Robot path planning algorithm with improved DDPG algorithm

This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enablin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on interactive design and manufacturing Vol. 19; no. 2; pp. 1123 - 1133
Main Author Lyu, Pingli
Format Journal Article
LanguageEnglish
Published Paris Springer Paris 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1955-2513
1955-2505
DOI10.1007/s12008-024-01834-x

Cover

Abstract This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enabling them to navigate autonomously. We propose an improvement to the deep deterministic policy gradient (DDPG) method by leveraging deep reinforcement learning algorithms. Through extensive experimentation, our method demonstrates superior performance compared to traditional DDPG, with notable reductions in training time and iterations required to reach targets. Additionally, it reduces dead zone encounters during travel and enhances convergence speed. Our findings contribute fresh insights and strategies for enhancing mobile robot path planning in unfamiliar environments. Future research will explore further advancements, particularly in addressing dynamic obstacles and optimizing real-world navigation efficiency.
AbstractList This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various functionalities such as autonomous planning, behavior control, and environment sensing. Path planning is crucial for robot mobility, enabling them to navigate autonomously. We propose an improvement to the deep deterministic policy gradient (DDPG) method by leveraging deep reinforcement learning algorithms. Through extensive experimentation, our method demonstrates superior performance compared to traditional DDPG, with notable reductions in training time and iterations required to reach targets. Additionally, it reduces dead zone encounters during travel and enhances convergence speed. Our findings contribute fresh insights and strategies for enhancing mobile robot path planning in unfamiliar environments. Future research will explore further advancements, particularly in addressing dynamic obstacles and optimizing real-world navigation efficiency.
Author Lyu, Pingli
Author_xml – sequence: 1
  givenname: Pingli
  surname: Lyu
  fullname: Lyu, Pingli
  email: lvpl@mail.xzcit.cn
  organization: School of information engineering, Xuzhou College of Industrial Technology
BookMark eNp9UEtLAzEQDlLBtvoHPC14Xs1kNy9v0moVCoroOWTTbLulTdZkq_XfG12xNy8zA_O9-EZo4LyzCJ0DvgSM-VUEgrHIMSlzDKIo8_0RGoKkNCcU08HfDcUJGsW4xpgJLPAQXT_7yndZq7tV1m60c41bZnqz9KHpVtvsI82s2bbBv9tFNp0-zQ7PU3Rc6020Z797jF7vbl8m9_n8cfYwuZnnJmXqcqv1IvnSQlMtAIS0hEkjLSs5N7IitloAr8uac2y4KQEIIyAZCFMLYFYXY3TR66YUbzsbO7X2u-CSpSqAcS455SyhSI8ywccYbK3a0Gx1-FSA1XdHqu9IpY7UT0dqn0hFT4oJ7JY2HKT_YX0BZrJquQ
Cites_doi 10.3390/s23073521
10.1109/JOE.2022.3223733
10.1016/j.asoc.2023.110601
10.3390/s23156680
10.1186/s13634-022-00872-5
10.3390/jmse9030252
10.3390/s20195493
10.1016/j.compeleceng.2023.108753
10.1109/ACCESS.2019.2946659
10.3233/JIFS-211999
10.3389/fnbot.2020.00063
10.1016/j.engappai.2023.105952
10.1504/IJMIC.2019.105972
10.1109/ACCESS.2021.3076530
10.1016/j.compag.2021.106350
10.1007/s11263-023-01853-3
10.3390/s22207881
10.1007/s00500-022-07293-4
10.3390/su151612101
10.1504/IJCAT.2023.132100
10.1109/ACCESS.2019.2932257
10.1007/s40747-021-00366-1
10.1007/s10845-021-01867-z
10.1049/csy2.12020
10.3390/s22093579
10.3390/ai3030037
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
DOI 10.1007/s12008-024-01834-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1955-2505
EndPage 1133
ExternalDocumentID 10_1007_s12008_024_01834_x
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Research on Deep Reinforcement Learning Method Based on Value Function Exploration Strategy
  grantid: (Project No. XGY2021EG02)
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PQBIZ
PQBZA
PT4
PTHSS
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c200t-eaad51353a5a81189e269c9e6477c9b2ebd17f4f770c7c41126219618cf816ea3
IEDL.DBID U2A
ISSN 1955-2513
IngestDate Fri Jul 25 11:07:18 EDT 2025
Wed Oct 01 00:33:32 EDT 2025
Fri Feb 21 02:47:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords DDPG
Deep reinforcement learning
Path planning
Artificial potential field
Mobile robot
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-eaad51353a5a81189e269c9e6477c9b2ebd17f4f770c7c41126219618cf816ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3167797576
PQPubID 2044253
PageCount 11
ParticipantIDs proquest_journals_3167797576
crossref_primary_10_1007_s12008_024_01834_x
springer_journals_10_1007_s12008_024_01834_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
– name: Heidelberg
PublicationTitle International journal on interactive design and manufacturing
PublicationTitleAbbrev Int J Interact Des Manuf
PublicationYear 2025
Publisher Springer Paris
Springer Nature B.V
Publisher_xml – name: Springer Paris
– name: Springer Nature B.V
References Y Chen (1834_CR28) 2022; 2022
G Lin (1834_CR6) 2021; 188
1834_CR27
D Um (1834_CR20) 2022; 3
C Zhou (1834_CR9) 2022; 33
1834_CR24
J Zhou (1834_CR18) 2023
Y Na (1834_CR10) 2023; 15
S Zheng (1834_CR11) 2019; 7
P Li (1834_CR1) 2021; 2021
J Gao (1834_CR14) 2020; 20
J Hu (1834_CR13) 2023; 71
J Wang (1834_CR22) 2021; 3
J Zhou (1834_CR16) 2023; 48
J Yao (1834_CR21) 2022; 22
Y Sun (1834_CR7) 2021; 9
J Xie (1834_CR8) 2019; 7
S Wang (1834_CR25) 2023; 109
Y Chen (1834_CR2) 2023; 23
H Gong (1834_CR4) 2022; 22
T Xing (1834_CR15) 2023; 23
H Sun (1834_CR26) 2021; 9
C Yan (1834_CR12) 2023; 145
J Zhang (1834_CR19) 2019; 33
G Pan (1834_CR23) 2022; 26
J Yu (1834_CR3) 2020; 14
Y Du (1834_CR5) 2021; 2021
J Zhou (1834_CR17) 2023; 121
References_xml – volume: 23
  start-page: 3521
  issue: 7
  year: 2023
  ident: 1834_CR2
  publication-title: Sensors
  doi: 10.3390/s23073521
– volume: 48
  start-page: 474
  issue: 2
  year: 2023
  ident: 1834_CR16
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2022.3223733
– volume: 145
  year: 2023
  ident: 1834_CR12
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110601
– volume: 23
  start-page: 6680
  issue: 15
  year: 2023
  ident: 1834_CR15
  publication-title: Sensors
  doi: 10.3390/s23156680
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  ident: 1834_CR28
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-022-00872-5
– volume: 9
  start-page: 252
  issue: 3
  year: 2021
  ident: 1834_CR7
  publication-title: J. Marine Sci. Eng.
  doi: 10.3390/jmse9030252
– volume: 20
  start-page: 5493
  issue: 19
  year: 2020
  ident: 1834_CR14
  publication-title: Sensors
  doi: 10.3390/s20195493
– volume: 2021
  start-page: 1
  year: 2021
  ident: 1834_CR1
  publication-title: Mob. Inf. Syst.
– volume: 109
  year: 2023
  ident: 1834_CR25
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108753
– volume: 7
  start-page: 147755
  year: 2019
  ident: 1834_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946659
– ident: 1834_CR24
  doi: 10.3233/JIFS-211999
– volume: 2021
  start-page: 1
  year: 2021
  ident: 1834_CR5
  publication-title: J. Adv. Transp.
– volume: 14
  start-page: 63
  year: 2020
  ident: 1834_CR3
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.00063
– volume: 121
  year: 2023
  ident: 1834_CR17
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105952
– volume: 33
  start-page: 261
  issue: 3
  year: 2019
  ident: 1834_CR19
  publication-title: Int. J. Model. Ident. Control
  doi: 10.1504/IJMIC.2019.105972
– volume: 9
  start-page: 69061
  year: 2021
  ident: 1834_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3076530
– volume: 188
  year: 2021
  ident: 1834_CR6
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106350
– year: 2023
  ident: 1834_CR18
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-023-01853-3
– volume: 22
  start-page: 7881
  issue: 20
  year: 2022
  ident: 1834_CR21
  publication-title: Sensors
  doi: 10.3390/s22207881
– volume: 26
  start-page: 8961
  issue: 18
  year: 2022
  ident: 1834_CR23
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-022-07293-4
– volume: 15
  start-page: 12101
  issue: 16
  year: 2023
  ident: 1834_CR10
  publication-title: Sustainability
  doi: 10.3390/su151612101
– volume: 71
  start-page: 237
  issue: 3
  year: 2023
  ident: 1834_CR13
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2023.132100
– volume: 7
  start-page: 105669
  year: 2019
  ident: 1834_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932257
– ident: 1834_CR27
  doi: 10.1007/s40747-021-00366-1
– volume: 33
  start-page: 387
  issue: 2
  year: 2022
  ident: 1834_CR9
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-021-01867-z
– volume: 3
  start-page: 302
  issue: 4
  year: 2021
  ident: 1834_CR22
  publication-title: IET Cyber-Syst. Robot.
  doi: 10.1049/csy2.12020
– volume: 22
  start-page: 3579
  issue: 9
  year: 2022
  ident: 1834_CR4
  publication-title: Sensors
  doi: 10.3390/s22093579
– volume: 3
  start-page: 645
  issue: 3
  year: 2022
  ident: 1834_CR20
  publication-title: AI
  doi: 10.3390/ai3030037
SSID ssj0068080
Score 2.3357685
Snippet This study focuses on enhancing the autonomous path planning capabilities of intelligent mobile robots, which are complex mechatronic systems combining various...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1123
SubjectTerms Algorithms
Autonomous navigation
CAE) and Design
Computer-Aided Engineering (CAD
Deep learning
Electronics and Microelectronics
Engineering
Engineering Design
Industrial Design
Instrumentation
Machine learning
Mechanical Engineering
Neural networks
Obstacle avoidance
Original Article
Path planning
Planning
Robot control
Robotics
Robots
Sensors
Title Robot path planning algorithm with improved DDPG algorithm
URI https://link.springer.com/article/10.1007/s12008-024-01834-x
https://www.proquest.com/docview/3167797576
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AFBBN
  dateStart: 20070401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: U2A
  dateStart: 20070425
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5k96IH8Ymr65KDNw3YNGkbb7vuC8VFxIX1VJI0VUHbxa3gzzdJW6qiB0-FTgllOp2ZZOabD-DEeDwpGBPYTzTFNCAcCyU5DiKeRszIiKPzuZkF0zm9WrBFBQpb1d3udUnSeeoG7FaW6ontmoh8ik3m2GZ2nJex4jnp1_7Xckk4GCRnDJvo7VdQmd_X-B6OmhzzR1nURZvxFmxWaSLql991G9Z0tgMbX4YH7sLFXS7zAllKYbSsqIeQeHnMzXb_6RXZA1b07I4MdIKGw9tJI9yD-Xh0fznFFRMCVuaFC6yFSJhlqBBMRGZLwDUJuOLaokgVl0TLxAtTmobhuQoVtbAg44kCL1Jp5AVa-PvQyvJMHwCiXmruJbb8KW1pXQjua_uXMpVIIXkHTmuFxMty4EXcjDYuSSsJjZ364o8OdGudxZXxr2ILrg95aHYyHTir9diI_17t8H-PH8E6sWy8roe6C63i7V0fmxShkD1o98eDwcxeJw_Xo56zkE8fL7Ry
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2h9gAc2BGFAjlwA1cksZOYW0U36CKEWqmcIttxoAKaqk0lxNdjZ1GgggPXTGQ5jj2LZ948gAul8TgjhCE7kBhhx6KICU6R49HQI0pmJXQ-_YHTGeH7MRlnoLBFXu2epyQTTV2A3dJUvaWrJjwbI-U5lrEKUKwSlOvtp24z18CaTSIBQlJCkLLfdgaW-X2Unwap8DJXEqOJvWltwyifaVpm8lpbxrwmPleaOP73U3ZgK3NAjXq6Y3ZhTU73YPNbW8J9uHmMeBQbmqzYmGWkRgZ7e47mk_jl3dBXt8YkuYyQgdFoPLQL4QGMWs3hbQdlHAtIqDnESDIWEM19wQjzVLBBpeVQQaXGpwrKLckD0w1x6LrXwhVYA46UjnNMT4Se6UhmH0JpGk3lERjYDNWzQCdWuU7aM0Ztqc8_EQFnnFbgMl9of5a20vCLpskpHaaF_WRF_I8KVPN_4WfHauFr2L5LXRUjVeAqX9pC_Pdox_97_RzWO8N-z-_dDbonsGFpzt-kUrsKpXi-lKfKEYn5WbbvvgD3BdF_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_IBNGD-InTqTl40zCbJm3jbTjn_BpDHOxWkjRVQduhFfzzTdKWTtGD174SymvyPvLe7_0AjozFk4Ixgf1EU0wDwrFQkuMg4mnEjIw4Op-7UTCc0Ospm86h-F23e12SLDENdkpTVnRnSdptgG9l2Z7YDorIp9hEkYvUDkowO3pCerUttrwSDhLJGcPGk_sVbOb3Nb67pibe_FEidZ5nsAarVciIeuU_XocFnW3AytwgwU04u89lXiBLL4xmFQ0REi-PuUn9n16RvWxFz-76QCeo3x9fNsItmAwuHs6HuGJFwMp8cIG1EAmzbBWCicikB1yTgCuuLaJUcUm0TLwwpWkYnqpQUQsRMlYp8CKVRl6ghb8NrSzP9A4g6qXmWWJLodKW2YXgvrYnlqlECsnbcFwrJJ6Vwy_iZsxxSWBJaOzUF3-2oVPrLK4OwntsgfYhD01W04aTWo-N-O_Vdv_3-iEsjfuD-PZqdLMHy8SS9LrW6g60ircPvW8ih0IeuM3xBUXPuIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robot+path+planning+algorithm+with+improved+DDPG+algorithm&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.au=Lyu%2C+Pingli&rft.date=2025-02-01&rft.pub=Springer+Paris&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=2&rft.spage=1123&rft.epage=1133&rft_id=info:doi/10.1007%2Fs12008-024-01834-x&rft.externalDocID=10_1007_s12008_024_01834_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon