Comparative evaluation of backpropagation neural network and genetic algorithm-backpropagation neural network models for PM2.5 concentration prediction based on aerosol optical depth, meteorological factors, and air pollutants
Fine particles with an aerodynamic diameter ≤2.5 μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of heavy pollution on humans. At present, the distribution of ground-based PM2.5 monitoring stations in China’s cities is relatively sparse. Henc...
        Saved in:
      
    
          | Published in | Journal of applied remote sensing Vol. 18; no. 1; p. 012006 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Society of Photo-Optical Instrumentation Engineers
    
        01.01.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1931-3195 1931-3195  | 
| DOI | 10.1117/1.JRS.18.012006 | 
Cover
| Abstract | Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of heavy pollution on humans. At present, the distribution of ground-based PM2.5 monitoring stations in China’s cities is relatively sparse. Hence, the aerosol optical depth (AOD) obtained from satellite remote sensing provides an effective means for large-scale routine PM2.5 monitoring. In this study, the multi-angle implementation of atmospheric correction AOD (1 km resolution) product from the moderate resolution imaging spectroradiometer (MODIS), meteorological factors, and ground measurements of daily PM2.5 concentrations from 2016 to 2020 for Dalian were input into a backpropagation neural network (BPNN) to predict PM2.5 concentrations. To improve the prediction accuracy and stability, a genetic algorithm (GA)-optimized BPNN was further established based on the BPNN to achieve a comparative PM2.5 concentration prediction. Results showed that the BPNN and GA-BPNN achieved the PM2.5 concentration by integrating AOD, meteorological factors, and air pollutants with the model test set R2 of 0.77 and 0.83 and root mean square error (RMSE) of 11.83 and 9.80  μg m  −  3, respectively. GA-BPNN decreased the SDRMSE from 0.44 to 0.23  μg m  −  3 compared with BPNN and improved the model stability. The spatial distribution of annual averaged estimated PM2.5 was predicted using GA-BPNN in Dalian from 2016 to 2020. The spatial distribution of PM2.5 concentrations was generally consistent over 5 years, and the PM2.5 concentrations exhibited an overall decreasing trend. The BPNN before and after optimization achieved longer-term interannual PM2.5 daily concentration prediction, and the GA-BPNN had a better prediction effect for extreme values, handled complex fuzzy mapping relationships, and had lower computational complexity. Hence, GA-BPNN was found to be more suitable for practical applications with more advantages for PM2.5 concentration prediction than BPNN. | 
    
|---|---|
| AbstractList | Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of heavy pollution on humans. At present, the distribution of ground-based PM2.5 monitoring stations in China’s cities is relatively sparse. Hence, the aerosol optical depth (AOD) obtained from satellite remote sensing provides an effective means for large-scale routine PM2.5 monitoring. In this study, the multi-angle implementation of atmospheric correction AOD (1 km resolution) product from the moderate resolution imaging spectroradiometer (MODIS), meteorological factors, and ground measurements of daily PM2.5 concentrations from 2016 to 2020 for Dalian were input into a backpropagation neural network (BPNN) to predict PM2.5 concentrations. To improve the prediction accuracy and stability, a genetic algorithm (GA)-optimized BPNN was further established based on the BPNN to achieve a comparative PM2.5 concentration prediction. Results showed that the BPNN and GA-BPNN achieved the PM2.5 concentration by integrating AOD, meteorological factors, and air pollutants with the model test set R2 of 0.77 and 0.83 and root mean square error (RMSE) of 11.83 and 9.80  μg m  −  3, respectively. GA-BPNN decreased the SDRMSE from 0.44 to 0.23  μg m  −  3 compared with BPNN and improved the model stability. The spatial distribution of annual averaged estimated PM2.5 was predicted using GA-BPNN in Dalian from 2016 to 2020. The spatial distribution of PM2.5 concentrations was generally consistent over 5 years, and the PM2.5 concentrations exhibited an overall decreasing trend. The BPNN before and after optimization achieved longer-term interannual PM2.5 daily concentration prediction, and the GA-BPNN had a better prediction effect for extreme values, handled complex fuzzy mapping relationships, and had lower computational complexity. Hence, GA-BPNN was found to be more suitable for practical applications with more advantages for PM2.5 concentration prediction than BPNN. | 
    
| Author | Li, Yuwei Song, Qiao Liang, Shuang Gu, Jilin Wang, Yiwei Guo, Shumin  | 
    
| Author_xml | – sequence: 1 givenname: Jilin orcidid: 0000-0001-6904-9687 surname: Gu fullname: Gu, Jilin email: gujilin@lnnu.edu.cn organization: Liaoning Normal University, School of Geography, Dalian, China – sequence: 2 givenname: Shuang surname: Liang fullname: Liang, Shuang email: ls17824257829@gmail.com organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China – sequence: 3 givenname: Qiao surname: Song fullname: Song, Qiao email: 13842738290@163.com organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China – sequence: 4 givenname: Yuwei surname: Li fullname: Li, Yuwei email: 15242583054@163.com organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China – sequence: 5 givenname: Yiwei surname: Wang fullname: Wang, Yiwei email: wyw15922088698@gmail.com organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China – sequence: 6 givenname: Shumin surname: Guo fullname: Guo, Shumin email: guoshumin@lnnu.edu.cn organization: Liaoning Normal University, School of Fine Arts, Dalian, China  | 
    
| BookMark | eNqFUctuFDEQtFCQSAJnrv6AnYnt2Xkd0QoIKAjE4zzqtdubSTxuy_Ym4nf5EpwdDlwQp6pudVWXVBfszJNHxl5LUUsp-ytZf_z6rZZDLaQSonvGzuXYyKqRY3v2F3_BLlK6E6JthqE_Z792tASIkOcH5PgA7lgoeU6W70Hfh0gBDuvK4zGCK5AfKd5z8IYfsEyz5uAOFOd8u1T_ES1k0CVuKfIvn1Tdck1eo89xvQ4RzaxPdA8JDS8EMFIixymUT8XKYMi3G75gRork6HDaWtCZYtqcYsEceSDnjhl8Ti_Zcwsu4as_eMl-vHv7fXdd3Xx-_2H35qbSSshcNb0ajdWNGNvOmKHfDmD6ZmwB0Cqt9GiN7dReDWq_7ZoWbL9ttVGtsKLvVTc2l-xq9dUlcIpopxDnBeLPSYrpqaJJTqWiSQ7TWlFRbFZFCjNOd3SMvgT85_lvZwSbqA | 
    
| Cites_doi | 10.11947/j.AGCS.2022.20200385 10.1016/j.jenvman.2021.114121 10.1016/j.envint.2020.105801 10.5194/essd-13-3907-2021 10.3390/rs14071617 10.1016/j.neucom.2013.03.047 10.3969/j.issn.1004-132X.2021.12.005 10.3969/j.issn.1007-2691.2001.01.001 10.13671/j.hjkxxb.2020.0095 10.13227/j.hjkx.201705122 10.1016/j.atmosenv.2022.119282 10.16452/j.cnki.sdkjzk.2019.05.009 CNKI:SUN:ZDYS.0.2015-16-038 10.1016/j.envres.2019.108601 10.5194/amt-11-5741-2018 10.13198/j.issn.1001-6929.2021.10.14 10.1016/j.isprsjprs.2020.06.019 10.19322/j.cnki.issn.1006-4710.2019.01.018 10.1016/j.earscirev.2023.104461 10.1016/j.scitotenv.2019.134577 10.1016/j.envpol.2021.116574 10.3969/j.issn.1673-629X.2018.04.007 10.13198/j.issn.1001-6929.2019.06.13 10.5194/essd-14-907-2022 10.1016/j.rse.2019.111221 10.1038/s41598-019-50177-1 10.1016/j.scitotenv.2018.01.248 10.1001/jama.287.9.1132 10.3390/atmos9030105 10.1109/LGRS.2019.2900270 10.3969/j.issn.1000-8438.2014.05.001 10.1049/iet-its.2016.0208 10.1016/j.atmosenv.2021.118273 10.13227/j.hjkx.2013.03.024 10.1164/rccm.202108-1909OC 10.19674/j.cnki.issn1000-6923.2020.0466 10.1016/j.atmosenv.2018.04.004 10.14050/j.cnki.1672-9250.2019.47.008 CNKI:SUN:GLJH.0.2020-02-037 10.14075/j.jgg.2020.11.009 10.1093/cvr/cvaa288 10.5194/acp-19-7183-2019  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) | 
    
| Copyright_xml | – notice: 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1117/1.JRS.18.012006 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1931-3195 | 
    
| EndPage | 012006 | 
    
| ExternalDocumentID | 10_1117_1_JRS_18_012006 | 
    
| GrantInformation_xml | – fundername: Foundation of Liaoning Educational Committee grantid: LJKZ0979 – fundername: Postgraduate Education Reform Project of Liaoning Province grantid: 393  | 
    
| GroupedDBID | 0R~ 29J 5GY ABJNI ACGFO ACGFS ADMLS AENEX AKROS ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS FQ0 HZ~ M4X O9- RNS SPBNH AAYXX CITATION IAO  | 
    
| ID | FETCH-LOGICAL-c201t-3729dfc30956dd8748ad7395aaef2c2c9fdf62b282b4635af745cd250f0772693 | 
    
| ISSN | 1931-3195 | 
    
| IngestDate | Wed Oct 01 04:48:01 EDT 2025 Tue Jun 10 09:00:16 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | genetic algorithm-backpropagation neural network backpropagation neural network PM aerosol optical depth  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c201t-3729dfc30956dd8748ad7395aaef2c2c9fdf62b282b4635af745cd250f0772693 | 
    
| ORCID | 0000-0001-6904-9687 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | spie_journals_10_1117_1_JRS_18_012006 crossref_primary_10_1117_1_JRS_18_012006  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-01 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of applied remote sensing | 
    
| PublicationTitleAlternate | J. Appl. Remote Sens | 
    
| PublicationYear | 2024 | 
    
| Publisher | Society of Photo-Optical Instrumentation Engineers | 
    
| Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers | 
    
| References | r2 r3 r4 r5 r6 r7 r8 r9 r50 r52 r51 r10 r53 r12 r11 r13 r16 r15 r18 r17 Chen (r45) 2003 r19 Wang (r48) 2020 r21 r20 r23 r22 r25 r24 Li (r14) 1985 r27 r26 r29 r28 r30 r32 r31 r34 r33 r36 r35 r38 r37 r39 Zhou (r42) 2016 r41 r40 Zheng (r43) 2019 r47 Fu (r44) 2016 r46 r49 r1  | 
    
| References_xml | – ident: r20 doi: 10.11947/j.AGCS.2022.20200385 – ident: r53 doi: 10.1016/j.jenvman.2021.114121 – ident: r25 doi: 10.1016/j.envint.2020.105801 – ident: r33 doi: 10.5194/essd-13-3907-2021 – ident: r40 doi: 10.3390/rs14071617 – ident: r39 doi: 10.1016/j.neucom.2013.03.047 – ident: r35 doi: 10.3969/j.issn.1004-132X.2021.12.005 – ident: r28 – ident: r31 – year: 2020 ident: r48 – ident: r46 doi: 10.3969/j.issn.1007-2691.2001.01.001 – ident: r13 doi: 10.13671/j.hjkxxb.2020.0095 – ident: r19 doi: 10.13227/j.hjkx.201705122 – ident: r52 doi: 10.1016/j.atmosenv.2022.119282 – ident: r37 doi: 10.16452/j.cnki.sdkjzk.2019.05.009 – ident: r27 doi: CNKI:SUN:ZDYS.0.2015-16-038 – ident: r10 doi: 10.1016/j.envres.2019.108601 – start-page: 27 year: 2003 ident: r45 – ident: r29 doi: 10.5194/amt-11-5741-2018 – ident: r5 doi: 10.13198/j.issn.1001-6929.2021.10.14 – start-page: 104 year: 2016 ident: r42 – ident: r32 – ident: r51 doi: 10.1016/j.isprsjprs.2020.06.019 – ident: r47 doi: 10.19322/j.cnki.issn.1006-4710.2019.01.018 – start-page: 250 year: 2019 ident: r43 – ident: r8 doi: 10.1016/j.earscirev.2023.104461 – ident: r4 doi: 10.1016/j.scitotenv.2019.134577 – ident: r11 doi: 10.1016/j.envpol.2021.116574 – ident: r41 doi: 10.3969/j.issn.1673-629X.2018.04.007 – ident: r17 doi: 10.13198/j.issn.1001-6929.2019.06.13 – ident: r21 doi: 10.5194/essd-14-907-2022 – ident: r23 doi: 10.1016/j.rse.2019.111221 – ident: r50 doi: 10.1038/s41598-019-50177-1 – ident: r16 doi: 10.1016/j.scitotenv.2018.01.248 – ident: r1 doi: 10.1001/jama.287.9.1132 – ident: r26 doi: 10.3390/atmos9030105 – ident: r24 doi: 10.1109/LGRS.2019.2900270 – ident: r15 doi: 10.3969/j.issn.1000-8438.2014.05.001 – ident: r38 doi: 10.1049/iet-its.2016.0208 – year: 2016 ident: r44 – ident: r7 doi: 10.1016/j.atmosenv.2021.118273 – start-page: 557 year: 1985 ident: r14 – ident: r49 doi: 10.13227/j.hjkx.2013.03.024 – ident: r3 doi: 10.1164/rccm.202108-1909OC – ident: r9 doi: 10.19674/j.cnki.issn1000-6923.2020.0466 – ident: r22 doi: 10.1016/j.atmosenv.2018.04.004 – ident: r30 – ident: r12 doi: 10.14050/j.cnki.1672-9250.2019.47.008 – ident: r36 doi: CNKI:SUN:GLJH.0.2020-02-037 – ident: r18 doi: 10.14075/j.jgg.2020.11.009 – ident: r34 – ident: r2 doi: 10.1093/cvr/cvaa288 – ident: r6 doi: 10.5194/acp-19-7183-2019  | 
    
| SSID | ssj0053887 | 
    
| Score | 2.3146229 | 
    
| Snippet | Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of... | 
    
| SourceID | crossref spie  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 012006 | 
    
| Title | Comparative evaluation of backpropagation neural network and genetic algorithm-backpropagation neural network models for PM2.5 concentration prediction based on aerosol optical depth, meteorological factors, and air pollutants | 
    
| URI | http://www.dx.doi.org/10.1117/1.JRS.18.012006 | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1931-3195 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053887 issn: 1931-3195 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUS59BeinRD0w1zaIECiVRLli3pGKRLGtTdnAC5CaRI1kJjSZBtBOjn9ks6XLTYtdG0F0EgRrTkeeQ8ksNHQl6INPao5NIJJI5VAxpIh0Uxd9hADhhSXr-vJTbGn0anF8HZ5fByZzfuZC0tF8xNf27cV_I_XsUy9KvaJfsPnm0qxQK8R__iFT2M1xv5-KQj3d3Kdiv-x2j6A_tG7C1MkZKtRGfkJulbrxhgrUKrtV59L6psMZ05f3lIH5qj5RsOv4x9d6gy1k1up7YuK7Xmo29VaORqGYIKDMIF0t3STJlzUZp5nBly9aJqOl576k-dSkqzSp0egX8dtUpTG_gztfy5Eog2cThXmfg2DKt8oqXGZ3aVtTlHWT03Pl3S1nJik5K_ZrRoTXVoWl6LrDst4gdr0yJ1zqtKJJwWi8L5bD_0gxbmndmNXXkj-9iZGkVO62FsMod_umJD2R-Ro2khJgyoHcn9UYdUtAUbQpYWPXDPvk1cL3K7j67ogJvRWph4CVomXpQYy12y52NA6_fI3vGb8cdJTUMwkOnTIZsXt7pWWMXrtR9boWS9eZmJDsU63yd3rG_h2AD9LtkR-T1y672wqur3ya8O4KEFPBQS1rALBrtgsQuIKrCAh62AX3_IAB4Q8KABDyuAhxbwoAEPeGMBDxbwoAF_BKtwBwv3I_1aCHZowf6AXLx7e35y6thDSpwUufPCUcveXKYDJejJeRQGEeVq8ZtSIf3UT2PsCEc-8yOfBUjuqQyDYcpx4CH7OLAdxYOHpJcXuXhEIEU-zRlTyxIejpMihvQ7FCySPA0jHMgdkFe1n5LSaNEkW1BxQF4qPya2s5pvs3t8Q7sn5HbbyJ6SHjYh8QzZ-II9t7j7DWks7DI | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+evaluation+of+backpropagation+neural+network+and+genetic+algorithm-backpropagation+neural+network+models+for+PM2.5+concentration+prediction+based+on+aerosol+optical+depth%2C+meteorological+factors%2C+and+air+pollutants&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Gu%2C+Jilin&rft.au=Liang%2C+Shuang&rft.au=Song%2C+Qiao&rft.au=Li%2C+Yuwei&rft.date=2024-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=18&rft.issue=1&rft.spage=012006&rft.epage=012006&rft_id=info:doi/10.1117%2F1.JRS.18.012006&rft.externalDocID=10_1117_1_JRS_18_012006 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon |