Comparative evaluation of backpropagation neural network and genetic algorithm-backpropagation neural network models for PM2.5 concentration prediction based on aerosol optical depth, meteorological factors, and air pollutants

Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of heavy pollution on humans. At present, the distribution of ground-based PM2.5 monitoring stations in China’s cities is relatively sparse. Henc...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 18; no. 1; p. 012006
Main Authors Gu, Jilin, Liang, Shuang, Song, Qiao, Li, Yuwei, Wang, Yiwei, Guo, Shumin
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2024
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.18.012006

Cover

Abstract Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of heavy pollution on humans. At present, the distribution of ground-based PM2.5 monitoring stations in China’s cities is relatively sparse. Hence, the aerosol optical depth (AOD) obtained from satellite remote sensing provides an effective means for large-scale routine PM2.5 monitoring. In this study, the multi-angle implementation of atmospheric correction AOD (1 km resolution) product from the moderate resolution imaging spectroradiometer (MODIS), meteorological factors, and ground measurements of daily PM2.5 concentrations from 2016 to 2020 for Dalian were input into a backpropagation neural network (BPNN) to predict PM2.5 concentrations. To improve the prediction accuracy and stability, a genetic algorithm (GA)-optimized BPNN was further established based on the BPNN to achieve a comparative PM2.5 concentration prediction. Results showed that the BPNN and GA-BPNN achieved the PM2.5 concentration by integrating AOD, meteorological factors, and air pollutants with the model test set R2 of 0.77 and 0.83 and root mean square error (RMSE) of 11.83 and 9.80  μg m  −  3, respectively. GA-BPNN decreased the SDRMSE from 0.44 to 0.23  μg m  −  3 compared with BPNN and improved the model stability. The spatial distribution of annual averaged estimated PM2.5 was predicted using GA-BPNN in Dalian from 2016 to 2020. The spatial distribution of PM2.5 concentrations was generally consistent over 5 years, and the PM2.5 concentrations exhibited an overall decreasing trend. The BPNN before and after optimization achieved longer-term interannual PM2.5 daily concentration prediction, and the GA-BPNN had a better prediction effect for extreme values, handled complex fuzzy mapping relationships, and had lower computational complexity. Hence, GA-BPNN was found to be more suitable for practical applications with more advantages for PM2.5 concentration prediction than BPNN.
AbstractList Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of heavy pollution on humans. At present, the distribution of ground-based PM2.5 monitoring stations in China’s cities is relatively sparse. Hence, the aerosol optical depth (AOD) obtained from satellite remote sensing provides an effective means for large-scale routine PM2.5 monitoring. In this study, the multi-angle implementation of atmospheric correction AOD (1 km resolution) product from the moderate resolution imaging spectroradiometer (MODIS), meteorological factors, and ground measurements of daily PM2.5 concentrations from 2016 to 2020 for Dalian were input into a backpropagation neural network (BPNN) to predict PM2.5 concentrations. To improve the prediction accuracy and stability, a genetic algorithm (GA)-optimized BPNN was further established based on the BPNN to achieve a comparative PM2.5 concentration prediction. Results showed that the BPNN and GA-BPNN achieved the PM2.5 concentration by integrating AOD, meteorological factors, and air pollutants with the model test set R2 of 0.77 and 0.83 and root mean square error (RMSE) of 11.83 and 9.80  μg m  −  3, respectively. GA-BPNN decreased the SDRMSE from 0.44 to 0.23  μg m  −  3 compared with BPNN and improved the model stability. The spatial distribution of annual averaged estimated PM2.5 was predicted using GA-BPNN in Dalian from 2016 to 2020. The spatial distribution of PM2.5 concentrations was generally consistent over 5 years, and the PM2.5 concentrations exhibited an overall decreasing trend. The BPNN before and after optimization achieved longer-term interannual PM2.5 daily concentration prediction, and the GA-BPNN had a better prediction effect for extreme values, handled complex fuzzy mapping relationships, and had lower computational complexity. Hence, GA-BPNN was found to be more suitable for practical applications with more advantages for PM2.5 concentration prediction than BPNN.
Author Li, Yuwei
Song, Qiao
Liang, Shuang
Gu, Jilin
Wang, Yiwei
Guo, Shumin
Author_xml – sequence: 1
  givenname: Jilin
  orcidid: 0000-0001-6904-9687
  surname: Gu
  fullname: Gu, Jilin
  email: gujilin@lnnu.edu.cn
  organization: Liaoning Normal University, School of Geography, Dalian, China
– sequence: 2
  givenname: Shuang
  surname: Liang
  fullname: Liang, Shuang
  email: ls17824257829@gmail.com
  organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China
– sequence: 3
  givenname: Qiao
  surname: Song
  fullname: Song, Qiao
  email: 13842738290@163.com
  organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China
– sequence: 4
  givenname: Yuwei
  surname: Li
  fullname: Li, Yuwei
  email: 15242583054@163.com
  organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China
– sequence: 5
  givenname: Yiwei
  surname: Wang
  fullname: Wang, Yiwei
  email: wyw15922088698@gmail.com
  organization: Liaoning Normal University, School of Physics and Electronic Technology, Dalian, China
– sequence: 6
  givenname: Shumin
  surname: Guo
  fullname: Guo, Shumin
  email: guoshumin@lnnu.edu.cn
  organization: Liaoning Normal University, School of Fine Arts, Dalian, China
BookMark eNqFUctuFDEQtFCQSAJnrv6AnYnt2Xkd0QoIKAjE4zzqtdubSTxuy_Ym4nf5EpwdDlwQp6pudVWXVBfszJNHxl5LUUsp-ytZf_z6rZZDLaQSonvGzuXYyKqRY3v2F3_BLlK6E6JthqE_Z792tASIkOcH5PgA7lgoeU6W70Hfh0gBDuvK4zGCK5AfKd5z8IYfsEyz5uAOFOd8u1T_ES1k0CVuKfIvn1Tdck1eo89xvQ4RzaxPdA8JDS8EMFIixymUT8XKYMi3G75gRork6HDaWtCZYtqcYsEceSDnjhl8Ti_Zcwsu4as_eMl-vHv7fXdd3Xx-_2H35qbSSshcNb0ajdWNGNvOmKHfDmD6ZmwB0Cqt9GiN7dReDWq_7ZoWbL9ttVGtsKLvVTc2l-xq9dUlcIpopxDnBeLPSYrpqaJJTqWiSQ7TWlFRbFZFCjNOd3SMvgT85_lvZwSbqA
Cites_doi 10.11947/j.AGCS.2022.20200385
10.1016/j.jenvman.2021.114121
10.1016/j.envint.2020.105801
10.5194/essd-13-3907-2021
10.3390/rs14071617
10.1016/j.neucom.2013.03.047
10.3969/j.issn.1004-132X.2021.12.005
10.3969/j.issn.1007-2691.2001.01.001
10.13671/j.hjkxxb.2020.0095
10.13227/j.hjkx.201705122
10.1016/j.atmosenv.2022.119282
10.16452/j.cnki.sdkjzk.2019.05.009
CNKI:SUN:ZDYS.0.2015-16-038
10.1016/j.envres.2019.108601
10.5194/amt-11-5741-2018
10.13198/j.issn.1001-6929.2021.10.14
10.1016/j.isprsjprs.2020.06.019
10.19322/j.cnki.issn.1006-4710.2019.01.018
10.1016/j.earscirev.2023.104461
10.1016/j.scitotenv.2019.134577
10.1016/j.envpol.2021.116574
10.3969/j.issn.1673-629X.2018.04.007
10.13198/j.issn.1001-6929.2019.06.13
10.5194/essd-14-907-2022
10.1016/j.rse.2019.111221
10.1038/s41598-019-50177-1
10.1016/j.scitotenv.2018.01.248
10.1001/jama.287.9.1132
10.3390/atmos9030105
10.1109/LGRS.2019.2900270
10.3969/j.issn.1000-8438.2014.05.001
10.1049/iet-its.2016.0208
10.1016/j.atmosenv.2021.118273
10.13227/j.hjkx.2013.03.024
10.1164/rccm.202108-1909OC
10.19674/j.cnki.issn1000-6923.2020.0466
10.1016/j.atmosenv.2018.04.004
10.14050/j.cnki.1672-9250.2019.47.008
CNKI:SUN:GLJH.0.2020-02-037
10.14075/j.jgg.2020.11.009
10.1093/cvr/cvaa288
10.5194/acp-19-7183-2019
ContentType Journal Article
Copyright 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.18.012006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 012006
ExternalDocumentID 10_1117_1_JRS_18_012006
GrantInformation_xml – fundername: Foundation of Liaoning Educational Committee
  grantid: LJKZ0979
– fundername: Postgraduate Education Reform Project of Liaoning Province
  grantid: 393
GroupedDBID 0R~
29J
5GY
ABJNI
ACGFO
ACGFS
ADMLS
AENEX
AKROS
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ~
M4X
O9-
RNS
SPBNH
AAYXX
CITATION
IAO
ID FETCH-LOGICAL-c201t-3729dfc30956dd8748ad7395aaef2c2c9fdf62b282b4635af745cd250f0772693
ISSN 1931-3195
IngestDate Wed Oct 01 04:48:01 EDT 2025
Tue Jun 10 09:00:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genetic algorithm-backpropagation neural network
backpropagation neural network
PM
aerosol optical depth
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c201t-3729dfc30956dd8748ad7395aaef2c2c9fdf62b282b4635af745cd250f0772693
ORCID 0000-0001-6904-9687
PageCount 1
ParticipantIDs spie_journals_10_1117_1_JRS_18_012006
crossref_primary_10_1117_1_JRS_18_012006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2024
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References r2
r3
r4
r5
r6
r7
r8
r9
r50
r52
r51
r10
r53
r12
r11
r13
r16
r15
r18
r17
Chen (r45) 2003
r19
Wang (r48) 2020
r21
r20
r23
r22
r25
r24
Li (r14) 1985
r27
r26
r29
r28
r30
r32
r31
r34
r33
r36
r35
r38
r37
r39
Zhou (r42) 2016
r41
r40
Zheng (r43) 2019
r47
Fu (r44) 2016
r46
r49
r1
References_xml – ident: r20
  doi: 10.11947/j.AGCS.2022.20200385
– ident: r53
  doi: 10.1016/j.jenvman.2021.114121
– ident: r25
  doi: 10.1016/j.envint.2020.105801
– ident: r33
  doi: 10.5194/essd-13-3907-2021
– ident: r40
  doi: 10.3390/rs14071617
– ident: r39
  doi: 10.1016/j.neucom.2013.03.047
– ident: r35
  doi: 10.3969/j.issn.1004-132X.2021.12.005
– ident: r28
– ident: r31
– year: 2020
  ident: r48
– ident: r46
  doi: 10.3969/j.issn.1007-2691.2001.01.001
– ident: r13
  doi: 10.13671/j.hjkxxb.2020.0095
– ident: r19
  doi: 10.13227/j.hjkx.201705122
– ident: r52
  doi: 10.1016/j.atmosenv.2022.119282
– ident: r37
  doi: 10.16452/j.cnki.sdkjzk.2019.05.009
– ident: r27
  doi: CNKI:SUN:ZDYS.0.2015-16-038
– ident: r10
  doi: 10.1016/j.envres.2019.108601
– start-page: 27
  year: 2003
  ident: r45
– ident: r29
  doi: 10.5194/amt-11-5741-2018
– ident: r5
  doi: 10.13198/j.issn.1001-6929.2021.10.14
– start-page: 104
  year: 2016
  ident: r42
– ident: r32
– ident: r51
  doi: 10.1016/j.isprsjprs.2020.06.019
– ident: r47
  doi: 10.19322/j.cnki.issn.1006-4710.2019.01.018
– start-page: 250
  year: 2019
  ident: r43
– ident: r8
  doi: 10.1016/j.earscirev.2023.104461
– ident: r4
  doi: 10.1016/j.scitotenv.2019.134577
– ident: r11
  doi: 10.1016/j.envpol.2021.116574
– ident: r41
  doi: 10.3969/j.issn.1673-629X.2018.04.007
– ident: r17
  doi: 10.13198/j.issn.1001-6929.2019.06.13
– ident: r21
  doi: 10.5194/essd-14-907-2022
– ident: r23
  doi: 10.1016/j.rse.2019.111221
– ident: r50
  doi: 10.1038/s41598-019-50177-1
– ident: r16
  doi: 10.1016/j.scitotenv.2018.01.248
– ident: r1
  doi: 10.1001/jama.287.9.1132
– ident: r26
  doi: 10.3390/atmos9030105
– ident: r24
  doi: 10.1109/LGRS.2019.2900270
– ident: r15
  doi: 10.3969/j.issn.1000-8438.2014.05.001
– ident: r38
  doi: 10.1049/iet-its.2016.0208
– year: 2016
  ident: r44
– ident: r7
  doi: 10.1016/j.atmosenv.2021.118273
– start-page: 557
  year: 1985
  ident: r14
– ident: r49
  doi: 10.13227/j.hjkx.2013.03.024
– ident: r3
  doi: 10.1164/rccm.202108-1909OC
– ident: r9
  doi: 10.19674/j.cnki.issn1000-6923.2020.0466
– ident: r22
  doi: 10.1016/j.atmosenv.2018.04.004
– ident: r30
– ident: r12
  doi: 10.14050/j.cnki.1672-9250.2019.47.008
– ident: r36
  doi: CNKI:SUN:GLJH.0.2020-02-037
– ident: r18
  doi: 10.14075/j.jgg.2020.11.009
– ident: r34
– ident: r2
  doi: 10.1093/cvr/cvaa288
– ident: r6
  doi: 10.5194/acp-19-7183-2019
SSID ssj0053887
Score 2.3146229
Snippet Fine particles with an aerodynamic diameter ≤2.5  μm are called PM2.5, and accurate prediction of PM2.5 concentration can help prevent the harmful effects of...
SourceID crossref
spie
SourceType Index Database
Publisher
StartPage 012006
Title Comparative evaluation of backpropagation neural network and genetic algorithm-backpropagation neural network models for PM2.5 concentration prediction based on aerosol optical depth, meteorological factors, and air pollutants
URI http://www.dx.doi.org/10.1117/1.JRS.18.012006
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1931-3195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053887
  issn: 1931-3195
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUS59BeinRD0w1zaIECiVRLli3pGKRLGtTdnAC5CaRI1kJjSZBtBOjn9ks6XLTYtdG0F0EgRrTkeeQ8ksNHQl6INPao5NIJJI5VAxpIh0Uxd9hADhhSXr-vJTbGn0anF8HZ5fByZzfuZC0tF8xNf27cV_I_XsUy9KvaJfsPnm0qxQK8R__iFT2M1xv5-KQj3d3Kdiv-x2j6A_tG7C1MkZKtRGfkJulbrxhgrUKrtV59L6psMZ05f3lIH5qj5RsOv4x9d6gy1k1up7YuK7Xmo29VaORqGYIKDMIF0t3STJlzUZp5nBly9aJqOl576k-dSkqzSp0egX8dtUpTG_gztfy5Eog2cThXmfg2DKt8oqXGZ3aVtTlHWT03Pl3S1nJik5K_ZrRoTXVoWl6LrDst4gdr0yJ1zqtKJJwWi8L5bD_0gxbmndmNXXkj-9iZGkVO62FsMod_umJD2R-Ro2khJgyoHcn9UYdUtAUbQpYWPXDPvk1cL3K7j67ogJvRWph4CVomXpQYy12y52NA6_fI3vGb8cdJTUMwkOnTIZsXt7pWWMXrtR9boWS9eZmJDsU63yd3rG_h2AD9LtkR-T1y672wqur3ya8O4KEFPBQS1rALBrtgsQuIKrCAh62AX3_IAB4Q8KABDyuAhxbwoAEPeGMBDxbwoAF_BKtwBwv3I_1aCHZowf6AXLx7e35y6thDSpwUufPCUcveXKYDJejJeRQGEeVq8ZtSIf3UT2PsCEc-8yOfBUjuqQyDYcpx4CH7OLAdxYOHpJcXuXhEIEU-zRlTyxIejpMihvQ7FCySPA0jHMgdkFe1n5LSaNEkW1BxQF4qPya2s5pvs3t8Q7sn5HbbyJ6SHjYh8QzZ-II9t7j7DWks7DI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+evaluation+of+backpropagation+neural+network+and+genetic+algorithm-backpropagation+neural+network+models+for+PM2.5+concentration+prediction+based+on+aerosol+optical+depth%2C+meteorological+factors%2C+and+air+pollutants&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Gu%2C+Jilin&rft.au=Liang%2C+Shuang&rft.au=Song%2C+Qiao&rft.au=Li%2C+Yuwei&rft.date=2024-01-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=18&rft.issue=1&rft.spage=012006&rft.epage=012006&rft_id=info:doi/10.1117%2F1.JRS.18.012006&rft.externalDocID=10_1117_1_JRS_18_012006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon