Estimating Effectiveness of Preventing Measures for 2019 Novel Coronavirus Diseases (COVID-19)

This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple infection prevention measures. In the model, 1120 virtualresidents agents live in two towns where they commute to office or school and visiting s...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japanese Society for Artificial Intelligence Vol. 35; no. 3; pp. D-K28_1 - 8
Main Author Kurahashi, Setsuya
Format Journal Article
LanguageJapanese
Published Tokyo The Japanese Society for Artificial Intelligence 01.05.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1346-0714
1346-8030
1346-8030
DOI10.1527/tjsai.D-K28

Cover

Abstract This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple infection prevention measures. In the model, 1120 virtualresidents agents live in two towns where they commute to office or school and visiting stores. The model simulates aninfection process in which they were exposed to the risk of transmission of the novel coronavirus. The results of theexperiments showed that individual infection prevention measures (commuting, teleworking, class closing, contactrate reduction, staying at home after fever) alone or partially combined them do not produce significant effects. Onthe other hand, if comprehensive measures were taken, it was confirmed that the number of deaths, the infectionrate, and the number of severe hospitalised patients per day were decreased significantly at the median and maximumrespectively.
AbstractList This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple infection prevention measures. In the model, 1120 virtualresidents agents live in two towns where they commute to office or school and visiting stores. The model simulates aninfection process in which they were exposed to the risk of transmission of the novel coronavirus. The results of theexperiments showed that individual infection prevention measures (commuting, teleworking, class closing, contactrate reduction, staying at home after fever) alone or partially combined them do not produce significant effects. Onthe other hand, if comprehensive measures were taken, it was confirmed that the number of deaths, the infectionrate, and the number of severe hospitalised patients per day were decreased significantly at the median and maximumrespectively.
Author Kurahashi, Setsuya
Author_xml – sequence: 1
  fullname: Kurahashi, Setsuya
  organization: Graduate School of Business Sciences, University of Tsukuba
BookMark eNptkE1P3DAQhq0KpNKFU_9ApF5aQRZPnA_niHaXFi1fB-BYy0nG1NvUXmxnK_59TXbhgHoZz2ie99X4_UT2jDVIyGegUyiy6jSsvNTTebrM-AdyACwvU04Z3dv1tIL8IznyXjeUQsZyoMUB-bnwQf-RQZvHZKEUtkFv0KD3iVXJrcM4jLsrlH5w6BNlXZJRqJNru8E-mVlnjdxoN_hkrn2kIvN1dvNwMU-h_nZI9pXsPR7t3gm5P1_czX6klzffL2Znl2kbvXhaAS9Y2dAKWw5ly7DhTQegSsY6ZLxROWDdgOKARZFnVdQwLEvW5LzrWFGzCTnZ-g5mLZ__yr4Xaxf_5Z4FUPESjxjjEZ34nfGIf9nia2efBvRBrOzgTLxQZKyusjyvRwq2VOus9w6VaHWIUVkTnNT9O-e5WI6a43ea_9_xSp9t6ZUP8hHfWOmCbnvcsawQ7KWMmrdd-0s6gYb9A9pnngM
CitedBy_id crossref_primary_10_1080_18824889_2021_2012398
crossref_primary_10_3934_mbe_2022047
crossref_primary_10_1371_journal_pone_0242766
Cites_doi 10.1056/NEJMc2001468
10.1007/978-981-13-8679-4_20
10.1101/2020.02.14.20022913
10.1515/9781400842872.277
10.1371/journal.pone.0211245
10.1197/j.aem.2006.07.017
10.1186/s12889-015-1766-6
10.46234/ccdcw2020.032
ContentType Journal Article
Copyright The Japanese Society for Artificial Intelligence 2020
Copyright Japan Science and Technology Agency 2020
Copyright_xml – notice: The Japanese Society for Artificial Intelligence 2020
– notice: Copyright Japan Science and Technology Agency 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1527/tjsai.D-K28
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1346-8030
EndPage 8
ExternalDocumentID 10.1527/tjsai.d-k28
10_1527_tjsai_D_K28
article_tjsai_35_3_35_D_K28_article_char_en
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
JSF
KQ8
OK1
PQQKQ
RJT
XSB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
ARCSS
UNPAY
ID FETCH-LOGICAL-c2018-718536b07ec816c3eb8bd11f633de38bf41e9b1f81e554270183e663b48dd3593
IEDL.DBID UNPAY
ISSN 1346-0714
1346-8030
IngestDate Tue Aug 19 16:13:04 EDT 2025
Mon Jun 30 03:22:28 EDT 2025
Tue Jul 01 03:45:35 EDT 2025
Thu Apr 24 23:16:00 EDT 2025
Wed Sep 03 06:29:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2018-718536b07ec816c3eb8bd11f633de38bf41e9b1f81e554270183e663b48dd3593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/tjsai/35/3/35_D-K28/_pdf
PQID 2397244928
PQPubID 2029095
ParticipantIDs unpaywall_primary_10_1527_tjsai_d_k28
proquest_journals_2397244928
crossref_citationtrail_10_1527_tjsai_D_K28
crossref_primary_10_1527_tjsai_D_K28
jstage_primary_article_tjsai_35_3_35_D_K28_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020/05/01
2020-5-1
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020/05/01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Transactions of the Japanese Society for Artificial Intelligence
PublicationYear 2020
Publisher The Japanese Society for Artificial Intelligence
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society for Artificial Intelligence
– name: Japan Science and Technology Agency
References [World Health Organization 20] World Health Organization, : Ebola virus disease, WHO fact sheets (2020), https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease
[NTT 20] NTT データ:当社拠点における新型コロナウイルス感染者の発生について (2020), https://www.nttdata.com/jp/ja/news/information/2020/021400/, 2020.02.14
[中村 20] 中村 啓二他:当院における新型コロナウイルス (2019- nCoV) 感染症患者3例の報告, 日本感染症学会 症例報告, 国立国際医療研究センター (2020)
[日経 20] 日経新聞:NTT, 新型肺炎でテレワークなど推奨 最大20万人, 日本経済新聞 (2020), https://www.nikkei.com/article/DGXMZO55701430W0A210C2MM8000/, 2020.02.16
[Gilbert 08] Gilbert, N.: Agent-based models, Quantitative applications in the social sciences, p. 114, SAGE Publications Inc. , Thousand Oaks, CA (2008)
[環境 20] 環境感染学会:医療機関における新型コロナウイルス感染症への対応ガイド, 日本環境感染学会 (2020)
[長澤 09] 長澤 夏子:大規模商業施設計画のための買い物行動モデル, 日本建築学会計画系論文集, Vol. 74, No. 646, pp. 2611–2616 (2009)
[Kurahashi 19] Kurahashi, S.: An agent-based infectious disease model of rubella outbreaks, in Proc. of International Conference on Agents and Multi-agent Systems: Technologies and Applications 2019, pp. ams19–037 (2019)
[Aylward 20] Aylward, B., et al.: Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19), WHO-China joint mission members (2020), https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
[倉橋 17] 倉橋 節也:エボラ出血熱に対するエージェントベース医療政策ゲーミング&シミュレーション, 日本シミュレーション&ゲーミング学会誌, Vol. 26, No. 2, pp. 52–63 (2017)
[Burke 06] Burke, D., Epstein, J., Cummings, A., Parker, J., Cline, K., Singa, R., and Chakravarty, S.: Individual-based computational modeling of smallpox epidemic control strategies, The Society for Academic Emergency Medicine, Vol. 13, No. 11, pp. 1142–1149 (2006)
[Zhang 20] Zhang, Y.: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020, China CDC Weekly, Vol. 41, No. 2, pp. 145–151 (2020), The novel coronavirus pneumonia emergency response epidemiology team
[厚生 20a] 厚生労働省:新型コロナウイルスに関する Q & A, 厚生労働省 (2020), https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/dengue_fever_qa_00001.html #Q8, 2020.2.23
[総務省 20b] 総務省 統計局:利用交通手段,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/kokusei/2000/jutsu1/00/04.html
[大日 07] 大日 康史:Individual based model を用いての公衆衛生的対応能力を明示的に考慮した天然痘対策の評価, 医療と社会, Vol. 16, No. 3, pp. 275–284 (2007)
[総務省 20a] 総務省 統計局:人口推計,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/jinsui/index.html
[Epstein 07] Epstein, J. M.: Toward a containment strategy for smallpox bioterror: An individual-based computational approach, in Generative social science: Studies in agent-based computational modeling, pp. 277–306, Princeton University Press (2007)
[宮城 20] 宮城県:事業者の皆様へ 新型コロナウイルスへの備えを進めましょう, 宮城県 (2020), https://www.pref.miyagi.jp/soshiki/chukisi/bcp-corona.html, 2020.02.17
[Hunter19] Hunter, E., Namee, B. M., and Kelleher, J.: An open-data-driven agent-based model to simulate infectious disease outbreaks, PLOS ONE, Vol. 14, No. 1, p. e0211245 (2019), https://doi.org/10.1371/journal.pone.0211245
[Rothe 20] Rothe, D.: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, The New England Journal of Medicine, p. DOI: 10.1056/NEJMc2001468 (2020)
[厚生20b] 厚生労働省:新型コロナウイルス感染症の現在の状況について, 厚生労働省(2020), https://www.mhlw.go.jp/stf/newpage_10032.html, 2020.3.8
[Li 20] Li, D., Liu, Z., Liu, Q., Gao, Z., Zhu, J., Yang, J., and Wang, Q.: Estimating the efficacy of traffic blockage and quarantine for the epidemic caused by 2019-nCoV (COVID-19), medRxiv, Vol. preprint, (2020), doi: https://doi.org/10.1101/2020.02.14.20022913
[Liu 15] Liu, F., Enanoria, W. T. A., Zipprich, J., Blumber, S., Har- riman, K., Ackley, S. F., Wheaton, W. D., Allpress, J. L., and Porco, T. C.: The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California, BMC Public Health, Vol. 15, No. 447 (2015)
11
1
2
3
4
5
6
7
8
9
10
References_xml – reference: [Gilbert 08] Gilbert, N.: Agent-based models, Quantitative applications in the social sciences, p. 114, SAGE Publications Inc. , Thousand Oaks, CA (2008)
– reference: [大日 07] 大日 康史:Individual based model を用いての公衆衛生的対応能力を明示的に考慮した天然痘対策の評価, 医療と社会, Vol. 16, No. 3, pp. 275–284 (2007)
– reference: [総務省 20b] 総務省 統計局:利用交通手段,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/kokusei/2000/jutsu1/00/04.html
– reference: [環境 20] 環境感染学会:医療機関における新型コロナウイルス感染症への対応ガイド, 日本環境感染学会 (2020)
– reference: [宮城 20] 宮城県:事業者の皆様へ 新型コロナウイルスへの備えを進めましょう, 宮城県 (2020), https://www.pref.miyagi.jp/soshiki/chukisi/bcp-corona.html, 2020.02.17
– reference: [総務省 20a] 総務省 統計局:人口推計,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/jinsui/index.html
– reference: [Rothe 20] Rothe, D.: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, The New England Journal of Medicine, p. DOI: 10.1056/NEJMc2001468 (2020)
– reference: [Zhang 20] Zhang, Y.: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020, China CDC Weekly, Vol. 41, No. 2, pp. 145–151 (2020), The novel coronavirus pneumonia emergency response epidemiology team
– reference: [厚生 20a] 厚生労働省:新型コロナウイルスに関する Q & A, 厚生労働省 (2020), https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/dengue_fever_qa_00001.html #Q8, 2020.2.23
– reference: [倉橋 17] 倉橋 節也:エボラ出血熱に対するエージェントベース医療政策ゲーミング&シミュレーション, 日本シミュレーション&ゲーミング学会誌, Vol. 26, No. 2, pp. 52–63 (2017)
– reference: [Kurahashi 19] Kurahashi, S.: An agent-based infectious disease model of rubella outbreaks, in Proc. of International Conference on Agents and Multi-agent Systems: Technologies and Applications 2019, pp. ams19–037 (2019)
– reference: [Liu 15] Liu, F., Enanoria, W. T. A., Zipprich, J., Blumber, S., Har- riman, K., Ackley, S. F., Wheaton, W. D., Allpress, J. L., and Porco, T. C.: The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California, BMC Public Health, Vol. 15, No. 447 (2015)
– reference: [厚生20b] 厚生労働省:新型コロナウイルス感染症の現在の状況について, 厚生労働省(2020), https://www.mhlw.go.jp/stf/newpage_10032.html, 2020.3.8
– reference: [Li 20] Li, D., Liu, Z., Liu, Q., Gao, Z., Zhu, J., Yang, J., and Wang, Q.: Estimating the efficacy of traffic blockage and quarantine for the epidemic caused by 2019-nCoV (COVID-19), medRxiv, Vol. preprint, (2020), doi: https://doi.org/10.1101/2020.02.14.20022913
– reference: [Epstein 07] Epstein, J. M.: Toward a containment strategy for smallpox bioterror: An individual-based computational approach, in Generative social science: Studies in agent-based computational modeling, pp. 277–306, Princeton University Press (2007)
– reference: [Burke 06] Burke, D., Epstein, J., Cummings, A., Parker, J., Cline, K., Singa, R., and Chakravarty, S.: Individual-based computational modeling of smallpox epidemic control strategies, The Society for Academic Emergency Medicine, Vol. 13, No. 11, pp. 1142–1149 (2006)
– reference: [中村 20] 中村 啓二他:当院における新型コロナウイルス (2019- nCoV) 感染症患者3例の報告, 日本感染症学会 症例報告, 国立国際医療研究センター (2020)
– reference: [World Health Organization 20] World Health Organization, : Ebola virus disease, WHO fact sheets (2020), https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease
– reference: [Hunter19] Hunter, E., Namee, B. M., and Kelleher, J.: An open-data-driven agent-based model to simulate infectious disease outbreaks, PLOS ONE, Vol. 14, No. 1, p. e0211245 (2019), https://doi.org/10.1371/journal.pone.0211245
– reference: [日経 20] 日経新聞:NTT, 新型肺炎でテレワークなど推奨 最大20万人, 日本経済新聞 (2020), https://www.nikkei.com/article/DGXMZO55701430W0A210C2MM8000/, 2020.02.16
– reference: [Aylward 20] Aylward, B., et al.: Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19), WHO-China joint mission members (2020), https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
– reference: [NTT 20] NTT データ:当社拠点における新型コロナウイルス感染者の発生について (2020), https://www.nttdata.com/jp/ja/news/information/2020/021400/, 2020.02.14
– reference: [長澤 09] 長澤 夏子:大規模商業施設計画のための買い物行動モデル, 日本建築学会計画系論文集, Vol. 74, No. 646, pp. 2611–2616 (2009)
– ident: 9
  doi: 10.1056/NEJMc2001468
– ident: 4
– ident: 1
– ident: 6
  doi: 10.1007/978-981-13-8679-4_20
– ident: 7
  doi: 10.1101/2020.02.14.20022913
– ident: 3
  doi: 10.1515/9781400842872.277
– ident: 5
  doi: 10.1371/journal.pone.0211245
– ident: 2
  doi: 10.1197/j.aem.2006.07.017
– ident: 8
  doi: 10.1186/s12889-015-1766-6
– ident: 10
– ident: 11
  doi: 10.46234/ccdcw2020.032
SSID ssib001234105
ssib008501343
ssib047348305
ssib000961560
ssj0057238
ssib006575950
Score 2.1416805
Snippet This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage D-K28_1
SubjectTerms 2019 Novel Coronavirus Diseases
agent-based model
Computer simulation
Coronaviruses
COVID-19
Disease transmission
Infections
infectious disease
preventing measures
Viral diseases
Title Estimating Effectiveness of Preventing Measures for 2019 Novel Coronavirus Diseases (COVID-19)
URI https://www.jstage.jst.go.jp/article/tjsai/35/3/35_D-K28/_article/-char/en
https://www.proquest.com/docview/2397244928
https://www.jstage.jst.go.jp/article/tjsai/35/3/35_D-K28/_pdf
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japanese Society for Artificial Intelligence, 2020/05/01, Vol.35(3), pp.D-K28_1-8
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1346-8030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057238
  issn: 1346-8030
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdGQdrT2AaITgz5AaQNKUlj58PZG2pBDEQHEkXsBcuO7aqlSivSgthfv3PiVGwaEtqLE8lnO_Gdfb9LfHcI7SUyFiIFIwcMWuJFmggvy5XwOpIwmRtlstT6Dp_3k5NBdHoT37izOaU7VjkGXDTU9uIPp_54FrhJDObjUowCGgcUCt7zzggL-EyZFbSaxADFW2h10L84_FkZWVFSOec09wyk2fnnxWDuV135yruzadifaaS1evA_8ObbRTETT49iMnmmeo7X6_yqZRWx0J44ufMXc-nnv_6K5_jfb_UevXOgFB_WpB_QG118ROtNwgfs1v8Guj2CDcFC3GKI67DHbq_EU4ObYFBQd15_eCwxIGIMuj_D_emDnuCuDZcgHkb3ixL36j9DJf7S_XH9vQdc_LqJBsdHV90TzyVo8HJoy7zUKvtEdlKdszDJqZZMqjA0CaVKUyZNFOpMhoaFGlALSaEN1QBxZMSUonFGt1CrmBZ6G2EiCAsjJakiJhJJKGLowgD40jrtpDJuo4OGSTx30cttEo0Jt1YMcJRX08h7HKavjfaWxLM6aMe_yb7VTFkSOZY4IuAGtUVFvKyz3nCwpbTRTiMh3C37khNAd4CXMtv3_lJqXngGxUH4Pr2Sbge15vcL_RkQ0FzuopWzS7brpP03V7YMKQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe2gsTTgAGiEyA_MGlDStLY-XD2hloQ20S3B4rgBcuO7YpSpRVpQeyv55w4FSCQ0F6cSD7bie_s-13iu0NoP5GxECkYOWDQEi_SRHhZroTXkYTJ3CiTpdZ3-LSfnAyiXxfxhTubU7pjlSPARUNtL_5w4o-mgZvEYDYqxXVA44BCwXveb8ICPlXmI1pKYoDiLbQ06P89vKyMrCipnHOaewbS7PzzYjD3q6585d3YNOxPNNJyPfgzvLkyL6bi4V6Mx09Uz_FqnV-1rCIW2hMnN_58Jv3834t4jv_9VmvokwOl-LAmXUcfdPEZrTYJH7Bb_xvo6gg2BAtxiyGuwx67vRJPDG6CQUHdaf3hscSAiDHo_gz3J3d6jLs2XIK4u76dl7hX_xkq8bfun_OfPeDi9000OD466554LkGDl0Nb5qVW2Seyk-qchUlOtWRShaFJKFWaMmmiUGcyNCzUgFpICm2oBogjI6YUjTO6hVrFpNDbCBNBWBgpSRUxkUhCEUMXBsCX1mknlXEbHTRM4rmLXm6TaIy5tWKAo7yaRt7jMH1ttL8gntZBO14n-1EzZUHkWOKIgBvUFhXxos56w8GW0kY7jYRwt-xLTgDdAV7KbN9fF1LzxjMoDsL35Z10O6g1u53rXUBAM7nn5PwRFHsLNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Effectiveness+of+Preventing+Measures+for+2019+Novel+Coronavirus+Diseases+%28COVID-19%29&rft.jtitle=Transactions+of+the+Japanese+Society+for+Artificial+Intelligence&rft.au=Kurahashi%2C+Setsuya&rft.date=2020-05-01&rft.pub=The+Japanese+Society+for+Artificial+Intelligence&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=35&rft.issue=3&rft.spage=D-K28_1&rft.epage=8&rft_id=info:doi/10.1527%2Ftjsai.D-K28&rft.externalDocID=article_tjsai_35_3_35_D_K28_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon