Developing a two stage optimized random vector functional link neural network based predictor model utilizing a swift crow search algorithm
Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the general public with the growth of economy. Accurate financial time-series prediction is now vital for investors, researchers, and investment firms...
Saved in:
| Published in | Cluster computing Vol. 28; no. 3; p. 161 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-7857 1573-7543 |
| DOI | 10.1007/s10586-024-04875-9 |
Cover
| Abstract | Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the general public with the growth of economy. Accurate financial time-series prediction is now vital for investors, researchers, and investment firms due to its high-risk, high reward nature. For many years, specialists have tried to look into the underlying patterns of the market, anticipate future prices, and determine which way the market would move. Therefore applying modern forecasting models can be quite useful for comprehending and foreseeing market changes. In light of this, this paper proposes a novel two-stage optimized random vector functional link network (RVFLN) based predictor model with the dual goals of forecasting the upcoming stock index close price and predicting whether the upcoming trend will be upward or downward. For selecting optimal input features and weights of RVFLN, an improved variant of the crow search algorithm (CSA) known as the swift crow search algorithm (SCSA) is suggested in the study. In order to achieve the ideal balance between exploration and exploitation, improving convergence, the SCSA is developed by introducing the good point set (GPS) strategy in initial population generation, the chaotic map and mutation operator of differential evolution (DE) in the position update scheme, and catfish behavior in the search process of the original CSA. Specifically SCSA is used at two stages in the process of building the model. To improve the prediction performance, initially features from multiple domains are accumulated, including raw, statistical, technical, and decomposed domains. Since a broader feature space can lead to “the curse of dimensionality” and “overfitting,” a binary feature selection algorithm utilizing SCSA is used in conjunction with RVFLN in the first stage. In the subsequent stage following feature selection, the randomly generated input weights of RVFLN were optimized using SCSA to enhance its prediction performance even further. The theorized trend predictor model is empirically validated using historical data from three stock indices acquired before and during the COVID19 timeframe, including the BSE SENSEX, S&P 500, and DJIA datasets. In both timeframes, the proposed two-stage model outperforms the state-of-the-art baseline models in terms of three prediction and three classification evaluation criteria. Furthermore, in all the benchmark datasets, the proposed SCSA outperforms traditional optimization techniques. The qualitative relevance test, in addition to the statistical test, indicates that the proposed two-stage framework outperforms other compared models in three benchmark datasets for both time frames and is suitable for financial time-series forecasting in both ideal and highly volatile markets. |
|---|---|
| AbstractList | Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the general public with the growth of economy. Accurate financial time-series prediction is now vital for investors, researchers, and investment firms due to its high-risk, high reward nature. For many years, specialists have tried to look into the underlying patterns of the market, anticipate future prices, and determine which way the market would move. Therefore applying modern forecasting models can be quite useful for comprehending and foreseeing market changes. In light of this, this paper proposes a novel two-stage optimized random vector functional link network (RVFLN) based predictor model with the dual goals of forecasting the upcoming stock index close price and predicting whether the upcoming trend will be upward or downward. For selecting optimal input features and weights of RVFLN, an improved variant of the crow search algorithm (CSA) known as the swift crow search algorithm (SCSA) is suggested in the study. In order to achieve the ideal balance between exploration and exploitation, improving convergence, the SCSA is developed by introducing the good point set (GPS) strategy in initial population generation, the chaotic map and mutation operator of differential evolution (DE) in the position update scheme, and catfish behavior in the search process of the original CSA. Specifically SCSA is used at two stages in the process of building the model. To improve the prediction performance, initially features from multiple domains are accumulated, including raw, statistical, technical, and decomposed domains. Since a broader feature space can lead to “the curse of dimensionality” and “overfitting,” a binary feature selection algorithm utilizing SCSA is used in conjunction with RVFLN in the first stage. In the subsequent stage following feature selection, the randomly generated input weights of RVFLN were optimized using SCSA to enhance its prediction performance even further. The theorized trend predictor model is empirically validated using historical data from three stock indices acquired before and during the COVID19 timeframe, including the BSE SENSEX, S&P 500, and DJIA datasets. In both timeframes, the proposed two-stage model outperforms the state-of-the-art baseline models in terms of three prediction and three classification evaluation criteria. Furthermore, in all the benchmark datasets, the proposed SCSA outperforms traditional optimization techniques. The qualitative relevance test, in addition to the statistical test, indicates that the proposed two-stage framework outperforms other compared models in three benchmark datasets for both time frames and is suitable for financial time-series forecasting in both ideal and highly volatile markets. |
| ArticleNumber | 161 |
| Author | Dash, Rajashree Samal, Sidharth |
| Author_xml | – sequence: 1 givenname: Sidharth surname: Samal fullname: Samal, Sidharth organization: Computer Science and Engineering Department, Siksha O Anusandhan (Deemed to be University) – sequence: 2 givenname: Rajashree surname: Dash fullname: Dash, Rajashree email: rajashreedash@soa.ac.in organization: Computer Science and Engineering Department, Siksha O Anusandhan (Deemed to be University) |
| BookMark | eNp9kM1OxCAURokZE2fUF3BF4rpKSyvt0oy_ySRudE1u28uI00IFOhPnFXxp0Zq4c8UX-M4FzoLMjDVIyFnKLlLGxKVPWVFeJSzLE5aXokiqAzJPC8ETUeR8FjOPx6IsxBFZeP_GGKtEVs3J5w1usbODNmsKNOws9QHWSO0QdK_32FIHprU93WITrKNqNE3Q1kBHO2021ODoYjYYUbehNfiIDA5b_VPvbYsdHYPu9H66wu-0CrRxdkc9gmteKXRr63R47U_IoYLO4-nvekxe7m6flw_J6un-cXm9SpqMsZA0qgZRtwo41nWV5yAqTPPmqmhUTEpxUQJAluaC1bXKaqEKwaoSGULcy4Afk_Np7uDs-4g-yDc7uvglL3l0Fo1VjMdWNrXiW713qOTgdA_uQ6ZMfkuXk3QZpcsf6bKKEJ8gH8tmje5v9D_UF4Xsi0o |
| Cites_doi | 10.1016/0925-2312(94)90053-1 10.1007/s00521-019-04236-3 10.1016/j.eswa.2019.01.012 10.1016/j.neucom.2018.02.046 10.1109/TSP.2013.2288675 10.1016/j.neucom.2005.12.126 10.1016/j.swevo.2019.100573 10.1109/TSMCB.2011.2168604 10.1016/j.dss.2010.08.028 10.1016/j.asoc.2019.105784 10.1016/j.asoc.2020.107059 10.1016/j.neucom.2015.06.083 10.1016/j.neucom.2018.02.095 10.1016/j.eswa.2016.02.006 10.1007/s00521-019-04290-x 10.1109/ACCESS.2019.2924353 10.1016/j.asoc.2019.04.026 10.1016/j.asoc.2018.11.008 10.1109/PCITC.2015.7438176 10.1016/j.swevo.2016.01.004 10.1007/s10462-018-9663-x 10.1016/j.eswa.2014.07.040 10.1016/j.swevo.2012.09.002 10.1098/rspa.1998.0193 10.1186/s40854-020-00177-2 10.1016/j.renene.2021.04.088 10.1007/978-3-030-20257-6_38 10.1109/ACCESS.2018.2806180 10.1016/j.econmod.2013.09.033 10.1016/j.neucom.2014.06.067 10.1016/j.jksuci.2017.09.006 10.1016/j.ins.2015.09.025 10.1016/j.asoc.2017.02.013 10.1109/TCYB.2016.2588526 10.35940/ijeat.A1603.109119 10.1109/TII.2019.2892873 10.1016/j.physa.2015.05.067 10.1098/rsta.2017.0237 10.3934/math.2021081 10.1016/j.knosys.2010.11.001 10.1016/j.swevo.2014.07.003 10.1007/978-3-642-19893-9_32 10.1016/j.renene.2018.05.031 10.1016/j.bspc.2019.101787 10.1016/j.swevo.2017.05.003 10.1016/j.jocs.2013.10.002 10.1016/j.eswa.2020.113464 10.1016/j.eswa.2017.02.044 10.1016/j.eswa.2010.10.027 10.1109/TEVC.2014.2341451 10.1109/TEVC.2010.2059031 10.1016/j.asoc.2012.01.008 10.1016/j.eswa.2012.07.048 10.1109/UKSim.2014.67 10.1007/s10489-018-1308-x 10.1016/j.compstruc.2016.03.001 10.1109/SIS.2008.4668277 10.1109/PCITC.2015.7438204 10.3390/e22111239 10.1109/ACCESS.2020.3015966 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-024-04875-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Engineering |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_024_04875_9 |
| GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29B 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9O PF0 PHGZM PHGZT PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABRTQ CITATION PQGLB PUEGO JQ2 |
| ID | FETCH-LOGICAL-c200t-cfba7bdfa3ebb944a79e14c65cf79eff378aaa21470bbf2b7f57098e0ea1472a3 |
| IEDL.DBID | AGYKE |
| ISSN | 1386-7857 |
| IngestDate | Mon Aug 11 05:51:17 EDT 2025 Wed Oct 01 06:30:39 EDT 2025 Wed May 21 12:01:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Feature selection Crow search algorithm Random vector functional link network Financial trend analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c200t-cfba7bdfa3ebb944a79e14c65cf79eff378aaa21470bbf2b7f57098e0ea1472a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3157754903 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3157754903 crossref_primary_10_1007_s10586_024_04875_9 springer_journals_10_1007_s10586_024_04875_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | A Askarzadeh (4875_CR43) 2016; 169 G-B Huang (4875_CR15) 2006; 70 AH Gandomi (4875_CR59) 2014; 5 4875_CR46 S Das (4875_CR56) 2016; 27 W Shen (4875_CR6) 2011; 24 4875_CR47 R Bisoi (4875_CR28) 2019; 74 B Premanode (4875_CR68) 2013; 40 BM Henrique (4875_CR44) 2019; 124 D He (4875_CR58) 2001; 48 LFS Vilela (4875_CR8) 2019 R Dash (4875_CR27) 2019 Y Song (4875_CR33) 2019; 49 R Dash (4875_CR14) 2014; 19 L Zhang (4875_CR20) 2016; 367 C-F Tsai (4875_CR51) 2010; 50 S Samal (4875_CR17) 2021; 15 F Fernández-Navarro (4875_CR13) 2012; 12 M Siddique (4875_CR42) 2018; 119 Q Wang (4875_CR29) 2018; 299 4875_CR31 M Nabipour (4875_CR45) 2020; 8 E Emary (4875_CR50) 2016; 172 V Ravi (4875_CR11) 2017; 36 SK Rout (4875_CR38) 2020; 57 M Siddique (4875_CR40) 2019; 9 R Bisoi (4875_CR18) 2019; 80 DY Harvey (4875_CR73) 2014; 19 SC Nayak (4875_CR25) 2020; 6 4875_CR71 S Opricovic (4875_CR74) 1998; 2 4875_CR72 G Dong (4875_CR64) 2018 M Siddique (4875_CR41) 2019; 8 RC Cavalcante (4875_CR2) 2016; 55 G-B Huang (4875_CR16) 2011; 42 SR Das (4875_CR24) 2019; 4 K Dragomiretskiy (4875_CR69) 2013; 62 H Chung (4875_CR30) 2020; 32 D Tian (4875_CR57) 2019; 51 Y Kara (4875_CR7) 2011; 38 Y Guo (4875_CR9) 2018; 6 S Mirjalili (4875_CR63) 2013; 9 Y-H Pao (4875_CR19) 1994; 6 C Lian (4875_CR22) 2018; 291 4875_CR4 AN Dana (4875_CR5) 2016; 8 J Patel (4875_CR32) 2015; 42 S Das (4875_CR55) 2011 JM Li (4875_CR53) 2018; 38 Y Chen (4875_CR10) 2017; 80 A Ntakaris (4875_CR34) 2019; 7 4875_CR3 S Kashef (4875_CR49) 2015; 147 4875_CR61 J Naik (4875_CR65) 2018; 129 C-H Cheng (4875_CR67) 2014; 36 4875_CR26 M Sahani (4875_CR23) 2019; 15 H Li (4875_CR54) 2021; 6 I Majumder (4875_CR36) 2020; 32 DR Dash (4875_CR35) 2021; 174 M Kohli (4875_CR60) 2018; 5 O Bustos (4875_CR1) 2020; 156 S Lahmiri (4875_CR70) 2015; 437 L Tang (4875_CR39) 2018; 70 NE Huang (4875_CR66) 1998; 454 AN Gorban (4875_CR48) 2018; 376 L-Y Chuang (4875_CR62) 2011; 217 F Ecer (4875_CR12) 2020; 22 I Majumder (4875_CR52) 2021; 101 L Zhang (4875_CR21) 2016; 47 SR Das (4875_CR37) 2020; 32 |
| References_xml | – volume: 6 start-page: 163 year: 1994 ident: 4875_CR19 publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90053-1 – volume: 32 start-page: 7897 year: 2020 ident: 4875_CR30 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04236-3 – volume: 124 start-page: 226 year: 2019 ident: 4875_CR44 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.012 – volume: 291 start-page: 1 year: 2018 ident: 4875_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.046 – volume-title: Feature Engineering for Machine Learning and Data Analytics year: 2018 ident: 4875_CR64 – volume: 62 start-page: 531 year: 2013 ident: 4875_CR69 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 70 start-page: 489 year: 2006 ident: 4875_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 51 start-page: 100573 year: 2019 ident: 4875_CR57 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.100573 – volume: 42 start-page: 513 year: 2011 ident: 4875_CR16 publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2011.2168604 – volume: 15 start-page: 201 year: 2021 ident: 4875_CR17 publication-title: Intell. Decis. Technol. – volume: 4 start-page: 100016 year: 2019 ident: 4875_CR24 publication-title: Expert Syst. Appl. X – volume: 217 start-page: 6900 year: 2011 ident: 4875_CR62 publication-title: Appl. Math. Comput. – volume: 50 start-page: 258 year: 2010 ident: 4875_CR51 publication-title: Decis. Support. Syst. doi: 10.1016/j.dss.2010.08.028 – year: 2019 ident: 4875_CR27 publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.105784 – volume: 101 start-page: 107059 year: 2021 ident: 4875_CR52 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107059 – volume: 172 start-page: 371 year: 2016 ident: 4875_CR50 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: 4875_CR71 – volume: 299 start-page: 51 year: 2018 ident: 4875_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.095 – volume: 55 start-page: 194 year: 2016 ident: 4875_CR2 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.006 – volume: 32 start-page: 8011 year: 2020 ident: 4875_CR36 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04290-x – volume: 7 start-page: 82390 year: 2019 ident: 4875_CR34 publication-title: Ieee Access. doi: 10.1109/ACCESS.2019.2924353 – volume: 80 start-page: 475 year: 2019 ident: 4875_CR18 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.026 – volume: 74 start-page: 652 year: 2019 ident: 4875_CR28 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.008 – ident: 4875_CR46 doi: 10.1109/PCITC.2015.7438176 – volume: 27 start-page: 1 year: 2016 ident: 4875_CR56 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.01.004 – year: 2019 ident: 4875_CR8 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9663-x – volume: 42 start-page: 259 year: 2015 ident: 4875_CR32 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.07.040 – volume: 9 start-page: 1 year: 2013 ident: 4875_CR63 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 454 start-page: 903 year: 1998 ident: 4875_CR66 publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 6 start-page: 1 year: 2020 ident: 4875_CR25 publication-title: Financ. Innov. doi: 10.1186/s40854-020-00177-2 – volume: 174 start-page: 513 year: 2021 ident: 4875_CR35 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.04.088 – ident: 4875_CR31 doi: 10.1007/978-3-030-20257-6_38 – volume: 6 start-page: 11397 year: 2018 ident: 4875_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2806180 – volume: 36 start-page: 136 year: 2014 ident: 4875_CR67 publication-title: Econ. Model. doi: 10.1016/j.econmod.2013.09.033 – volume: 147 start-page: 271 year: 2015 ident: 4875_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.067 – volume: 32 start-page: 345 year: 2020 ident: 4875_CR37 publication-title: J. King Saud Univ. Comput. Inform. Sci. doi: 10.1016/j.jksuci.2017.09.006 – volume: 367 start-page: 1094 year: 2016 ident: 4875_CR20 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.09.025 – volume: 70 start-page: 1097 year: 2018 ident: 4875_CR39 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.013 – volume: 47 start-page: 3243 year: 2016 ident: 4875_CR21 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2588526 – volume: 38 start-page: 1343 year: 2018 ident: 4875_CR53 publication-title: Syst. Eng. Theory Pract. – volume: 9 start-page: 3032 issue: 1 year: 2019 ident: 4875_CR40 publication-title: Int. J. Eng. Adv. Technol. doi: 10.35940/ijeat.A1603.109119 – volume: 15 start-page: 4614 year: 2019 ident: 4875_CR23 publication-title: IEEE Trans. Industr. Inf. doi: 10.1109/TII.2019.2892873 – volume: 8 start-page: 3186 issue: 2 year: 2019 ident: 4875_CR41 publication-title: Int. J. Recent Technol. Eng. – volume: 437 start-page: 130 year: 2015 ident: 4875_CR70 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2015.05.067 – volume: 376 start-page: 20170237 year: 2018 ident: 4875_CR48 publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2017.0237 – volume: 6 start-page: 1309 year: 2021 ident: 4875_CR54 publication-title: AIMS Math. doi: 10.3934/math.2021081 – volume: 24 start-page: 378 year: 2011 ident: 4875_CR6 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2010.11.001 – volume: 48 start-page: 900 year: 2001 ident: 4875_CR58 publication-title: IEEE Trans. Circ. Syst. I Fundam. Theory Appl. – volume: 19 start-page: 25 year: 2014 ident: 4875_CR14 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.07.003 – ident: 4875_CR72 doi: 10.1007/978-3-642-19893-9_32 – volume: 129 start-page: 357 year: 2018 ident: 4875_CR65 publication-title: Renew. Energy doi: 10.1016/j.renene.2018.05.031 – volume: 57 start-page: 101787 year: 2020 ident: 4875_CR38 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101787 – volume: 36 start-page: 136 year: 2017 ident: 4875_CR11 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.05.003 – volume: 5 start-page: 224 year: 2014 ident: 4875_CR59 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.10.002 – volume: 156 start-page: 113464 year: 2020 ident: 4875_CR1 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113464 – volume: 5 start-page: 458 year: 2018 ident: 4875_CR60 publication-title: J. Comput. Des. Eng. – volume: 119 start-page: 1719 issue: 14 year: 2018 ident: 4875_CR42 publication-title: Int. J. Pure Appl. Math. – volume: 80 start-page: 340 year: 2017 ident: 4875_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.044 – volume: 38 start-page: 5311 year: 2011 ident: 4875_CR7 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.10.027 – volume: 8 start-page: 152 year: 2016 ident: 4875_CR5 publication-title: Asian J. Field Act. – volume: 19 start-page: 474 year: 2014 ident: 4875_CR73 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2341451 – ident: 4875_CR26 – ident: 4875_CR47 – year: 2011 ident: 4875_CR55 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 12 start-page: 1787 year: 2012 ident: 4875_CR13 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.01.008 – volume: 40 start-page: 377 year: 2013 ident: 4875_CR68 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.048 – ident: 4875_CR4 doi: 10.1109/UKSim.2014.67 – volume: 49 start-page: 897 year: 2019 ident: 4875_CR33 publication-title: Appl. Intell. doi: 10.1007/s10489-018-1308-x – volume: 169 start-page: 1 year: 2016 ident: 4875_CR43 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 – ident: 4875_CR61 doi: 10.1109/SIS.2008.4668277 – volume: 2 start-page: 5 year: 1998 ident: 4875_CR74 publication-title: Fac. Civ. Eng. Belgr. – ident: 4875_CR3 doi: 10.1109/PCITC.2015.7438204 – volume: 22 start-page: 1239 year: 2020 ident: 4875_CR12 publication-title: Entropy doi: 10.3390/e22111239 – volume: 8 start-page: 150199 year: 2020 ident: 4875_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015966 |
| SSID | ssj0009729 |
| Score | 2.3543763 |
| Snippet | Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 161 |
| SubjectTerms | Algorithms Benchmarks Computer Communication Networks Computer Science COVID-19 Crude oil Crude oil prices Currency exchanges Data acquisition Datasets Engineering Evolutionary computation Feature selection Forecasting Genetic algorithms Gold Neural networks Operating Systems Optimization Processor Architectures Search algorithms Search process Securities markets Solar energy Statistical tests Stock exchanges Support vector machines Time series Trends Volatility |
| Title | Developing a two stage optimized random vector functional link neural network based predictor model utilizing a swift crow search algorithm |
| URI | https://link.springer.com/article/10.1007/s10586-024-04875-9 https://www.proquest.com/docview/3157754903 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: AGYKE dateStart: 19980101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: U2A dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu3DhjRgv-cANiromadLjBAMEghOT4FQlbQIT24q2wqT9Bf40SR8MEBy4RW2UpnYcO7H9GeAwtFqDyER5QtHAo5GhnhCKeCIKBfO1CWjqkpNvbsPLHr26Z_dVUtikjnavXZLFTv0l2Y0JFzDrAiesle1Fi9As8LYa0OxcPFx352C7vKhO1ia2PxeMV8kyv4_yXSHNrcwfjtFC35yvQK-eaRlm8nzymquTZPYDxPG_v7IKy5UBip1yxazBgh6tw0pd3AErWd-A97PPdCqUmE8ztHbko8bM7jHD_kynaLVcmg3xrbj3R6cgy3tFdFNCB5Rp26MyzBydtkzxZez8Qq57UYEH7aof9GflJybTvsnREmmKpfihHDxm437-NNyE3nn37vTSqyo3eImVutxLjJJcpUYSrVREqeSRbtMkZImxLWMIF1JKVyLJV8oEihvG_UhoX0v7LJBkCxqjbKS3AZkkjFsr1udcUK3tAc-klITGGK6JpqwFRzX74pcSoCOeQzE7OseWznFB5zhqwV7N4bgS1klM2szhAEY-acFxzbD5679H2_lf911YClz14OIOZw8a-fhV71uTJlcH1Qo-gMVe0PkA873w8A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3rx24iivoM3XTLWdu2ORCWowAkSbku7tUgCjMCUhH_Bf9p2H6JGD96a7qXL-vr63t7H7yF07RutgUUkHS6J55BAE4dziR0e-Jy6SnsktsXJna7f6pOnAR0URWGLMtu9DElmN_WXYjfKbcKsTZwwVrYTbKItC2BlEfP7XmMNtcuy3mR1bKgZp6wolfl9je_qaG1j_giLZtqmuY92CzMRGjlfD9CGmh6ivbIFAxQSeYTe7z-LnkBAukzAWHtDBYm5CSajlYrB6KI4mcBb5p0Hq8Zy7x_YPQALZ2nG0zwZHKxOi2E2t9EbS571yQFzNsejVf6KxXKkUzAfs4RcSECMh8l8lL5MjlG_-dC7azlFfwUnMrKROpGWgslYC6ykDAgRLFB1Evk00makNWZcCGEbGblSak8yTZkbcOUqYeY8gU9QZZpM1SkCKjBlxtZ0GeNEKfMbpmOCfa01U1gRWkU35TaHsxxGI1wDJlumhIYpYcaUMKiiWsmJsBCpRYjr1KL1BS6uotuSO-vHf6929j_yK7Td6nXaYfux-3yOdjzb7zfzutRQJZ2_qgtjhKTyMjtzH6401eM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SNx4IwYDfOAGFV2TNOkRMSbe4sAkblXSJjCJtdMoTOIv8Kdx-mCA4MAtaq1UzRfXbmx_JmQ_RKtBVaI9qVngscgyT0pNPRmFkvvGBix1xcnXN-FZn13c8_svVfxltnsTkqxqGhxLU1YcjVJ79KXwjUuXPOuSKNDj9qJZMs8cUQLu6H5wPKXdFWWfsg5FaSG5qMtmfp_ju2ma-ps_QqSl5ektk8XaZYTjCuMVMmOyVbLUtGOAWjvXyHv3swAKFBSTHNDzezCQ41dhOHgzKaBdSvMhvJYn9eBMWnUSCG49wFFb4jirEsPB2bcURmMXyXHiZc8cwH36NHirHvE8GdgC8GUmUCkMqKeHfDwoHofrpN87vTs58-peC16CelJ4idVK6NQqarSOGFMiMh2WhDyxOLKWCqmUck2NfK1toIXlwo-k8Y3Ca4GiG2QuyzOzSYArygX6nb4QkhmDv2Q2ZTS01gpDDeMtctAsczyqKDXiKXmyAyVGUOISlDhqkXaDRFyr13NMO9wx90U-bZHDBp3p7b9n2_qf-B5ZuO324qvzm8ttR8ck_SpLrE3mivGL2UF_pNC75Zb7APYa2h8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+two+stage+optimized+random+vector+functional+link+neural+network+based+predictor+model+utilizing+a+swift+crow+search+algorithm&rft.jtitle=Cluster+computing&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=3&rft.spage=161&rft_id=info:doi/10.1007%2Fs10586-024-04875-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |