Development of Fractional Genetic PSO Algorithm for Multi Objective Data Clustering

Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within different groups. The performance of the traditional K-Means and Bisecting K-Means algorithm degrades as the dimensionality of the data increases. In...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied evolutionary computation Vol. 7; no. 3; pp. 1 - 16
Main Authors Nair, Mydhili K, K, Aparna
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.07.2016
Subjects
Online AccessGet full text
ISSN1942-3594
1942-3608
DOI10.4018/IJAEC.2016070101

Cover

Abstract Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within different groups. The performance of the traditional K-Means and Bisecting K-Means algorithm degrades as the dimensionality of the data increases. In order to find better clustering results, it is important to enhance the traditional algorithms by incorporating various constraints. Hence it is planned to develop a Multi-Objective Optimization (MOO) technique by including different objectives, like MSE, Stability measure, DB index, XB-index and sym-index. These five objectives will be used as fitness function for the proposed Fractional Genetic PSO algorithm (FGPSO) which is the hybrid optimization algorithm to do the clustering process. The performance of the proposed multi objective FGPSO algorithm will be evaluated based on clustering accuracy. Finally, the applicability of the proposed algorithm will be checked for some benchmark data sets available in the UCI machine learning repository.
AbstractList Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within different groups. The performance of the traditional K-Means and Bisecting K-Means algorithm degrades as the dimensionality of the data increases. In order to find better clustering results, it is important to enhance the traditional algorithms by incorporating various constraints. Hence it is planned to develop a Multi-Objective Optimization (MOO) technique by including different objectives, like MSE, Stability measure, DB index, XB-index and sym-index. These five objectives will be used as fitness function for the proposed Fractional Genetic PSO algorithm (FGPSO) which is the hybrid optimization algorithm to do the clustering process. The performance of the proposed multi objective FGPSO algorithm will be evaluated based on clustering accuracy. Finally, the applicability of the proposed algorithm will be checked for some benchmark data sets available in the UCI machine learning repository.
Audience Academic
Author K, Aparna
Nair, Mydhili K
AuthorAffiliation Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India
B. M. S. Institute of Technology, Bangalore, India
AuthorAffiliation_xml – name: Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India
– name: B. M. S. Institute of Technology, Bangalore, India
Author_xml – sequence: 1
  givenname: Mydhili
  surname: Nair
  middlename: K
  fullname: Nair, Mydhili K
  organization: Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, India
– sequence: 2
  givenname: Aparna
  surname: K
  fullname: K, Aparna
  organization: B. M. S. Institute of Technology, Bangalore, India
BookMark eNp1kE1PAyEQhonRxM-7RxIvHqzCwhb22NTWj2hqop4JhdmVZrtUYE3896LVNDHKYWCSZ14mzz7a7nwHCB1Tcs4JlRc3t6PJ-LwgdEgEoYRuoT1a8WLAhkRu_7zLiu-ioxgXJJ-SCy7oHnq8hDdo_WoJXcK-xtOgTXK-0y2-gg6SM_jhcYZHbeODSy9LXPuA7_s2OTybLyCzb4AvddJ43PYxQXBdc4h2at1GOPq-D9DzdPI0vh7cza5uxqO7gSlIwQaWMVFZbitd0lJUTAhDpTGWE5BlPReWQj3MHROltWZuqGCZJoKVwDmzhB2gk3XuKvjXHmJSC9-HvHpURcWolJwNWabO1lSjW1DzProOYi7RNS8pNrqPUY1Emf-XspIZJ2vcBB9jgFqtglvq8K4oUZ-y1ZdstZGdR6brEde4zQrfUpWv1UaqylL_yxE56PSPoN-cWtmafQDSxZZB
ContentType Journal Article
Copyright COPYRIGHT 2016 IGI Global
Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2016 IGI Global
– notice: Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.4018/IJAEC.2016070101
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1942-3608
EndPage 16
ExternalDocumentID A759378898
10_4018_IJAEC_2016070101
lopment_of_Fractional_Gen10_4018_IJAEC_20160701017
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
EJD
H13
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ACOJC
AFKRA
ARAPS
ARCSS
BAAKF
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CTSEY
HCIFZ
HZ~
IAO
ICD
ITC
K7-
N95
PHGZM
PHGZT
PQGLB
PUEGO
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2023-d3379d4d9a51579377c18ccd40e85fb7d1ef6d40375ddcbc173d4d0735e443d03
IEDL.DBID BENPR
ISSN 1942-3594
IngestDate Sun Jul 13 04:39:59 EDT 2025
Fri May 23 02:28:46 EDT 2025
Wed Oct 01 01:48:41 EDT 2025
Tue Jan 05 23:30:12 EST 2021
Thu May 09 18:56:43 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2023-d3379d4d9a51579377c18ccd40e85fb7d1ef6d40375ddcbc173d4d0735e443d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2931884363
PQPubID 2045865
PageCount 16
ParticipantIDs igi_journals_lopment_of_Fractional_Gen10_4018_IJAEC_20160701017
crossref_primary_10_4018_IJAEC_2016070101
proquest_journals_2931884363
gale_businessinsightsgauss_A759378898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01T00:00:00
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01T00:00:00
  day: 01
PublicationDecade 2010
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of applied evolutionary computation
PublicationYear 2016
Publisher IGI Global
Publisher_xml – name: IGI Global
SSID ssj0000547471
Score 1.956579
Snippet Clustering is the task of finding natural partitioning within a data set such that data items within the same group are more similar than those within...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Clustering
Datasets
Machine learning
Mathematical optimization
Multiple objective analysis
Optimization
Title Development of Fractional Genetic PSO Algorithm for Multi Objective Data Clustering
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEC.2016070101
https://www.proquest.com/docview/2931884363
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1942-3608
  dateEnd: 20220131
  omitProxy: true
  ssIdentifier: ssj0000547471
  issn: 1942-3594
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED_R8rIXxsYQAYY8CR72ENHUzocfEOpKO4ZEQQMk3qzEHwXE2kLa_393ibOCEHuJlMS2kp9957N99zuA_ULSYV4chYk03VBY1wkzaUyoLbGPdZzlCUUjn4-S0xtxdhvfrsCoiYUht8pGJ1aK2kw17ZEf4rQUZZngCT-ePYWUNYpOV5sUGrlPrWCOKoqxFqx2iRmrDas_BqPL3_92XdBAaVZhUpAbuxT12SUuM7LDX2e9QZ_cvRIUhMjniWnmKq-xW_fj-zd6u5qMhuuw5q1I1qu7_ROs2Mln-NhkaGBeYDfg6oVPEJs6Nnyu4xiwLvFNY212eXXBeo9j_NX53R-GJiyrYnLZRfFQ60J2ks9z1n9cEKUCTnRf4GY4uO6fhj6NQqgpN3poOE-lEUbmaLsQHV6qo0xrIzo2i12Rmsi6BO94GhujCx2lHEuj6MdWCG46fBPak-nEbgHTqXRJlBdcy1xw62QkC204Gh0an7tuAN8bwNSsZstQuMogcFUFrlqCG8ABIap8sk28lLQdUY7zRVmqXhpLorqXWQDfEHLlRat8046aGRfA8asyHlg1dWoJrEJg3_uYNIDdpkuXzSzH3Pb_X-_AB2qrduPdhfb8eWG_orEyL_aglQ1_7vlx-Bej0-Ur
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH7qcoALO8KlwCDRAwercWa8zKGqQpoo6ZJWtJV6m9qzhKI2CXUixJ_jt_GePSagCm69WLI9frK-mbfNvAXgQyHpMC-OwkSadiisa4WZNCbUlqqPtZzlCWUjH42SwbnYv4gvVuBnkwtDYZWNTKwEtZlq2iPfRrUUZZngCd-dfQupaxSdrjYtNHLfWsHsVCXGfGLHgf3xHV24cme4h_O91W73e2fdQei7DISaWoeHhvNUGmFkjqqdqsWlOsq0NqJls9gVqYmsS_COp7ExutBRynE0ckZsheCmxZHuKqwLLiQ6f-ufeqOTz793edAgarw-KShsXor6rBTdmmx7uN_pdSm8LEHGi3xfmkY3eg2xejW-uqMnKuXXfwKPvNXKOvUyewordvIMHjcdIZgXEM_h9I8YJDZ1rH9b503gt1TfGr9mJ6fHrHM9RmjnX24YmsysygFmx8XXWvayvXyes-71gko4oGJ9Aef3AuhLWJtMJ_YVMJ1Kl0R5wbXMBbdORrLQhqORo_G5awfwsQFMzerqHAq9GgJXVeCqJbgBbBGiyjf3xEtJ2x_lOF-UpeqksaTS-jIL4D1Crjwrl3foqJlxAez-NcYDq6ZOLYFVCOy_fiYNYLOZ0iWZ5Rrf-P_rd_BgcHZ0qA6Ho4PX8JDo1iHEm7A2v13YN2gozYu3fjUyuLxvBvgF75Igkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Fractional+Genetic+PSO+Algorithm+for+Multi+Objective+Data+Clustering&rft.jtitle=International+journal+of+applied+evolutionary+computation&rft.au=Nair%2C+Mydhili+K&rft.au=K%2C+Aparna&rft.date=2016-07-01&rft.issn=1942-3594&rft.eissn=1942-3608&rft.volume=7&rft.issue=3&rft.spage=1&rft.epage=16&rft_id=info:doi/10.4018%2FIJAEC.2016070101&rft.externalDocID=lopment_of_Fractional_Gen10_4018_IJAEC_20160701017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-3594&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-3594&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-3594&client=summon