY4uO6fhj6NQqgpN3poOE-lEUbmaLsQHV6qo0xrIzo2i12Rmsi6BO94GhujCx2lHEuj6MdWCG46fBPak-nEbgHTqXRJlBdcy1xw62QkC204Gh0an7tuAN8bwNSsZstQuMogcFUFrlqCG8ABIap8sk28lLQdUY7zRVmqXhpLorqXWQDfEHLlRat8046aGRfA8asyHlg1dWoJrEJg3_uYNIDdpkuXzSzH3Pb_X-_AB2qrduPdhfb8eWG_orEyL_aglQ1_7vlx-Bej0-Ur | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH7qcoALO8KlwCDRAwercWa8zKGqQpoo6ZJWtJV6m9qzhKI2CXUixJ_jt_GePSagCm69WLI9frK-mbfNvAXgQyHpMC-OwkSadiisa4WZNCbUlqqPtZzlCWUjH42SwbnYv4gvVuBnkwtDYZWNTKwEtZlq2iPfRrUUZZngCd-dfQupaxSdrjYtNHLfWsHsVCXGfGLHgf3xHV24cme4h_O91W73e2fdQei7DISaWoeHhvNUGmFkjqqdqsWlOsq0NqJls9gVqYmsS_COp7ExutBRynE0ckZsheCmxZHuKqwLLiQ6f-ufeqOTz793edAgarw-KShsXor6rBTdmmx7uN_pdSm8LEHGi3xfmkY3eg2xejW-uqMnKuXXfwKPvNXKOvUyewordvIMHjcdIZgXEM_h9I8YJDZ1rH9b503gt1TfGr9mJ6fHrHM9RmjnX24YmsysygFmx8XXWvayvXyes-71gko4oGJ9Aef3AuhLWJtMJ_YVMJ1Kl0R5wbXMBbdORrLQhqORo_G5awfwsQFMzerqHAq9GgJXVeCqJbgBbBGiyjf3xEtJ2x_lOF-UpeqksaTS-jIL4D1Crjwrl3foqJlxAez-NcYDq6ZOLYFVCOy_fiYNYLOZ0iWZ5Rrf-P_rd_BgcHZ0qA6Ho4PX8JDo1iHEm7A2v13YN2gozYu3fjUyuLxvBvgF75Igkg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Fractional+Genetic+PSO+Algorithm+for+Multi+Objective+Data+Clustering&rft.jtitle=International+journal+of+applied+evolutionary+computation&rft.au=Nair%2C+Mydhili+K&rft.au=K%2C+Aparna&rft.date=2016-07-01&rft.issn=1942-3594&rft.eissn=1942-3608&rft.volume=7&rft.issue=3&rft.spage=1&rft.epage=16&rft_id=info:doi/10.4018%2FIJAEC.2016070101&rft.externalDocID=lopment_of_Fractional_Gen10_4018_IJAEC_20160701017 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-3594&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-3594&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-3594&client=summon |