Robot path planning algorithm with improved DDPG algorithm
This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enablin...
Saved in:
| Published in | International journal on interactive design and manufacturing Vol. 19; no. 2; pp. 1123 - 1133 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Paris
Springer Paris
01.02.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1955-2513 1955-2505 |
| DOI | 10.1007/s12008-024-01834-x |
Cover
| Abstract | This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enabling them to navigate autonomously. We propose an improvement to the deep deterministic policy gradient (DDPG) method by leveraging deep reinforcement learning algorithms. Through extensive experimentation, our method demonstrates superior performance compared to traditional DDPG, with notable reductions in training time and iterations required to reach targets. Additionally, it reduces dead zone encounters during travel and enhances convergence speed. Our findings contribute fresh insights and strategies for enhancing mobile robot path planning in unfamiliar environments. Future research will explore further advancements, particularly in addressing dynamic obstacles and optimizing real-world navigation efficiency. |
|---|---|
| AbstractList | This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enabling them to navigate autonomously. We propose an improvement to the deep deterministic policy gradient (DDPG) method by leveraging deep reinforcement learning algorithms. Through extensive experimentation, our method demonstrates superior performance compared to traditional DDPG, with notable reductions in training time and iterations required to reach targets. Additionally, it reduces dead zone encounters during travel and enhances convergence speed. Our findings contribute fresh insights and strategies for enhancing mobile robot path planning in unfamiliar environments. Future research will explore further advancements, particularly in addressing dynamic obstacles and optimizing real-world navigation efficiency. |
| Author | Lyu, Pingli |
| Author_xml | – sequence: 1 givenname: Pingli surname: Lyu fullname: Lyu, Pingli email: lvpl@mail.xzcit.cn organization: School of information engineering, Xuzhou College of Industrial Technology |
| BookMark | eNp9UEtLAzEQDlLBtvoHPC14Xs1kNy9v0moVCoroOWTTbLulTdZkq_XfG12xNy8zA_O9-EZo4LyzCJ0DvgSM-VUEgrHIMSlzDKIo8_0RGoKkNCcU08HfDcUJGsW4xpgJLPAQXT_7yndZq7tV1m60c41bZnqz9KHpVtvsI82s2bbBv9tFNp0-zQ7PU3Rc6020Z797jF7vbl8m9_n8cfYwuZnnJmXqcqv1IvnSQlMtAIS0hEkjLSs5N7IitloAr8uac2y4KQEIIyAZCFMLYFYXY3TR66YUbzsbO7X2u-CSpSqAcS455SyhSI8ywccYbK3a0Gx1-FSA1XdHqu9IpY7UT0dqn0hFT4oJ7JY2HKT_YX0BZrJquQ |
| Cites_doi | 10.3390/s23073521 10.1109/JOE.2022.3223733 10.1016/j.asoc.2023.110601 10.3390/s23156680 10.1186/s13634-022-00872-5 10.3390/jmse9030252 10.3390/s20195493 10.1016/j.compeleceng.2023.108753 10.1109/ACCESS.2019.2946659 10.3233/JIFS-211999 10.3389/fnbot.2020.00063 10.1016/j.engappai.2023.105952 10.1504/IJMIC.2019.105972 10.1109/ACCESS.2021.3076530 10.1016/j.compag.2021.106350 10.1007/s11263-023-01853-3 10.3390/s22207881 10.1007/s00500-022-07293-4 10.3390/su151612101 10.1504/IJCAT.2023.132100 10.1109/ACCESS.2019.2932257 10.1007/s40747-021-00366-1 10.1007/s10845-021-01867-z 10.1049/csy2.12020 10.3390/s22093579 10.3390/ai3030037 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12008-024-01834-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1955-2505 |
| EndPage | 1133 |
| ExternalDocumentID | 10_1007_s12008_024_01834_x |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Research on Deep Reinforcement Learning Method Based on Value Function Exploration Strategy grantid: (Project No. XGY2021EG02) |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PF0 PQBIZ PQBZA PT4 PTHSS QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c200t-eaad51353a5a81189e269c9e6477c9b2ebd17f4f770c7c41126219618cf816ea3 |
| IEDL.DBID | U2A |
| ISSN | 1955-2513 |
| IngestDate | Fri Jul 25 11:07:18 EDT 2025 Wed Oct 01 00:33:32 EDT 2025 Fri Feb 21 02:47:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | DDPG Deep reinforcement learning Path planning Artificial potential field Mobile robot |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c200t-eaad51353a5a81189e269c9e6477c9b2ebd17f4f770c7c41126219618cf816ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3167797576 |
| PQPubID | 2044253 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3167797576 crossref_primary_10_1007_s12008_024_01834_x springer_journals_10_1007_s12008_024_01834_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris – name: Heidelberg |
| PublicationTitle | International journal on interactive design and manufacturing |
| PublicationTitleAbbrev | Int J Interact Des Manuf |
| PublicationYear | 2025 |
| Publisher | Springer Paris Springer Nature B.V |
| Publisher_xml | – name: Springer Paris – name: Springer Nature B.V |
| References | Y Chen (1834_CR28) 2022; 2022 G Lin (1834_CR6) 2021; 188 1834_CR27 D Um (1834_CR20) 2022; 3 C Zhou (1834_CR9) 2022; 33 1834_CR24 J Zhou (1834_CR18) 2023 Y Na (1834_CR10) 2023; 15 S Zheng (1834_CR11) 2019; 7 P Li (1834_CR1) 2021; 2021 J Gao (1834_CR14) 2020; 20 J Hu (1834_CR13) 2023; 71 J Wang (1834_CR22) 2021; 3 J Zhou (1834_CR16) 2023; 48 J Yao (1834_CR21) 2022; 22 Y Sun (1834_CR7) 2021; 9 J Xie (1834_CR8) 2019; 7 S Wang (1834_CR25) 2023; 109 Y Chen (1834_CR2) 2023; 23 H Gong (1834_CR4) 2022; 22 T Xing (1834_CR15) 2023; 23 H Sun (1834_CR26) 2021; 9 C Yan (1834_CR12) 2023; 145 J Zhang (1834_CR19) 2019; 33 G Pan (1834_CR23) 2022; 26 J Yu (1834_CR3) 2020; 14 Y Du (1834_CR5) 2021; 2021 J Zhou (1834_CR17) 2023; 121 |
| References_xml | – volume: 23 start-page: 3521 issue: 7 year: 2023 ident: 1834_CR2 publication-title: Sensors doi: 10.3390/s23073521 – volume: 48 start-page: 474 issue: 2 year: 2023 ident: 1834_CR16 publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2022.3223733 – volume: 145 year: 2023 ident: 1834_CR12 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110601 – volume: 23 start-page: 6680 issue: 15 year: 2023 ident: 1834_CR15 publication-title: Sensors doi: 10.3390/s23156680 – volume: 2022 start-page: 1 issue: 1 year: 2022 ident: 1834_CR28 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-022-00872-5 – volume: 9 start-page: 252 issue: 3 year: 2021 ident: 1834_CR7 publication-title: J. Marine Sci. Eng. doi: 10.3390/jmse9030252 – volume: 20 start-page: 5493 issue: 19 year: 2020 ident: 1834_CR14 publication-title: Sensors doi: 10.3390/s20195493 – volume: 2021 start-page: 1 year: 2021 ident: 1834_CR1 publication-title: Mob. Inf. Syst. – volume: 109 year: 2023 ident: 1834_CR25 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2023.108753 – volume: 7 start-page: 147755 year: 2019 ident: 1834_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946659 – ident: 1834_CR24 doi: 10.3233/JIFS-211999 – volume: 2021 start-page: 1 year: 2021 ident: 1834_CR5 publication-title: J. Adv. Transp. – volume: 14 start-page: 63 year: 2020 ident: 1834_CR3 publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.00063 – volume: 121 year: 2023 ident: 1834_CR17 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105952 – volume: 33 start-page: 261 issue: 3 year: 2019 ident: 1834_CR19 publication-title: Int. J. Model. Ident. Control doi: 10.1504/IJMIC.2019.105972 – volume: 9 start-page: 69061 year: 2021 ident: 1834_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3076530 – volume: 188 year: 2021 ident: 1834_CR6 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106350 – year: 2023 ident: 1834_CR18 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-023-01853-3 – volume: 22 start-page: 7881 issue: 20 year: 2022 ident: 1834_CR21 publication-title: Sensors doi: 10.3390/s22207881 – volume: 26 start-page: 8961 issue: 18 year: 2022 ident: 1834_CR23 publication-title: Soft. Comput. doi: 10.1007/s00500-022-07293-4 – volume: 15 start-page: 12101 issue: 16 year: 2023 ident: 1834_CR10 publication-title: Sustainability doi: 10.3390/su151612101 – volume: 71 start-page: 237 issue: 3 year: 2023 ident: 1834_CR13 publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2023.132100 – volume: 7 start-page: 105669 year: 2019 ident: 1834_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932257 – ident: 1834_CR27 doi: 10.1007/s40747-021-00366-1 – volume: 33 start-page: 387 issue: 2 year: 2022 ident: 1834_CR9 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01867-z – volume: 3 start-page: 302 issue: 4 year: 2021 ident: 1834_CR22 publication-title: IET Cyber-Syst. Robot. doi: 10.1049/csy2.12020 – volume: 22 start-page: 3579 issue: 9 year: 2022 ident: 1834_CR4 publication-title: Sensors doi: 10.3390/s22093579 – volume: 3 start-page: 645 issue: 3 year: 2022 ident: 1834_CR20 publication-title: AI doi: 10.3390/ai3030037 |
| SSID | ssj0068080 |
| Score | 2.3357685 |
| Snippet | This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1123 |
| SubjectTerms | Algorithms Autonomous navigation CAE) and Design Computer-Aided Engineering (CAD Deep learning Electronics and Microelectronics Engineering Engineering Design Industrial Design Instrumentation Machine learning Mechanical Engineering Neural networks Obstacle avoidance Original Article Path planning Planning Robot control Robotics Robots Sensors |
| Title | Robot path planning algorithm with improved DDPG algorithm |
| URI | https://link.springer.com/article/10.1007/s12008-024-01834-x https://www.proquest.com/docview/3167797576 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: U2A dateStart: 20070425 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5k96IH8Ymr65KDNw3YNGkbb7vuC8VFxIX1VJI0VUHbxa3gzzdJW6qiB0-FTgllOp2ZZOabD-DEeDwpGBPYTzTFNCAcCyU5DiKeRszIiKPzuZkF0zm9WrBFBQpb1d3udUnSeeoG7FaW6ontmoh8ik3m2GZ2nJex4jnp1_7Xckk4GCRnDJvo7VdQmd_X-B6OmhzzR1nURZvxFmxWaSLql991G9Z0tgMbX4YH7sLFXS7zAllKYbSsqIeQeHnMzXb_6RXZA1b07I4MdIKGw9tJI9yD-Xh0fznFFRMCVuaFC6yFSJhlqBBMRGZLwDUJuOLaokgVl0TLxAtTmobhuQoVtbAg44kCL1Jp5AVa-PvQyvJMHwCiXmruJbb8KW1pXQjua_uXMpVIIXkHTmuFxMty4EXcjDYuSSsJjZ364o8OdGudxZXxr2ILrg95aHYyHTir9diI_17t8H-PH8E6sWy8roe6C63i7V0fmxShkD1o98eDwcxeJw_Xo56zkE8fL7Ry |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2h9gAc2BGFAjlwA1cksZOYW0U36CKEWqmcIttxoAKaqk0lxNdjZ1GgggPXTGQ5jj2LZ948gAul8TgjhCE7kBhhx6KICU6R49HQI0pmJXQ-_YHTGeH7MRlnoLBFXu2epyQTTV2A3dJUvaWrJjwbI-U5lrEKUKwSlOvtp24z18CaTSIBQlJCkLLfdgaW-X2Unwap8DJXEqOJvWltwyifaVpm8lpbxrwmPleaOP73U3ZgK3NAjXq6Y3ZhTU73YPNbW8J9uHmMeBQbmqzYmGWkRgZ7e47mk_jl3dBXt8YkuYyQgdFoPLQL4QGMWs3hbQdlHAtIqDnESDIWEM19wQjzVLBBpeVQQaXGpwrKLckD0w1x6LrXwhVYA46UjnNMT4Se6UhmH0JpGk3lERjYDNWzQCdWuU7aM0Ztqc8_EQFnnFbgMl9of5a20vCLpskpHaaF_WRF_I8KVPN_4WfHauFr2L5LXRUjVeAqX9pC_Pdox_97_RzWO8N-z-_dDbonsGFpzt-kUrsKpXi-lKfKEYn5WbbvvgD3BdF_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_IBNGD-InTqTl40zCbJm3jbTjn_BpDHOxWkjRVQduhFfzzTdKWTtGD174SymvyPvLe7_0AjozFk4Ixgf1EU0wDwrFQkuMg4mnEjIw4Op-7UTCc0Ospm86h-F23e12SLDENdkpTVnRnSdptgG9l2Z7YDorIp9hEkYvUDkowO3pCerUttrwSDhLJGcPGk_sVbOb3Nb67pibe_FEidZ5nsAarVciIeuU_XocFnW3AytwgwU04u89lXiBLL4xmFQ0REi-PuUn9n16RvWxFz-76QCeo3x9fNsItmAwuHs6HuGJFwMp8cIG1EAmzbBWCicikB1yTgCuuLaJUcUm0TLwwpWkYnqpQUQsRMlYp8CKVRl6ghb8NrSzP9A4g6qXmWWJLodKW2YXgvrYnlqlECsnbcFwrJJ6Vwy_iZsxxSWBJaOzUF3-2oVPrLK4OwntsgfYhD01W04aTWo-N-O_Vdv_3-iEsjfuD-PZqdLMHy8SS9LrW6g60ircPvW8ih0IeuM3xBUXPuIo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+path+planning+algorithm+with+improved+DDPG+algorithm&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.au=Lyu%2C+Pingli&rft.date=2025-02-01&rft.pub=Springer+Paris&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=2&rft.spage=1123&rft.epage=1133&rft_id=info:doi/10.1007%2Fs12008-024-01834-x&rft.externalDocID=10_1007_s12008_024_01834_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon |