Estimating Effectiveness of Preventing Measures for 2019 Novel Coronavirus Diseases (COVID-19)
This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple infection prevention measures. In the model, 1120 virtualresidents agents live in two towns where they commute to office or school and visiting s...
Saved in:
| Published in | Transactions of the Japanese Society for Artificial Intelligence Vol. 35; no. 3; pp. D-K28_1 - 8 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Japanese |
| Published |
Tokyo
The Japanese Society for Artificial Intelligence
01.05.2020
Japan Science and Technology Agency |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1346-0714 1346-8030 1346-8030 |
| DOI | 10.1527/tjsai.D-K28 |
Cover
| Abstract | This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple infection prevention measures. In the model, 1120 virtualresidents agents live in two towns where they commute to office or school and visiting stores. The model simulates aninfection process in which they were exposed to the risk of transmission of the novel coronavirus. The results of theexperiments showed that individual infection prevention measures (commuting, teleworking, class closing, contactrate reduction, staying at home after fever) alone or partially combined them do not produce significant effects. Onthe other hand, if comprehensive measures were taken, it was confirmed that the number of deaths, the infectionrate, and the number of severe hospitalised patients per day were decreased significantly at the median and maximumrespectively. |
|---|---|
| AbstractList | This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple infection prevention measures. In the model, 1120 virtualresidents agents live in two towns where they commute to office or school and visiting stores. The model simulates aninfection process in which they were exposed to the risk of transmission of the novel coronavirus. The results of theexperiments showed that individual infection prevention measures (commuting, teleworking, class closing, contactrate reduction, staying at home after fever) alone or partially combined them do not produce significant effects. Onthe other hand, if comprehensive measures were taken, it was confirmed that the number of deaths, the infectionrate, and the number of severe hospitalised patients per day were decreased significantly at the median and maximumrespectively. |
| Author | Kurahashi, Setsuya |
| Author_xml | – sequence: 1 fullname: Kurahashi, Setsuya organization: Graduate School of Business Sciences, University of Tsukuba |
| BookMark | eNptkE1P3DAQhq0KpNKFU_9ApF5aQRZPnA_niHaXFi1fB-BYy0nG1NvUXmxnK_59TXbhgHoZz2ie99X4_UT2jDVIyGegUyiy6jSsvNTTebrM-AdyACwvU04Z3dv1tIL8IznyXjeUQsZyoMUB-bnwQf-RQZvHZKEUtkFv0KD3iVXJrcM4jLsrlH5w6BNlXZJRqJNru8E-mVlnjdxoN_hkrn2kIvN1dvNwMU-h_nZI9pXsPR7t3gm5P1_czX6klzffL2Znl2kbvXhaAS9Y2dAKWw5ly7DhTQegSsY6ZLxROWDdgOKARZFnVdQwLEvW5LzrWFGzCTnZ-g5mLZ__yr4Xaxf_5Z4FUPESjxjjEZ34nfGIf9nia2efBvRBrOzgTLxQZKyusjyvRwq2VOus9w6VaHWIUVkTnNT9O-e5WI6a43ea_9_xSp9t6ZUP8hHfWOmCbnvcsawQ7KWMmrdd-0s6gYb9A9pnngM |
| CitedBy_id | crossref_primary_10_1080_18824889_2021_2012398 crossref_primary_10_3934_mbe_2022047 crossref_primary_10_1371_journal_pone_0242766 |
| Cites_doi | 10.1056/NEJMc2001468 10.1007/978-981-13-8679-4_20 10.1101/2020.02.14.20022913 10.1515/9781400842872.277 10.1371/journal.pone.0211245 10.1197/j.aem.2006.07.017 10.1186/s12889-015-1766-6 10.46234/ccdcw2020.032 |
| ContentType | Journal Article |
| Copyright | The Japanese Society for Artificial Intelligence 2020 Copyright Japan Science and Technology Agency 2020 |
| Copyright_xml | – notice: The Japanese Society for Artificial Intelligence 2020 – notice: Copyright Japan Science and Technology Agency 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1527/tjsai.D-K28 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1346-8030 |
| EndPage | 8 |
| ExternalDocumentID | 10.1527/tjsai.d-k28 10_1527_tjsai_D_K28 article_tjsai_35_3_35_D_K28_article_char_en |
| GroupedDBID | 123 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 E3Z EBS EJD JSF KQ8 OK1 PQQKQ RJT XSB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC ARCSS UNPAY |
| ID | FETCH-LOGICAL-c2018-718536b07ec816c3eb8bd11f633de38bf41e9b1f81e554270183e663b48dd3593 |
| IEDL.DBID | UNPAY |
| ISSN | 1346-0714 1346-8030 |
| IngestDate | Tue Aug 19 16:13:04 EDT 2025 Mon Jun 30 03:22:28 EDT 2025 Tue Jul 01 03:45:35 EDT 2025 Thu Apr 24 23:16:00 EDT 2025 Wed Sep 03 06:29:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2018-718536b07ec816c3eb8bd11f633de38bf41e9b1f81e554270183e663b48dd3593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/tjsai/35/3/35_D-K28/_pdf |
| PQID | 2397244928 |
| PQPubID | 2029095 |
| ParticipantIDs | unpaywall_primary_10_1527_tjsai_d_k28 proquest_journals_2397244928 crossref_citationtrail_10_1527_tjsai_D_K28 crossref_primary_10_1527_tjsai_D_K28 jstage_primary_article_tjsai_35_3_35_D_K28_article_char_en |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020/05/01 2020-5-1 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020/05/01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Transactions of the Japanese Society for Artificial Intelligence |
| PublicationYear | 2020 |
| Publisher | The Japanese Society for Artificial Intelligence Japan Science and Technology Agency |
| Publisher_xml | – name: The Japanese Society for Artificial Intelligence – name: Japan Science and Technology Agency |
| References | [World Health Organization 20] World Health Organization, : Ebola virus disease, WHO fact sheets (2020), https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease [NTT 20] NTT データ:当社拠点における新型コロナウイルス感染者の発生について (2020), https://www.nttdata.com/jp/ja/news/information/2020/021400/, 2020.02.14 [中村 20] 中村 啓二他:当院における新型コロナウイルス (2019- nCoV) 感染症患者3例の報告, 日本感染症学会 症例報告, 国立国際医療研究センター (2020) [日経 20] 日経新聞:NTT, 新型肺炎でテレワークなど推奨 最大20万人, 日本経済新聞 (2020), https://www.nikkei.com/article/DGXMZO55701430W0A210C2MM8000/, 2020.02.16 [Gilbert 08] Gilbert, N.: Agent-based models, Quantitative applications in the social sciences, p. 114, SAGE Publications Inc. , Thousand Oaks, CA (2008) [環境 20] 環境感染学会:医療機関における新型コロナウイルス感染症への対応ガイド, 日本環境感染学会 (2020) [長澤 09] 長澤 夏子:大規模商業施設計画のための買い物行動モデル, 日本建築学会計画系論文集, Vol. 74, No. 646, pp. 2611–2616 (2009) [Kurahashi 19] Kurahashi, S.: An agent-based infectious disease model of rubella outbreaks, in Proc. of International Conference on Agents and Multi-agent Systems: Technologies and Applications 2019, pp. ams19–037 (2019) [Aylward 20] Aylward, B., et al.: Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19), WHO-China joint mission members (2020), https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf [倉橋 17] 倉橋 節也:エボラ出血熱に対するエージェントベース医療政策ゲーミング&シミュレーション, 日本シミュレーション&ゲーミング学会誌, Vol. 26, No. 2, pp. 52–63 (2017) [Burke 06] Burke, D., Epstein, J., Cummings, A., Parker, J., Cline, K., Singa, R., and Chakravarty, S.: Individual-based computational modeling of smallpox epidemic control strategies, The Society for Academic Emergency Medicine, Vol. 13, No. 11, pp. 1142–1149 (2006) [Zhang 20] Zhang, Y.: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020, China CDC Weekly, Vol. 41, No. 2, pp. 145–151 (2020), The novel coronavirus pneumonia emergency response epidemiology team [厚生 20a] 厚生労働省:新型コロナウイルスに関する Q & A, 厚生労働省 (2020), https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/dengue_fever_qa_00001.html #Q8, 2020.2.23 [総務省 20b] 総務省 統計局:利用交通手段,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/kokusei/2000/jutsu1/00/04.html [大日 07] 大日 康史:Individual based model を用いての公衆衛生的対応能力を明示的に考慮した天然痘対策の評価, 医療と社会, Vol. 16, No. 3, pp. 275–284 (2007) [総務省 20a] 総務省 統計局:人口推計,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/jinsui/index.html [Epstein 07] Epstein, J. M.: Toward a containment strategy for smallpox bioterror: An individual-based computational approach, in Generative social science: Studies in agent-based computational modeling, pp. 277–306, Princeton University Press (2007) [宮城 20] 宮城県:事業者の皆様へ 新型コロナウイルスへの備えを進めましょう, 宮城県 (2020), https://www.pref.miyagi.jp/soshiki/chukisi/bcp-corona.html, 2020.02.17 [Hunter19] Hunter, E., Namee, B. M., and Kelleher, J.: An open-data-driven agent-based model to simulate infectious disease outbreaks, PLOS ONE, Vol. 14, No. 1, p. e0211245 (2019), https://doi.org/10.1371/journal.pone.0211245 [Rothe 20] Rothe, D.: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, The New England Journal of Medicine, p. DOI: 10.1056/NEJMc2001468 (2020) [厚生20b] 厚生労働省:新型コロナウイルス感染症の現在の状況について, 厚生労働省(2020), https://www.mhlw.go.jp/stf/newpage_10032.html, 2020.3.8 [Li 20] Li, D., Liu, Z., Liu, Q., Gao, Z., Zhu, J., Yang, J., and Wang, Q.: Estimating the efficacy of traffic blockage and quarantine for the epidemic caused by 2019-nCoV (COVID-19), medRxiv, Vol. preprint, (2020), doi: https://doi.org/10.1101/2020.02.14.20022913 [Liu 15] Liu, F., Enanoria, W. T. A., Zipprich, J., Blumber, S., Har- riman, K., Ackley, S. F., Wheaton, W. D., Allpress, J. L., and Porco, T. C.: The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California, BMC Public Health, Vol. 15, No. 447 (2015) 11 1 2 3 4 5 6 7 8 9 10 |
| References_xml | – reference: [Gilbert 08] Gilbert, N.: Agent-based models, Quantitative applications in the social sciences, p. 114, SAGE Publications Inc. , Thousand Oaks, CA (2008) – reference: [大日 07] 大日 康史:Individual based model を用いての公衆衛生的対応能力を明示的に考慮した天然痘対策の評価, 医療と社会, Vol. 16, No. 3, pp. 275–284 (2007) – reference: [総務省 20b] 総務省 統計局:利用交通手段,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/kokusei/2000/jutsu1/00/04.html – reference: [環境 20] 環境感染学会:医療機関における新型コロナウイルス感染症への対応ガイド, 日本環境感染学会 (2020) – reference: [宮城 20] 宮城県:事業者の皆様へ 新型コロナウイルスへの備えを進めましょう, 宮城県 (2020), https://www.pref.miyagi.jp/soshiki/chukisi/bcp-corona.html, 2020.02.17 – reference: [総務省 20a] 総務省 統計局:人口推計,総務省統計局2000年国勢調査 (2020), https://www.stat.go.jp/data/jinsui/index.html – reference: [Rothe 20] Rothe, D.: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany, The New England Journal of Medicine, p. DOI: 10.1056/NEJMc2001468 (2020) – reference: [Zhang 20] Zhang, Y.: The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) - China, 2020, China CDC Weekly, Vol. 41, No. 2, pp. 145–151 (2020), The novel coronavirus pneumonia emergency response epidemiology team – reference: [厚生 20a] 厚生労働省:新型コロナウイルスに関する Q & A, 厚生労働省 (2020), https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/dengue_fever_qa_00001.html #Q8, 2020.2.23 – reference: [倉橋 17] 倉橋 節也:エボラ出血熱に対するエージェントベース医療政策ゲーミング&シミュレーション, 日本シミュレーション&ゲーミング学会誌, Vol. 26, No. 2, pp. 52–63 (2017) – reference: [Kurahashi 19] Kurahashi, S.: An agent-based infectious disease model of rubella outbreaks, in Proc. of International Conference on Agents and Multi-agent Systems: Technologies and Applications 2019, pp. ams19–037 (2019) – reference: [Liu 15] Liu, F., Enanoria, W. T. A., Zipprich, J., Blumber, S., Har- riman, K., Ackley, S. F., Wheaton, W. D., Allpress, J. L., and Porco, T. C.: The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California, BMC Public Health, Vol. 15, No. 447 (2015) – reference: [厚生20b] 厚生労働省:新型コロナウイルス感染症の現在の状況について, 厚生労働省(2020), https://www.mhlw.go.jp/stf/newpage_10032.html, 2020.3.8 – reference: [Li 20] Li, D., Liu, Z., Liu, Q., Gao, Z., Zhu, J., Yang, J., and Wang, Q.: Estimating the efficacy of traffic blockage and quarantine for the epidemic caused by 2019-nCoV (COVID-19), medRxiv, Vol. preprint, (2020), doi: https://doi.org/10.1101/2020.02.14.20022913 – reference: [Epstein 07] Epstein, J. M.: Toward a containment strategy for smallpox bioterror: An individual-based computational approach, in Generative social science: Studies in agent-based computational modeling, pp. 277–306, Princeton University Press (2007) – reference: [Burke 06] Burke, D., Epstein, J., Cummings, A., Parker, J., Cline, K., Singa, R., and Chakravarty, S.: Individual-based computational modeling of smallpox epidemic control strategies, The Society for Academic Emergency Medicine, Vol. 13, No. 11, pp. 1142–1149 (2006) – reference: [中村 20] 中村 啓二他:当院における新型コロナウイルス (2019- nCoV) 感染症患者3例の報告, 日本感染症学会 症例報告, 国立国際医療研究センター (2020) – reference: [World Health Organization 20] World Health Organization, : Ebola virus disease, WHO fact sheets (2020), https://www.who.int/en/news-room/fact-sheets/detail/ebola-virus-disease – reference: [Hunter19] Hunter, E., Namee, B. M., and Kelleher, J.: An open-data-driven agent-based model to simulate infectious disease outbreaks, PLOS ONE, Vol. 14, No. 1, p. e0211245 (2019), https://doi.org/10.1371/journal.pone.0211245 – reference: [日経 20] 日経新聞:NTT, 新型肺炎でテレワークなど推奨 最大20万人, 日本経済新聞 (2020), https://www.nikkei.com/article/DGXMZO55701430W0A210C2MM8000/, 2020.02.16 – reference: [Aylward 20] Aylward, B., et al.: Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19), WHO-China joint mission members (2020), https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf – reference: [NTT 20] NTT データ:当社拠点における新型コロナウイルス感染者の発生について (2020), https://www.nttdata.com/jp/ja/news/information/2020/021400/, 2020.02.14 – reference: [長澤 09] 長澤 夏子:大規模商業施設計画のための買い物行動モデル, 日本建築学会計画系論文集, Vol. 74, No. 646, pp. 2611–2616 (2009) – ident: 9 doi: 10.1056/NEJMc2001468 – ident: 4 – ident: 1 – ident: 6 doi: 10.1007/978-981-13-8679-4_20 – ident: 7 doi: 10.1101/2020.02.14.20022913 – ident: 3 doi: 10.1515/9781400842872.277 – ident: 5 doi: 10.1371/journal.pone.0211245 – ident: 2 doi: 10.1197/j.aem.2006.07.017 – ident: 8 doi: 10.1186/s12889-015-1766-6 – ident: 10 – ident: 11 doi: 10.46234/ccdcw2020.032 |
| SSID | ssib001234105 ssib008501343 ssib047348305 ssib000961560 ssj0057238 ssib006575950 |
| Score | 2.1416805 |
| Snippet | This paper implements the infection process of 2019 Novel Coronavirus Diseases (COVID-19) in an agentbasedmodel and compares the effectiveness of multiple... |
| SourceID | unpaywall proquest crossref jstage |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | D-K28_1 |
| SubjectTerms | 2019 Novel Coronavirus Diseases agent-based model Computer simulation Coronaviruses COVID-19 Disease transmission Infections infectious disease preventing measures Viral diseases |
| Title | Estimating Effectiveness of Preventing Measures for 2019 Novel Coronavirus Diseases (COVID-19) |
| URI | https://www.jstage.jst.go.jp/article/tjsai/35/3/35_D-K28/_article/-char/en https://www.proquest.com/docview/2397244928 https://www.jstage.jst.go.jp/article/tjsai/35/3/35_D-K28/_pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Transactions of the Japanese Society for Artificial Intelligence, 2020/05/01, Vol.35(3), pp.D-K28_1-8 |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1346-8030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057238 issn: 1346-8030 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELdGQdrT2AaITgz5AaQNKUlj58PZG2pBDEQHEkXsBcuO7aqlSivSgthfv3PiVGwaEtqLE8lnO_Gdfb9LfHcI7SUyFiIFIwcMWuJFmggvy5XwOpIwmRtlstT6Dp_3k5NBdHoT37izOaU7VjkGXDTU9uIPp_54FrhJDObjUowCGgcUCt7zzggL-EyZFbSaxADFW2h10L84_FkZWVFSOec09wyk2fnnxWDuV135yruzadifaaS1evA_8ObbRTETT49iMnmmeo7X6_yqZRWx0J44ufMXc-nnv_6K5_jfb_UevXOgFB_WpB_QG118ROtNwgfs1v8Guj2CDcFC3GKI67DHbq_EU4ObYFBQd15_eCwxIGIMuj_D_emDnuCuDZcgHkb3ixL36j9DJf7S_XH9vQdc_LqJBsdHV90TzyVo8HJoy7zUKvtEdlKdszDJqZZMqjA0CaVKUyZNFOpMhoaFGlALSaEN1QBxZMSUonFGt1CrmBZ6G2EiCAsjJakiJhJJKGLowgD40jrtpDJuo4OGSTx30cttEo0Jt1YMcJRX08h7HKavjfaWxLM6aMe_yb7VTFkSOZY4IuAGtUVFvKyz3nCwpbTRTiMh3C37khNAd4CXMtv3_lJqXngGxUH4Pr2Sbge15vcL_RkQ0FzuopWzS7brpP03V7YMKQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe2gsTTgAGiEyA_MGlDStLY-XD2hloQ20S3B4rgBcuO7YpSpRVpQeyv55w4FSCQ0F6cSD7bie_s-13iu0NoP5GxECkYOWDQEi_SRHhZroTXkYTJ3CiTpdZ3-LSfnAyiXxfxhTubU7pjlSPARUNtL_5w4o-mgZvEYDYqxXVA44BCwXveb8ICPlXmI1pKYoDiLbQ06P89vKyMrCipnHOaewbS7PzzYjD3q6585d3YNOxPNNJyPfgzvLkyL6bi4V6Mx09Uz_FqnV-1rCIW2hMnN_58Jv3834t4jv_9VmvokwOl-LAmXUcfdPEZrTYJH7Bb_xvo6gg2BAtxiyGuwx67vRJPDG6CQUHdaf3hscSAiDHo_gz3J3d6jLs2XIK4u76dl7hX_xkq8bfun_OfPeDi9000OD466554LkGDl0Nb5qVW2Seyk-qchUlOtWRShaFJKFWaMmmiUGcyNCzUgFpICm2oBogjI6YUjTO6hVrFpNDbCBNBWBgpSRUxkUhCEUMXBsCX1mknlXEbHTRM4rmLXm6TaIy5tWKAo7yaRt7jMH1ttL8gntZBO14n-1EzZUHkWOKIgBvUFhXxos56w8GW0kY7jYRwt-xLTgDdAV7KbN9fF1LzxjMoDsL35Z10O6g1u53rXUBAM7nn5PwRFHsLNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Effectiveness+of+Preventing+Measures+for+2019+Novel+Coronavirus+Diseases+%28COVID-19%29&rft.jtitle=Transactions+of+the+Japanese+Society+for+Artificial+Intelligence&rft.au=Kurahashi%2C+Setsuya&rft.date=2020-05-01&rft.pub=The+Japanese+Society+for+Artificial+Intelligence&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=35&rft.issue=3&rft.spage=D-K28_1&rft.epage=8&rft_id=info:doi/10.1527%2Ftjsai.D-K28&rft.externalDocID=article_tjsai_35_3_35_D_K28_article_char_en |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon |