Determining Optimal SAR Parameters for Quantifying Above-Ground Grass Carbon Stock in Savannah Ecosystems Using a Tree-Based Algorithm
The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in...
        Saved in:
      
    
          | Published in | Remote sensing in earth systems sciences (Online) Vol. 8; no. 1; pp. 251 - 263 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.03.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2520-8195 2520-8209 2520-8209  | 
| DOI | 10.1007/s41976-024-00170-8 | 
Cover
| Abstract | The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predictive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved similar results (
R
2
 = 0.38, RMSE% = 31%, MAE = 6.87) and (
R
2
 = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar Vegetation Index (RVI) performed marginally (1%) better (
R
2
 = 0.39, RMSE = 30% and MAE = 6.77) compared to the other variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 20% (
R
2
 = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, VH
cor
and VV
cor
order of importance. These findings (
R
2
values of 0.35–0.39) suggest that SAR data alone does not fully capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models can be enhanced with the incorporation of texture matrices. | 
    
|---|---|
| AbstractList | The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predictive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved similar results ( R 2 = 0.38, RMSE% = 31%, MAE = 6.87) and ( R 2 = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar Vegetation Index (RVI) performed marginally (1%) better ( R 2 = 0.39, RMSE = 30% and MAE = 6.77) compared to the other variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 20% ( R 2 = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, VH cor and VV cor order of importance. These findings ( R 2 values of 0.35–0.39) suggest that SAR data alone does not fully capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models can be enhanced with the incorporation of texture matrices. The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated with future climate change. This study investigated the sensitivity of Synthetic Aperture Radar (SAR)-derived parameters to predict AGGCS in a savannah ecosystem in Kruger National Park, South Africa. Particularly, we investigated the capabilities of Sentinel-1 derived parameters, including backscatter coefficients, intensity ratios, normalised radar backscatter, arithmetic computations, and the XGBoost tree-based algorithm, to predict the AGGCS. We further tested if incorporating texture matrices (i.e. Gray Level Co-Occurrence Matrix) can enhance the predictive capability of the models. We found that the linear polarisation (i.e. VV) and the intensity ratio (i.e. VH/VV) achieved similar results ( R 2 = 0.38, RMSE% = 31%, MAE = 6.87) and ( R 2 = 0.37, RMSE = 31%, MAE = 8.80) respectively. The Radar Vegetation Index (RVI) performed marginally (1%) better ( R 2 = 0.39, RMSE = 30% and MAE = 6.77) compared to the other variables. Nevertheless, the incorporation texture matrix into the model enhanced prediction capability by approximately 20% ( R 2 = 0.60, RMSE% = 20%, MAE = 3.91). Furthermore, the most influential predictors for AGGCS estimation were RVI, VH cor and VV cor order of importance. These findings ( R 2 values of 0.35–0.39) suggest that SAR data alone does not fully capture the variability in above-ground grass carbon stock, particularly in the complexly configured savannah ecosystems. Nevertheless, the results further suggest that the prediction accuracy of SAR-based above-ground grass carbon stock models can be enhanced with the incorporation of texture matrices.  | 
    
| Author | Kganyago, Mahlatse Mutanga, Onisimo Chirima, Johannes George Maake, Reneilwe  | 
    
| Author_xml | – sequence: 1 givenname: Reneilwe surname: Maake fullname: Maake, Reneilwe email: maaker@arc.agric.za organization: Agricultural Research Council - Natural Resources and Engineering, School of Agricultural, Earth and Environmental Sciences, Geography Department, University of KwaZulu-Natal – sequence: 2 givenname: Onisimo surname: Mutanga fullname: Mutanga, Onisimo organization: School of Agricultural, Earth and Environmental Sciences, Geography Department, University of KwaZulu-Natal – sequence: 3 givenname: Johannes George surname: Chirima fullname: Chirima, Johannes George organization: Agricultural Research Council - Natural Resources and Engineering, Department of Geography, Geoinformatics & Meteorology, University of Pretoria – sequence: 4 givenname: Mahlatse surname: Kganyago fullname: Kganyago, Mahlatse organization: Department of Geography, Environmental Management and Energy Studies, University of Johannesburg  | 
    
| BookMark | eNqNkN1OAjEQhRuDiYi8gFd9gdVpuz_0EhHRhAQVuN7M7nZhcbcl7YLhBXxui-Ct8WIyJ5nzzWTONelooxUhtwzuGEBy70ImkzgAHgYALIFgcEG6POJecJCdX81kdEX6zm0AgEspRMS75OtRtco2la70is62bdVgTefDd_qKFpvjzNHSWPq2Q91W5eFoG2Zmr4KJNTtd0IlF5-gIbWY0nbcm_6CVF7hHrXFNx7lxB9eqxtGlO8JIF1ap4AGdKuiwXhlbtevmhlyWWDvVP_ceWT6NF6PnYDqbvIyG0yDnwAZBwsNcRL4yxcVAZSChiCCURaxiiaEQISR54U0ZCpbwLM4Zj5lAWbAIyhhEj4jT3p3e4uET6zrdWv-zPaQM0mOa6SnN1KeZ_qSZDjzFT1RujXNWlf-DzqecN-uVsunG7Kz23_1FfQM8nImG | 
    
| Cites_doi | 10.1890/ES15-00203.1 10.1016/j.agrformet.2006.08.004 10.5194/hess-15-1675-2011 10.1146/annurev.ecolsys.28.1.517 10.1016/j.rse.2022.113369 10.1080/10106049.2022.2146764 10.1007/s10021-011-9485-z 10.3390/rs13142785 10.1080/14498596.2013.815577 10.1007/s13762-015-0750-0 10.1038/ncomms14856 10.3390/app9040655 10.1088/1748-9326/aacb39 10.1007/s11676-021-01363-3 10.5194/bg-13-2387-2016 10.1007/s10661-023-12133-5 10.1016/j.jhydrol.2020.125284 10.1109/TSMC.1973.4309314 10.1109/JSTARS.2016.2561618 10.3390/rs61010002 10.3389/fevo.2023.1146850 10.1016/j.isprsjprs.2019.06.007 10.1016/j.jeconom.2022.04.007 10.1016/j.isprsjprs.2023.03.010 10.1080/01431161.2011.620034 10.1145/2939672.2939785 10.1016/j.rse.2020.111954 10.1109/IGARSS.2018.8517743 10.3390/rs12132160 10.3390/f13030442 10.3390/rs12223784 10.1007/978-1-4614-7138-7 10.1016/j.patcog.2015.03.009 10.1109/CIBCB.2019.8791241 10.3390/rs5073611 10.1016/j.rse.2017.08.025 10.14358/PERS.80.1.43 10.1016/j.ejrs.2018.04.006 10.34133/remotesensing.0001 10.1109/TGRS.2010.2068574 10.1016/j.isprsjprs.2014.11.001 10.1038/s43017-022-00272-1 10.1038/nclimate1634 10.4102/koedoe.v32i1.465 10.1109/IGARSS.2012.6351196 10.12691/ajams-8-2-1 10.1016/j.cageo.2021.104737 10.3390/rs11040414 10.1111/ecog.06012 10.1890/06-1664 10.3390/s19245374 10.3390/rs12203351 10.1016/j.scitotenv.2021.150187 10.1111/ele.12889 10.1109/JSTARS.2013.2241735 10.3390/rs11070872  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 | 
    
| Copyright_xml | – notice: The Author(s) 2024 | 
    
| DBID | C6C AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1007/s41976-024-00170-8 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2520-8209 | 
    
| EndPage | 263 | 
    
| ExternalDocumentID | 10.1007/s41976-024-00170-8 10_1007_s41976_024_00170_8  | 
    
| GrantInformation_xml | – fundername: National Research Foundation (NRF) Research Chair in Land Use Planning and Management grantid: 84157; 84157 – fundername: Agricultural Research Council grantid: ISC012403000027; ISC012403000027 funderid: http://dx.doi.org/10.13039/100007537 – fundername: Agricultural Research Council  | 
    
| GroupedDBID | 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDBE ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADKNI ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA C6C CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c2018-724c354c3be238eb090d5049d6e69a433407cd24cba3172b6c12613a9d150f603 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2520-8195 2520-8209  | 
    
| IngestDate | Sun Oct 26 02:04:01 EDT 2025 Wed Oct 01 06:47:52 EDT 2025 Wed Mar 05 01:43:32 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Above-ground grass carbon stock Savannah ecosystems Sentinel-1 XGBoost  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2018-724c354c3be238eb090d5049d6e69a433407cd24cba3172b6c12613a9d150f603 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s41976-024-00170-8.pdf | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s41976_024_00170_8 crossref_primary_10_1007_s41976_024_00170_8 springer_journals_10_1007_s41976_024_00170_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250300 | 
    
| PublicationDateYYYYMMDD | 2025-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham | 
    
| PublicationTitle | Remote sensing in earth systems sciences (Online) | 
    
| PublicationTitleAbbrev | Remote Sens Earth Syst Sci | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer International Publishing | 
    
| Publisher_xml | – name: Springer International Publishing | 
    
| References | L Guo (170_CR17) 2021; 398 S Sinha (170_CR67) 2015; 3 R Nasirzadehdizaji (170_CR57) 2019; 9 AM Abdi (170_CR18) 2022; 2022 170_CR8 A Qadeer (170_CR49) 2024; 36 JE Nichol (170_CR30) 2010; 49 L Chen (170_CR43) 2019; 11 170_CR65 170_CR64 T-T Wong (170_CR46) 2015; 48 K Voormansik (170_CR53) 2020; 12 SK Chan (170_CR63) 2018; 204 I Ali (170_CR56) 2013; 6 170_CR68 L Chapungu (170_CR14) 2020; 17 CS Stevens-Rumann (170_CR6) 2018; 21 I Ali (170_CR62) 2016; 10 S Luo (170_CR44) 2022; 13 RJ Scholes (170_CR2) 1997; 28 T Dube (170_CR48) 2015; 101 K Wessels (170_CR32) 2023; 284 CE Moore (170_CR3) 2016; 13 W Trollope (170_CR35) 1989; 32 A Kruger (170_CR31) 2002; 45 SM Ghosh (170_CR21) 2021; 150 RA Crabbe (170_CR51) 2019; 11 L Mucina (170_CR34) 2006; 19 G Shannon (170_CR9) 2011; 14 X Zhang (170_CR45) 2023; 235 ME Hajj (170_CR24) 2014; 6 170_CR33 M Rapiya (170_CR58) 2023; 195 M Peichl (170_CR37) 2006; 140 170_CR39 170_CR38 J Wang (170_CR61) 2019; 154 S Abbas (170_CR12) 2020; 12 NG McDowell (170_CR7) 2022; 3 E Beriaux (170_CR60) 2021; 13 P Dass (170_CR4) 2018; 13 B Walsh (170_CR11) 2017; 8 O Mutanga (170_CR66) 2023; 198 W Liu (170_CR69) 2023; 11 C Vatandaşlar (170_CR22) 2022; 33 JM Craine (170_CR10) 2013; 3 L Naidoo (170_CR29) 2016; 52 S Sinha (170_CR55) 2015; 12 170_CR41 170_CR40 170_CR47 P Zeng (170_CR23) 2022; 13 C Eisfelder (170_CR52) 2012; 33 TT Nguyen (170_CR26) 2022; 804 CD Allen (170_CR5) 2015; 6 SI Higgins (170_CR1) 2007; 88 O Hamdan (170_CR50) 2015; 27 X Wang (170_CR54) 2013; 5 Z Shen (170_CR59) 2020; 591 X Wang (170_CR27) 2014; 80 N Ghasemi (170_CR20) 2011; 1 C Adjorlolo (170_CR36) 2013; 58 Z Liao (170_CR28) 2020; 88 N Shrestha (170_CR42) 2020; 8 C Clementini (170_CR15) 2020; 12 D Mandal (170_CR25) 2020; 247 G Bindu (170_CR13) 2020; 23 L Ding (170_CR16) 2019; 19 170_CR19  | 
    
| References_xml | – volume: 6 start-page: 1 issue: 8 year: 2015 ident: 170_CR5 publication-title: Ecosphere doi: 10.1890/ES15-00203.1 – volume: 140 start-page: 51 issue: 1–4 year: 2006 ident: 170_CR37 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2006.08.004 – ident: 170_CR65 doi: 10.5194/hess-15-1675-2011 – volume: 28 start-page: 517 issue: 1 year: 1997 ident: 170_CR2 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.ecolsys.28.1.517 – volume: 284 year: 2023 ident: 170_CR32 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2022.113369 – volume: 398 year: 2021 ident: 170_CR17 publication-title: Geoderma – ident: 170_CR41 doi: 10.1080/10106049.2022.2146764 – volume: 14 start-page: 1372 year: 2011 ident: 170_CR9 publication-title: Ecosystems doi: 10.1007/s10021-011-9485-z – volume: 13 start-page: 2785 issue: 14 year: 2021 ident: 170_CR60 publication-title: Remote Sensing doi: 10.3390/rs13142785 – volume: 58 start-page: 305 issue: 2 year: 2013 ident: 170_CR36 publication-title: J Spat Sci doi: 10.1080/14498596.2013.815577 – volume: 12 start-page: 1779 year: 2015 ident: 170_CR55 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-015-0750-0 – volume: 8 start-page: 14856 issue: 1 year: 2017 ident: 170_CR11 publication-title: Nat Commun doi: 10.1038/ncomms14856 – volume: 9 start-page: 655 issue: 4 year: 2019 ident: 170_CR57 publication-title: Appl Sci doi: 10.3390/app9040655 – volume: 13 issue: 7 year: 2018 ident: 170_CR4 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aacb39 – volume: 33 start-page: 827 issue: 3 year: 2022 ident: 170_CR22 publication-title: Journal of Forestry Research doi: 10.1007/s11676-021-01363-3 – volume: 13 start-page: 2387 issue: 8 year: 2016 ident: 170_CR3 publication-title: Biogeosciences doi: 10.5194/bg-13-2387-2016 – volume: 45 start-page: 87 issue: 1 year: 2002 ident: 170_CR31 publication-title: Koedoe – volume: 195 start-page: 1544 issue: 12 year: 2023 ident: 170_CR58 publication-title: Environ Monit Assess doi: 10.1007/s10661-023-12133-5 – volume: 591 year: 2020 ident: 170_CR59 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125284 – volume: 19 start-page: 324 year: 2006 ident: 170_CR34 publication-title: Lesotho and Swaziland Strelitzia – ident: 170_CR68 doi: 10.1109/TSMC.1973.4309314 – volume: 10 start-page: 3254 issue: 7 year: 2016 ident: 170_CR62 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2016.2561618 – volume: 6 start-page: 10002 issue: 10 year: 2014 ident: 170_CR24 publication-title: Remote Sensing doi: 10.3390/rs61010002 – ident: 170_CR33 – volume: 36 year: 2024 ident: 170_CR49 publication-title: Remote Sensing Applications: Society and Environment – volume: 11 start-page: 1146850 year: 2023 ident: 170_CR69 publication-title: Front Ecol Evol doi: 10.3389/fevo.2023.1146850 – volume: 3 start-page: 38 issue: 1a year: 2015 ident: 170_CR67 publication-title: International Journal of Advancement in Remote Sensing, GIS and Geography – volume: 27 start-page: 388 issue: 3 year: 2015 ident: 170_CR50 publication-title: J Trop For Sci – volume: 154 start-page: 189 year: 2019 ident: 170_CR61 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2019.06.007 – volume: 235 start-page: 280 issue: 1 year: 2023 ident: 170_CR45 publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2022.04.007 – volume: 198 start-page: 297 year: 2023 ident: 170_CR66 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2023.03.010 – volume: 33 start-page: 2937 issue: 9 year: 2012 ident: 170_CR52 publication-title: Int J Remote Sens doi: 10.1080/01431161.2011.620034 – volume: 52 start-page: 54 year: 2016 ident: 170_CR29 publication-title: Int J Appl Earth Obs Geoinf – ident: 170_CR39 doi: 10.1145/2939672.2939785 – volume: 247 year: 2020 ident: 170_CR25 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111954 – ident: 170_CR19 doi: 10.1109/IGARSS.2018.8517743 – volume: 12 start-page: 2160 issue: 13 year: 2020 ident: 170_CR15 publication-title: Remote Sensing doi: 10.3390/rs12132160 – volume: 13 start-page: 442 issue: 3 year: 2022 ident: 170_CR23 publication-title: Forests doi: 10.3390/f13030442 – volume: 12 start-page: 3784 issue: 22 year: 2020 ident: 170_CR53 publication-title: Remote Sensing doi: 10.3390/rs12223784 – ident: 170_CR47 doi: 10.1007/978-1-4614-7138-7 – volume: 48 start-page: 2839 issue: 9 year: 2015 ident: 170_CR46 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.03.009 – ident: 170_CR40 doi: 10.1109/CIBCB.2019.8791241 – volume: 5 start-page: 3611 issue: 7 year: 2013 ident: 170_CR54 publication-title: Remote Sensing doi: 10.3390/rs5073611 – volume: 204 start-page: 931 year: 2018 ident: 170_CR63 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2017.08.025 – volume: 80 start-page: 43 issue: 1 year: 2014 ident: 170_CR27 publication-title: Photogramm Eng Remote Sens doi: 10.14358/PERS.80.1.43 – volume: 23 start-page: 1 issue: 1 year: 2020 ident: 170_CR13 publication-title: The Egyptian Journal of Remote Sensing and Space Science doi: 10.1016/j.ejrs.2018.04.006 – volume: 2022 start-page: 1 year: 2022 ident: 170_CR18 publication-title: Journal of Remote Sensing doi: 10.34133/remotesensing.0001 – volume: 49 start-page: 930 issue: 3 year: 2010 ident: 170_CR30 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2010.2068574 – volume: 101 start-page: 36 year: 2015 ident: 170_CR48 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2014.11.001 – volume: 17 year: 2020 ident: 170_CR14 publication-title: Remote Sensing Applications: Society and Environment – volume: 3 start-page: 294 issue: 5 year: 2022 ident: 170_CR7 publication-title: Nature Reviews Earth & Environment doi: 10.1038/s43017-022-00272-1 – volume: 3 start-page: 63 issue: 1 year: 2013 ident: 170_CR10 publication-title: Nat Clim Chang doi: 10.1038/nclimate1634 – volume: 88 year: 2020 ident: 170_CR28 publication-title: Int J Appl Earth Obs Geoinf – volume: 32 start-page: 67 issue: 1 year: 1989 ident: 170_CR35 publication-title: Koedoe doi: 10.4102/koedoe.v32i1.465 – ident: 170_CR38 doi: 10.1109/IGARSS.2012.6351196 – volume: 8 start-page: 39 issue: 2 year: 2020 ident: 170_CR42 publication-title: Am J Appl Math Stat doi: 10.12691/ajams-8-2-1 – ident: 170_CR64 – volume: 150 year: 2021 ident: 170_CR21 publication-title: Comput Geosci doi: 10.1016/j.cageo.2021.104737 – volume: 11 start-page: 414 issue: 4 year: 2019 ident: 170_CR43 publication-title: Remote Sensing doi: 10.3390/rs11040414 – ident: 170_CR8 doi: 10.1111/ecog.06012 – volume: 88 start-page: 1119 issue: 5 year: 2007 ident: 170_CR1 publication-title: Ecology doi: 10.1890/06-1664 – volume: 19 start-page: 5374 issue: 24 year: 2019 ident: 170_CR16 publication-title: Sensors doi: 10.3390/s19245374 – volume: 12 start-page: 3351 issue: 20 year: 2020 ident: 170_CR12 publication-title: Remote Sensing doi: 10.3390/rs12203351 – volume: 804 year: 2022 ident: 170_CR26 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150187 – volume: 21 start-page: 243 issue: 2 year: 2018 ident: 170_CR6 publication-title: Ecol Lett doi: 10.1111/ele.12889 – volume: 6 start-page: 2265 issue: 5 year: 2013 ident: 170_CR56 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2013.2241735 – volume: 13 year: 2022 ident: 170_CR44 publication-title: Front Plant Sci – volume: 1 start-page: 776 issue: 4 year: 2011 ident: 170_CR20 publication-title: International Journal of Geomatics and Geosciences – volume: 11 start-page: 872 issue: 7 year: 2019 ident: 170_CR51 publication-title: Remote Sensing doi: 10.3390/rs11070872  | 
    
| SSID | ssj0002993352 | 
    
| Score | 2.2869773 | 
    
| Snippet | The quantification and monitoring of above-ground grass carbon stock (AGGCS) will inform emission reduction policies and aid in minimising the risks associated... | 
    
| SourceID | unpaywall crossref springer  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 251 | 
    
| SubjectTerms | Earth and Environmental Science Earth System Sciences Geography Monitoring/Environmental Analysis Remote Sensing/Photogrammetry  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGG0UD-jBuEbc0oM3bYRZ6sxxRJCYuAIJt0lnWoUEZsgAGv6Av9vXMhA1xuhhkjk036Gv7XvttxFyYksPItzymQ_-Y7q9NvP0WhagJuFJIB7r947bO95oOzcdt5OXydG5MN_89-cjpwLCZGASZkq9MG-ZrICkuHHM8uriPQXHqk4f0r3kXNyItHsoz5H52cxXHpo7QddIcZIMxfRN9PufeKa-QdZzgUiDGaKbZEklW6SY9yrvTrfJ-1UewQJT9B47foDhzeCJPggdaKWrZVIoUfo4EToQSKcx0SBKXxXT70yJpNcZBDOtiixKE9oc40CkPfwIaOpEdGktTmflnUfUxBNQQVuZUuwSfCdp0H9Js964O9gh7XqtVW2wvJsCi0HyHruwnNh28UUKNK2isl-WLu4HkivuC8e2cbWLJQZFAprCiniMWa7YwpfQjM-8bO-SQpImao9Q2-XA0rIV1KVOpfclEDel3Cox9I1VIqfzuQ2Hs6IZ4aI8skEiBBKhQSL0SuRsPv1hvoFGvw9fQPQH6_v_s35AVi3d4ddEmR2SwjibqCPIjnF0bNbbB-BLyOo priority: 102 providerName: Springer Nature  | 
    
| Title | Determining Optimal SAR Parameters for Quantifying Above-Ground Grass Carbon Stock in Savannah Ecosystems Using a Tree-Based Algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s41976-024-00170-8 https://link.springer.com/content/pdf/10.1007/s41976-024-00170-8.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2520-8209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002993352 issn: 2520-8209 databaseCode: AFBBN dateStart: 20180601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9owED5ReNj6sK1qp9GtyA9760whIWnyGGgpmjRKR5G6p8iJzUCFBIWwqf0D9nf3c36gdaqmVXuIZCkny_FdfJ_tu--IPprSAQg3XO7C_3FdXps72pYFXJNwJDQe6vOOL0N7MOl8vrFuKnRW5sJk0e7llWSe06BZmqL0ZCWnJ9vEt04bbpTDv_CMAIY7TbzeoZptAZFXqTYZjrxvuq6chd2Rvirato2WW-TOPN3RY_9UjmSXXmyilbj7KRaL3_xP_zWpcuR52Mltc5MGzfD-D1LH__20N_SqAKjMyy1qjyoq2qdfZ0XUDHpll1hllhAZe1_ZSOjgLs3QyYB-2dVG6OAjnTrFvCD-obg-24oku0gA0llPJEEcsXGKRZjN0RDA8ZGYsfMwziml1yyLYWCCXSdK8S58rGTe4nuczNPZ8oAm_fPr3oAXFRx4CGDh8FOjE5oWnkABGqig5bakhT2JtJXtio5pYjsZSggFAjjGCOywjR2dKVwJnDq1W-ZbqkZxpN4RMy0b9mOYCohWp--7ElaW0ce1Q2Aqo07Hpd78VU7U4W8pmbM59TGnfjanvlOnT6Um_OKnXf9dfKv-f-j98Hni7-mloasKZ5FtH6iaJht1BKiTBg2qef1ud9ignZ7daxR2_QCErfNz | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0oLtCF8RnxeRfudCLttLVd1gqiAj6AxF0z7YxCAi0pRcMP-N3eKYWoMUYXTbqY3MWcmTnnztwHIcdM2CjCdYc6yH9UtdemtlrLHKmJ2wIRD9V9R6Np1TrGzZP5lJfJUbkw397vz0aGhoRJkUloVuqF2otkydBsW21Cz_Lm9yl4rKr0IdVLzkSPSD0P5TkyP5v5ykOzR9AVUhxHQz554_3-J56prpHVXCCCO0V0nSzIaIMU817l3ckmeb_MI1jQFNzhjh_g8Jb7CPdcBVqpapmAShQexlwFAqk0JnCD-FVSdc8UCbhKUDCDx5MgjqCV4oEIPfzhqKkj3oVKGE_LO48giycADu1ESnqBfCfA7b_ESS_tDrZIp1ppezWad1OgIZK8Tc91I2QmfoFEmpZB2SkLE_0DYUnL4QZj6NqFAgcFHDWFHlihht4V445Azfhsldk2KURxJHcIMNNCLHUmUV2qVHpHIOJZKTctRH2jl8jJbG794bRohj8vj5wh4SMSfoaEb5fI6Wz6_XwDjX4fPofoD9Z3_2f9iBRr7Ubdr183b_fIsq66_WYRZ_ukkCZjeYASJA0Os7X3AXroy9k | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0oJj4WxmfE5yzc6QToy3aJPMQXokDirpl2BiGBlpSi4Qf8bs-UQjAxRhdNupjcNHOnc86duedeQs51YYOEaw5zgH9MtddmtlrLHNDEbQGP--q847Fu1drG3av5uqDiT7LdZ1eSU02DqtIUxLmh6OTmwjejABhlwBeWFIBh9jJZMYBuqodBySrNT1mw2SpRkeowZyJOUpdGqXLmZzPf0Wn2HRtkbRwM-eSD9_sL6FPdIpspbaTFqZ-3yZIMdsha2sG8O9kln-U0rwWm6BP2gQGGN4svtMFV-pWqoUnBT-nzmKv0ICVuokUvfJdMnT4Fgt5EoNG0xCMvDGgzxjZJe3jhYNoB79KKH06LPo9okmVAOW1FUrJroKCgxf5bGPXi7mCPtKuVVqnG0h4LzAf02-xKM3zdxONJgLf08k5emIgahCUthxu6joDPFxjkcTANzbP8AmIunTsCTLJj5fV9kgnCQB4QqpsWPKzpEpxTCewdgXWQFHgr-GA9WpZczObWHU5LabjzosmJJ1x4wk084dpZcjmbfjf9rUa_D5-76A_WD_9n_YysNspV9-G2fn9E1jXVAjhJQzsmmTgayxPwktg7TZbeF1Y21CA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB50fVAfPFDxJg--adbdXraPddcDwdsFfSppEw9c26V2Ff0B_m6_9FhURBQfCoEOIc1MM1-SmW-I1kzpAoQbHvfg_7gur81dbcsCrkm4EhqP9HnH4ZGz37EOLu3LIWpXuTB5tHt1JVnkNGiWpjjb7MnrzUHim9WEG-XwLzwngOFuHa-HacSxgchrNNI5OvGvdF05G7sjfVU0aBsNr8yd-b6jz_6pGsk4jfbjnnh5Ft3uB_-zO0mqGnkRdnJf72dhPXr9Qur430-bookSoDK_sKhpGlLxDL21y6gZ9MqOsco8QOTcP2MnQgd3aYZOBvTLTvtCBx_p1Cnmh8mT4vpsK5ZsLwVIZy2RhknMzjMswuwODQEcH4tbthMlBaX0I8tjGJhgF6lSfBs-VjK_e5Okd9ntwyx1dncuWvu8rODAIwALl28ZVmTaeEIFaKDChteQNvYk0lGOJyzTxHYykhAKBXCMETpREzs6U3gSOPXaaZhzVIuTWM0TM20H9mOYCohWp-97ElaW08c1I2AqY4HWK70FvYKoIxhQMudzGmBOg3xOA3eBNipNBOVP-_iz-ED9v-h98W_iSzRm6KrCeWTbMtWytK9WAHWycLW05HdJM_Ea | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Optimal+SAR+Parameters+for+Quantifying+Above-Ground+Grass+Carbon+Stock+in+Savannah+Ecosystems+Using+a+Tree-Based+Algorithm&rft.jtitle=Remote+sensing+in+earth+systems+sciences+%28Online%29&rft.au=Maake%2C+Reneilwe&rft.au=Mutanga%2C+Onisimo&rft.au=Chirima%2C+Johannes+George&rft.au=Kganyago%2C+Mahlatse&rft.date=2025-03-01&rft.issn=2520-8195&rft.eissn=2520-8209&rft.volume=8&rft.issue=1&rft.spage=251&rft.epage=263&rft_id=info:doi/10.1007%2Fs41976-024-00170-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41976_024_00170_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8195&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8195&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8195&client=summon |