Determining Optimal SAR Parameters for Quantifying Above-Ground Grass Carbon Stock in Savannah Ecosystems Using a Tree-Based Algorithm

The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing in earth systems sciences (Online) Vol. 8; no. 1; pp. 251 - 263
Main Authors Maake, Reneilwe, Mutanga, Onisimo, Chirima, Johannes George, Kganyago, Mahlatse
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2025
Subjects
Online AccessGet full text
ISSN2520-8195
2520-8209
2520-8209
DOI10.1007/s41976-024-00170-8

Cover

Abstract The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predictive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved similar results ( R 2  = 0.38, RMSE% = 31%, MAE = 6.87) and ( R 2  = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar Vegetation Index (RVI) performed marginally (1%) better ( R 2  = 0.39, RMSE = 30% and MAE = 6.77) compared to the other variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 20% ( R 2  = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, VH cor and VV cor order of importance. These findings ( R 2 values of 0.35–0.39) suggest that SAR data alone does not fully capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models can be enhanced with the incorporation of texture matrices.
AbstractList The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predictive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved similar results ( R 2 = 0.38, RMSE% = 31%, MAE = 6.87) and ( R 2 = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar Vegetation Index (RVI) performed marginally (1%) better ( R 2 = 0.39, RMSE = 30% and MAE = 6.77) compared to the other variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 20% ( R 2 = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, VH cor and VV cor order of importance. These findings ( R 2 values of 0.35–0.39) suggest that SAR data alone does not fully capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models can be enhanced with the incorporation of texture matrices.
The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predictive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved similar results ( R 2  = 0.38, RMSE% = 31%, MAE = 6.87) and ( R 2  = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar Vegetation Index (RVI) performed marginally (1%) better ( R 2  = 0.39, RMSE = 30% and MAE = 6.77) compared to the other variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 20% ( R 2  = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, VH cor and VV cor order of importance. These findings ( R 2 values of 0.35–0.39) suggest that SAR data alone does not fully capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models can be enhanced with the incorporation of texture matrices.
Author Kganyago, Mahlatse
Mutanga, Onisimo
Chirima, Johannes George
Maake, Reneilwe
Author_xml – sequence: 1
  givenname: Reneilwe
  surname: Maake
  fullname: Maake, Reneilwe
  email: maaker@arc.agric.za
  organization: Agricultural Research Council - Natural Resources and Engineering, School of Agricultural, Earth and Environmental Sciences, Geography Department, University of KwaZulu-Natal
– sequence: 2
  givenname: Onisimo
  surname: Mutanga
  fullname: Mutanga, Onisimo
  organization: School of Agricultural, Earth and Environmental Sciences, Geography Department, University of KwaZulu-Natal
– sequence: 3
  givenname: Johannes George
  surname: Chirima
  fullname: Chirima, Johannes George
  organization: Agricultural Research Council - Natural Resources and Engineering, Department of Geography, Geoinformatics & Meteorology, University of Pretoria
– sequence: 4
  givenname: Mahlatse
  surname: Kganyago
  fullname: Kganyago, Mahlatse
  organization: Department of Geography, Environmental Management and Energy Studies, University of Johannesburg
BookMark eNqNkN1OAjEQhRuDiYi8gFd9gdVpuz_0EhHRhAQVuN7M7nZhcbcl7YLhBXxui-Ct8WIyJ5nzzWTONelooxUhtwzuGEBy70ImkzgAHgYALIFgcEG6POJecJCdX81kdEX6zm0AgEspRMS75OtRtco2la70is62bdVgTefDd_qKFpvjzNHSWPq2Q91W5eFoG2Zmr4KJNTtd0IlF5-gIbWY0nbcm_6CVF7hHrXFNx7lxB9eqxtGlO8JIF1ap4AGdKuiwXhlbtevmhlyWWDvVP_ceWT6NF6PnYDqbvIyG0yDnwAZBwsNcRL4yxcVAZSChiCCURaxiiaEQISR54U0ZCpbwLM4Zj5lAWbAIyhhEj4jT3p3e4uET6zrdWv-zPaQM0mOa6SnN1KeZ_qSZDjzFT1RujXNWlf-DzqecN-uVsunG7Kz23_1FfQM8nImG
Cites_doi 10.1890/ES15-00203.1
10.1016/j.agrformet.2006.08.004
10.5194/hess-15-1675-2011
10.1146/annurev.ecolsys.28.1.517
10.1016/j.rse.2022.113369
10.1080/10106049.2022.2146764
10.1007/s10021-011-9485-z
10.3390/rs13142785
10.1080/14498596.2013.815577
10.1007/s13762-015-0750-0
10.1038/ncomms14856
10.3390/app9040655
10.1088/1748-9326/aacb39
10.1007/s11676-021-01363-3
10.5194/bg-13-2387-2016
10.1007/s10661-023-12133-5
10.1016/j.jhydrol.2020.125284
10.1109/TSMC.1973.4309314
10.1109/JSTARS.2016.2561618
10.3390/rs61010002
10.3389/fevo.2023.1146850
10.1016/j.isprsjprs.2019.06.007
10.1016/j.jeconom.2022.04.007
10.1016/j.isprsjprs.2023.03.010
10.1080/01431161.2011.620034
10.1145/2939672.2939785
10.1016/j.rse.2020.111954
10.1109/IGARSS.2018.8517743
10.3390/rs12132160
10.3390/f13030442
10.3390/rs12223784
10.1007/978-1-4614-7138-7
10.1016/j.patcog.2015.03.009
10.1109/CIBCB.2019.8791241
10.3390/rs5073611
10.1016/j.rse.2017.08.025
10.14358/PERS.80.1.43
10.1016/j.ejrs.2018.04.006
10.34133/remotesensing.0001
10.1109/TGRS.2010.2068574
10.1016/j.isprsjprs.2014.11.001
10.1038/s43017-022-00272-1
10.1038/nclimate1634
10.4102/koedoe.v32i1.465
10.1109/IGARSS.2012.6351196
10.12691/ajams-8-2-1
10.1016/j.cageo.2021.104737
10.3390/rs11040414
10.1111/ecog.06012
10.1890/06-1664
10.3390/s19245374
10.3390/rs12203351
10.1016/j.scitotenv.2021.150187
10.1111/ele.12889
10.1109/JSTARS.2013.2241735
10.3390/rs11070872
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s41976-024-00170-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2520-8209
EndPage 263
ExternalDocumentID 10.1007/s41976-024-00170-8
10_1007_s41976_024_00170_8
GrantInformation_xml – fundername: National Research Foundation (NRF) Research Chair in Land Use Planning and Management
  grantid: 84157; 84157
– fundername: Agricultural Research Council
  grantid: ISC012403000027; ISC012403000027
  funderid: http://dx.doi.org/10.13039/100007537
– fundername: Agricultural Research Council
GroupedDBID 0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
C6C
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c2018-724c354c3be238eb090d5049d6e69a433407cd24cba3172b6c12613a9d150f603
IEDL.DBID UNPAY
ISSN 2520-8195
2520-8209
IngestDate Sun Oct 26 02:04:01 EDT 2025
Wed Oct 01 06:47:52 EDT 2025
Wed Mar 05 01:43:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Above-ground grass carbon stock
Savannah ecosystems
Sentinel-1
XGBoost
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2018-724c354c3be238eb090d5049d6e69a433407cd24cba3172b6c12613a9d150f603
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s41976-024-00170-8.pdf
PageCount 13
ParticipantIDs unpaywall_primary_10_1007_s41976_024_00170_8
crossref_primary_10_1007_s41976_024_00170_8
springer_journals_10_1007_s41976_024_00170_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Remote sensing in earth systems sciences (Online)
PublicationTitleAbbrev Remote Sens Earth Syst Sci
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References L Guo (170_CR17) 2021; 398
S Sinha (170_CR67) 2015; 3
R Nasirzadehdizaji (170_CR57) 2019; 9
AM Abdi (170_CR18) 2022; 2022
170_CR8
A Qadeer (170_CR49) 2024; 36
JE Nichol (170_CR30) 2010; 49
L Chen (170_CR43) 2019; 11
170_CR65
170_CR64
T-T Wong (170_CR46) 2015; 48
K Voormansik (170_CR53) 2020; 12
SK Chan (170_CR63) 2018; 204
I Ali (170_CR56) 2013; 6
170_CR68
L Chapungu (170_CR14) 2020; 17
CS Stevens-Rumann (170_CR6) 2018; 21
I Ali (170_CR62) 2016; 10
S Luo (170_CR44) 2022; 13
RJ Scholes (170_CR2) 1997; 28
T Dube (170_CR48) 2015; 101
K Wessels (170_CR32) 2023; 284
CE Moore (170_CR3) 2016; 13
W Trollope (170_CR35) 1989; 32
A Kruger (170_CR31) 2002; 45
SM Ghosh (170_CR21) 2021; 150
RA Crabbe (170_CR51) 2019; 11
L Mucina (170_CR34) 2006; 19
G Shannon (170_CR9) 2011; 14
X Zhang (170_CR45) 2023; 235
ME Hajj (170_CR24) 2014; 6
170_CR33
M Rapiya (170_CR58) 2023; 195
M Peichl (170_CR37) 2006; 140
170_CR39
170_CR38
J Wang (170_CR61) 2019; 154
S Abbas (170_CR12) 2020; 12
NG McDowell (170_CR7) 2022; 3
E Beriaux (170_CR60) 2021; 13
P Dass (170_CR4) 2018; 13
B Walsh (170_CR11) 2017; 8
O Mutanga (170_CR66) 2023; 198
W Liu (170_CR69) 2023; 11
C Vatandaşlar (170_CR22) 2022; 33
JM Craine (170_CR10) 2013; 3
L Naidoo (170_CR29) 2016; 52
S Sinha (170_CR55) 2015; 12
170_CR41
170_CR40
170_CR47
P Zeng (170_CR23) 2022; 13
C Eisfelder (170_CR52) 2012; 33
TT Nguyen (170_CR26) 2022; 804
CD Allen (170_CR5) 2015; 6
SI Higgins (170_CR1) 2007; 88
O Hamdan (170_CR50) 2015; 27
X Wang (170_CR54) 2013; 5
Z Shen (170_CR59) 2020; 591
X Wang (170_CR27) 2014; 80
N Ghasemi (170_CR20) 2011; 1
C Adjorlolo (170_CR36) 2013; 58
Z Liao (170_CR28) 2020; 88
N Shrestha (170_CR42) 2020; 8
C Clementini (170_CR15) 2020; 12
D Mandal (170_CR25) 2020; 247
G Bindu (170_CR13) 2020; 23
L Ding (170_CR16) 2019; 19
170_CR19
References_xml – volume: 6
  start-page: 1
  issue: 8
  year: 2015
  ident: 170_CR5
  publication-title: Ecosphere
  doi: 10.1890/ES15-00203.1
– volume: 140
  start-page: 51
  issue: 1–4
  year: 2006
  ident: 170_CR37
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.08.004
– ident: 170_CR65
  doi: 10.5194/hess-15-1675-2011
– volume: 28
  start-page: 517
  issue: 1
  year: 1997
  ident: 170_CR2
  publication-title: Annu Rev Ecol Syst
  doi: 10.1146/annurev.ecolsys.28.1.517
– volume: 284
  year: 2023
  ident: 170_CR32
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2022.113369
– volume: 398
  year: 2021
  ident: 170_CR17
  publication-title: Geoderma
– ident: 170_CR41
  doi: 10.1080/10106049.2022.2146764
– volume: 14
  start-page: 1372
  year: 2011
  ident: 170_CR9
  publication-title: Ecosystems
  doi: 10.1007/s10021-011-9485-z
– volume: 13
  start-page: 2785
  issue: 14
  year: 2021
  ident: 170_CR60
  publication-title: Remote Sensing
  doi: 10.3390/rs13142785
– volume: 58
  start-page: 305
  issue: 2
  year: 2013
  ident: 170_CR36
  publication-title: J Spat Sci
  doi: 10.1080/14498596.2013.815577
– volume: 12
  start-page: 1779
  year: 2015
  ident: 170_CR55
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-015-0750-0
– volume: 8
  start-page: 14856
  issue: 1
  year: 2017
  ident: 170_CR11
  publication-title: Nat Commun
  doi: 10.1038/ncomms14856
– volume: 9
  start-page: 655
  issue: 4
  year: 2019
  ident: 170_CR57
  publication-title: Appl Sci
  doi: 10.3390/app9040655
– volume: 13
  issue: 7
  year: 2018
  ident: 170_CR4
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aacb39
– volume: 33
  start-page: 827
  issue: 3
  year: 2022
  ident: 170_CR22
  publication-title: Journal of Forestry Research
  doi: 10.1007/s11676-021-01363-3
– volume: 13
  start-page: 2387
  issue: 8
  year: 2016
  ident: 170_CR3
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-2387-2016
– volume: 45
  start-page: 87
  issue: 1
  year: 2002
  ident: 170_CR31
  publication-title: Koedoe
– volume: 195
  start-page: 1544
  issue: 12
  year: 2023
  ident: 170_CR58
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-023-12133-5
– volume: 591
  year: 2020
  ident: 170_CR59
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125284
– volume: 19
  start-page: 324
  year: 2006
  ident: 170_CR34
  publication-title: Lesotho and Swaziland Strelitzia
– ident: 170_CR68
  doi: 10.1109/TSMC.1973.4309314
– volume: 10
  start-page: 3254
  issue: 7
  year: 2016
  ident: 170_CR62
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2016.2561618
– volume: 6
  start-page: 10002
  issue: 10
  year: 2014
  ident: 170_CR24
  publication-title: Remote Sensing
  doi: 10.3390/rs61010002
– ident: 170_CR33
– volume: 36
  year: 2024
  ident: 170_CR49
  publication-title: Remote Sensing Applications: Society and Environment
– volume: 11
  start-page: 1146850
  year: 2023
  ident: 170_CR69
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2023.1146850
– volume: 3
  start-page: 38
  issue: 1a
  year: 2015
  ident: 170_CR67
  publication-title: International Journal of Advancement in Remote Sensing, GIS and Geography
– volume: 27
  start-page: 388
  issue: 3
  year: 2015
  ident: 170_CR50
  publication-title: J Trop For Sci
– volume: 154
  start-page: 189
  year: 2019
  ident: 170_CR61
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2019.06.007
– volume: 235
  start-page: 280
  issue: 1
  year: 2023
  ident: 170_CR45
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2022.04.007
– volume: 198
  start-page: 297
  year: 2023
  ident: 170_CR66
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2023.03.010
– volume: 33
  start-page: 2937
  issue: 9
  year: 2012
  ident: 170_CR52
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2011.620034
– volume: 52
  start-page: 54
  year: 2016
  ident: 170_CR29
  publication-title: Int J Appl Earth Obs Geoinf
– ident: 170_CR39
  doi: 10.1145/2939672.2939785
– volume: 247
  year: 2020
  ident: 170_CR25
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.111954
– ident: 170_CR19
  doi: 10.1109/IGARSS.2018.8517743
– volume: 12
  start-page: 2160
  issue: 13
  year: 2020
  ident: 170_CR15
  publication-title: Remote Sensing
  doi: 10.3390/rs12132160
– volume: 13
  start-page: 442
  issue: 3
  year: 2022
  ident: 170_CR23
  publication-title: Forests
  doi: 10.3390/f13030442
– volume: 12
  start-page: 3784
  issue: 22
  year: 2020
  ident: 170_CR53
  publication-title: Remote Sensing
  doi: 10.3390/rs12223784
– ident: 170_CR47
  doi: 10.1007/978-1-4614-7138-7
– volume: 48
  start-page: 2839
  issue: 9
  year: 2015
  ident: 170_CR46
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.03.009
– ident: 170_CR40
  doi: 10.1109/CIBCB.2019.8791241
– volume: 5
  start-page: 3611
  issue: 7
  year: 2013
  ident: 170_CR54
  publication-title: Remote Sensing
  doi: 10.3390/rs5073611
– volume: 204
  start-page: 931
  year: 2018
  ident: 170_CR63
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2017.08.025
– volume: 80
  start-page: 43
  issue: 1
  year: 2014
  ident: 170_CR27
  publication-title: Photogramm Eng Remote Sens
  doi: 10.14358/PERS.80.1.43
– volume: 23
  start-page: 1
  issue: 1
  year: 2020
  ident: 170_CR13
  publication-title: The Egyptian Journal of Remote Sensing and Space Science
  doi: 10.1016/j.ejrs.2018.04.006
– volume: 2022
  start-page: 1
  year: 2022
  ident: 170_CR18
  publication-title: Journal of Remote Sensing
  doi: 10.34133/remotesensing.0001
– volume: 49
  start-page: 930
  issue: 3
  year: 2010
  ident: 170_CR30
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2010.2068574
– volume: 101
  start-page: 36
  year: 2015
  ident: 170_CR48
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2014.11.001
– volume: 17
  year: 2020
  ident: 170_CR14
  publication-title: Remote Sensing Applications: Society and Environment
– volume: 3
  start-page: 294
  issue: 5
  year: 2022
  ident: 170_CR7
  publication-title: Nature Reviews Earth & Environment
  doi: 10.1038/s43017-022-00272-1
– volume: 3
  start-page: 63
  issue: 1
  year: 2013
  ident: 170_CR10
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1634
– volume: 88
  year: 2020
  ident: 170_CR28
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 32
  start-page: 67
  issue: 1
  year: 1989
  ident: 170_CR35
  publication-title: Koedoe
  doi: 10.4102/koedoe.v32i1.465
– ident: 170_CR38
  doi: 10.1109/IGARSS.2012.6351196
– volume: 8
  start-page: 39
  issue: 2
  year: 2020
  ident: 170_CR42
  publication-title: Am J Appl Math Stat
  doi: 10.12691/ajams-8-2-1
– ident: 170_CR64
– volume: 150
  year: 2021
  ident: 170_CR21
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2021.104737
– volume: 11
  start-page: 414
  issue: 4
  year: 2019
  ident: 170_CR43
  publication-title: Remote Sensing
  doi: 10.3390/rs11040414
– ident: 170_CR8
  doi: 10.1111/ecog.06012
– volume: 88
  start-page: 1119
  issue: 5
  year: 2007
  ident: 170_CR1
  publication-title: Ecology
  doi: 10.1890/06-1664
– volume: 19
  start-page: 5374
  issue: 24
  year: 2019
  ident: 170_CR16
  publication-title: Sensors
  doi: 10.3390/s19245374
– volume: 12
  start-page: 3351
  issue: 20
  year: 2020
  ident: 170_CR12
  publication-title: Remote Sensing
  doi: 10.3390/rs12203351
– volume: 804
  year: 2022
  ident: 170_CR26
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150187
– volume: 21
  start-page: 243
  issue: 2
  year: 2018
  ident: 170_CR6
  publication-title: Ecol Lett
  doi: 10.1111/ele.12889
– volume: 6
  start-page: 2265
  issue: 5
  year: 2013
  ident: 170_CR56
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2013.2241735
– volume: 13
  year: 2022
  ident: 170_CR44
  publication-title: Front Plant Sci
– volume: 1
  start-page: 776
  issue: 4
  year: 2011
  ident: 170_CR20
  publication-title: International Journal of Geomatics and Geosciences
– volume: 11
  start-page: 872
  issue: 7
  year: 2019
  ident: 170_CR51
  publication-title: Remote Sensing
  doi: 10.3390/rs11070872
SSID ssj0002993352
Score 2.2869773
Snippet The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated...
SourceID unpaywall
crossref
springer
SourceType Open Access Repository
Index Database
Publisher
StartPage 251
SubjectTerms Earth and Environmental Science
Earth System Sciences
Geography
Monitoring/Environmental Analysis
Remote Sensing/Photogrammetry
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGG0UD-jBuEbc0oM3bYRZ6sxxRJCYuAIJt0lnWoUEZsgAGv6Av9vXMhA1xuhhkjk036Gv7XvttxFyYksPItzymQ_-Y7q9NvP0WhagJuFJIB7r947bO95oOzcdt5OXydG5MN_89-cjpwLCZGASZkq9MG-ZrICkuHHM8uriPQXHqk4f0r3kXNyItHsoz5H52cxXHpo7QddIcZIMxfRN9PufeKa-QdZzgUiDGaKbZEklW6SY9yrvTrfJ-1UewQJT9B47foDhzeCJPggdaKWrZVIoUfo4EToQSKcx0SBKXxXT70yJpNcZBDOtiixKE9oc40CkPfwIaOpEdGktTmflnUfUxBNQQVuZUuwSfCdp0H9Js964O9gh7XqtVW2wvJsCi0HyHruwnNh28UUKNK2isl-WLu4HkivuC8e2cbWLJQZFAprCiniMWa7YwpfQjM-8bO-SQpImao9Q2-XA0rIV1KVOpfclEDel3Cox9I1VIqfzuQ2Hs6IZ4aI8skEiBBKhQSL0SuRsPv1hvoFGvw9fQPQH6_v_s35AVi3d4ddEmR2SwjibqCPIjnF0bNbbB-BLyOo
  priority: 102
  providerName: Springer Nature
Title Determining Optimal SAR Parameters for Quantifying Above-Ground Grass Carbon Stock in Savannah Ecosystems Using a Tree-Based Algorithm
URI https://link.springer.com/article/10.1007/s41976-024-00170-8
https://link.springer.com/content/pdf/10.1007/s41976-024-00170-8.pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2520-8209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002993352
  issn: 2520-8209
  databaseCode: AFBBN
  dateStart: 20180601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9owED5ReNj6sK1qp9GtyA9760whIWnyGGgpmjRKR5G6p8iJzUCFBIWwqf0D9nf3c36gdaqmVXuIZCkny_FdfJ_tu--IPprSAQg3XO7C_3FdXps72pYFXJNwJDQe6vOOL0N7MOl8vrFuKnRW5sJk0e7llWSe06BZmqL0ZCWnJ9vEt04bbpTDv_CMAIY7TbzeoZptAZFXqTYZjrxvuq6chd2Rvirato2WW-TOPN3RY_9UjmSXXmyilbj7KRaL3_xP_zWpcuR52Mltc5MGzfD-D1LH__20N_SqAKjMyy1qjyoq2qdfZ0XUDHpll1hllhAZe1_ZSOjgLs3QyYB-2dVG6OAjnTrFvCD-obg-24oku0gA0llPJEEcsXGKRZjN0RDA8ZGYsfMwziml1yyLYWCCXSdK8S58rGTe4nuczNPZ8oAm_fPr3oAXFRx4CGDh8FOjE5oWnkABGqig5bakhT2JtJXtio5pYjsZSggFAjjGCOywjR2dKVwJnDq1W-ZbqkZxpN4RMy0b9mOYCohWp--7ElaW0ce1Q2Aqo07Hpd78VU7U4W8pmbM59TGnfjanvlOnT6Um_OKnXf9dfKv-f-j98Hni7-mloasKZ5FtH6iaJht1BKiTBg2qef1ud9ignZ7daxR2_QCErfNz
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0oLtCF8RnxeRfudCLttLVd1gqiAj6AxF0z7YxCAi0pRcMP-N3eKYWoMUYXTbqY3MWcmTnnztwHIcdM2CjCdYc6yH9UtdemtlrLHKmJ2wIRD9V9R6Np1TrGzZP5lJfJUbkw397vz0aGhoRJkUloVuqF2otkydBsW21Cz_Lm9yl4rKr0IdVLzkSPSD0P5TkyP5v5ykOzR9AVUhxHQz554_3-J56prpHVXCCCO0V0nSzIaIMU817l3ckmeb_MI1jQFNzhjh_g8Jb7CPdcBVqpapmAShQexlwFAqk0JnCD-FVSdc8UCbhKUDCDx5MgjqCV4oEIPfzhqKkj3oVKGE_LO48giycADu1ESnqBfCfA7b_ESS_tDrZIp1ppezWad1OgIZK8Tc91I2QmfoFEmpZB2SkLE_0DYUnL4QZj6NqFAgcFHDWFHlihht4V445Azfhsldk2KURxJHcIMNNCLHUmUV2qVHpHIOJZKTctRH2jl8jJbG794bRohj8vj5wh4SMSfoaEb5fI6Wz6_XwDjX4fPofoD9Z3_2f9iBRr7Ubdr183b_fIsq66_WYRZ_ukkCZjeYASJA0Os7X3AXroy9k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0oJj4WxmfE5yzc6QToy3aJPMQXokDirpl2BiGBlpSi4Qf8bs-UQjAxRhdNupjcNHOnc86duedeQs51YYOEaw5zgH9MtddmtlrLHNDEbQGP--q847Fu1drG3av5uqDiT7LdZ1eSU02DqtIUxLmh6OTmwjejABhlwBeWFIBh9jJZMYBuqodBySrNT1mw2SpRkeowZyJOUpdGqXLmZzPf0Wn2HRtkbRwM-eSD9_sL6FPdIpspbaTFqZ-3yZIMdsha2sG8O9kln-U0rwWm6BP2gQGGN4svtMFV-pWqoUnBT-nzmKv0ICVuokUvfJdMnT4Fgt5EoNG0xCMvDGgzxjZJe3jhYNoB79KKH06LPo9okmVAOW1FUrJroKCgxf5bGPXi7mCPtKuVVqnG0h4LzAf02-xKM3zdxONJgLf08k5emIgahCUthxu6joDPFxjkcTANzbP8AmIunTsCTLJj5fV9kgnCQB4QqpsWPKzpEpxTCewdgXWQFHgr-GA9WpZczObWHU5LabjzosmJJ1x4wk084dpZcjmbfjf9rUa_D5-76A_WD_9n_YysNspV9-G2fn9E1jXVAjhJQzsmmTgayxPwktg7TZbeF1Y21CA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50fVAfPFDxJg--adbdXraPddcDwdsFfSppEw9c26V2Ff0B_m6_9FhURBQfCoEOIc1MM1-SmW-I1kzpAoQbHvfg_7gur81dbcsCrkm4EhqP9HnH4ZGz37EOLu3LIWpXuTB5tHt1JVnkNGiWpjjb7MnrzUHim9WEG-XwLzwngOFuHa-HacSxgchrNNI5OvGvdF05G7sjfVU0aBsNr8yd-b6jz_6pGsk4jfbjnnh5Ft3uB_-zO0mqGnkRdnJf72dhPXr9Qur430-bookSoDK_sKhpGlLxDL21y6gZ9MqOsco8QOTcP2MnQgd3aYZOBvTLTvtCBx_p1Cnmh8mT4vpsK5ZsLwVIZy2RhknMzjMswuwODQEcH4tbthMlBaX0I8tjGJhgF6lSfBs-VjK_e5Okd9ntwyx1dncuWvu8rODAIwALl28ZVmTaeEIFaKDChteQNvYk0lGOJyzTxHYykhAKBXCMETpREzs6U3gSOPXaaZhzVIuTWM0TM20H9mOYCohWp-97ElaW08c1I2AqY4HWK70FvYKoIxhQMudzGmBOg3xOA3eBNipNBOVP-_iz-ED9v-h98W_iSzRm6KrCeWTbMtWytK9WAHWycLW05HdJM_Ea
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Optimal+SAR+Parameters+for+Quantifying+Above-Ground+Grass+Carbon+Stock+in+Savannah+Ecosystems+Using+a+Tree-Based+Algorithm&rft.jtitle=Remote+sensing+in+earth+systems+sciences+%28Online%29&rft.au=Maake%2C+Reneilwe&rft.au=Mutanga%2C+Onisimo&rft.au=Chirima%2C+Johannes+George&rft.au=Kganyago%2C+Mahlatse&rft.date=2025-03-01&rft.issn=2520-8195&rft.eissn=2520-8209&rft.volume=8&rft.issue=1&rft.spage=251&rft.epage=263&rft_id=info:doi/10.1007%2Fs41976-024-00170-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41976_024_00170_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8195&client=summon