Developing a two stage optimized random vector functional link neural network based predictor model utilizing a swift crow search algorithm

Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the general public with the growth of economy. Accurate financial time-series prediction is now vital for investors, researchers, and investment firms...

Full description

Saved in:
Bibliographic Details
Published inCluster computing Vol. 28; no. 3; p. 161
Main Authors Samal, Sidharth, Dash, Rajashree
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1386-7857
1573-7543
DOI10.1007/s10586-024-04875-9

Cover

Abstract Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the general public with the growth of economy. Accurate financial time-series prediction is now vital for investors, researchers, and investment firms due to its high-risk, high reward nature. For many years, specialists have tried to look into the underlying patterns of the market, anticipate future prices, and determine which way the market would move. Therefore applying modern forecasting models can be quite useful for comprehending and foreseeing market changes. In light of this, this paper proposes a novel two-stage optimized random vector functional link network (RVFLN) based predictor model with the dual goals of forecasting the upcoming stock index close price and predicting whether the upcoming trend will be upward or downward. For selecting optimal input features and weights of RVFLN, an improved variant of the crow search algorithm (CSA) known as the swift crow search algorithm (SCSA) is suggested in the study. In order to achieve the ideal balance between exploration and exploitation, improving convergence, the SCSA is developed by introducing the good point set (GPS) strategy in initial population generation, the chaotic map and mutation operator of differential evolution (DE) in the position update scheme, and catfish behavior in the search process of the original CSA. Specifically SCSA is used at two stages in the process of building the model. To improve the prediction performance, initially features from multiple domains are accumulated, including raw, statistical, technical, and decomposed domains. Since a broader feature space can lead to “the curse of dimensionality” and “overfitting,” a binary feature selection algorithm utilizing SCSA is used in conjunction with RVFLN in the first stage. In the subsequent stage following feature selection, the randomly generated input weights of RVFLN were optimized using SCSA to enhance its prediction performance even further. The theorized trend predictor model is empirically validated using historical data from three stock indices acquired before and during the COVID19 timeframe, including the BSE SENSEX, S&P 500, and DJIA datasets. In both timeframes, the proposed two-stage model outperforms the state-of-the-art baseline models in terms of three prediction and three classification evaluation criteria. Furthermore, in all the benchmark datasets, the proposed SCSA outperforms traditional optimization techniques. The qualitative relevance test, in addition to the statistical test, indicates that the proposed two-stage framework outperforms other compared models in three benchmark datasets for both time frames and is suitable for financial time-series forecasting in both ideal and highly volatile markets.
AbstractList Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the general public with the growth of economy. Accurate financial time-series prediction is now vital for investors, researchers, and investment firms due to its high-risk, high reward nature. For many years, specialists have tried to look into the underlying patterns of the market, anticipate future prices, and determine which way the market would move. Therefore applying modern forecasting models can be quite useful for comprehending and foreseeing market changes. In light of this, this paper proposes a novel two-stage optimized random vector functional link network (RVFLN) based predictor model with the dual goals of forecasting the upcoming stock index close price and predicting whether the upcoming trend will be upward or downward. For selecting optimal input features and weights of RVFLN, an improved variant of the crow search algorithm (CSA) known as the swift crow search algorithm (SCSA) is suggested in the study. In order to achieve the ideal balance between exploration and exploitation, improving convergence, the SCSA is developed by introducing the good point set (GPS) strategy in initial population generation, the chaotic map and mutation operator of differential evolution (DE) in the position update scheme, and catfish behavior in the search process of the original CSA. Specifically SCSA is used at two stages in the process of building the model. To improve the prediction performance, initially features from multiple domains are accumulated, including raw, statistical, technical, and decomposed domains. Since a broader feature space can lead to “the curse of dimensionality” and “overfitting,” a binary feature selection algorithm utilizing SCSA is used in conjunction with RVFLN in the first stage. In the subsequent stage following feature selection, the randomly generated input weights of RVFLN were optimized using SCSA to enhance its prediction performance even further. The theorized trend predictor model is empirically validated using historical data from three stock indices acquired before and during the COVID19 timeframe, including the BSE SENSEX, S&P 500, and DJIA datasets. In both timeframes, the proposed two-stage model outperforms the state-of-the-art baseline models in terms of three prediction and three classification evaluation criteria. Furthermore, in all the benchmark datasets, the proposed SCSA outperforms traditional optimization techniques. The qualitative relevance test, in addition to the statistical test, indicates that the proposed two-stage framework outperforms other compared models in three benchmark datasets for both time frames and is suitable for financial time-series forecasting in both ideal and highly volatile markets.
ArticleNumber 161
Author Dash, Rajashree
Samal, Sidharth
Author_xml – sequence: 1
  givenname: Sidharth
  surname: Samal
  fullname: Samal, Sidharth
  organization: Computer Science and Engineering Department, Siksha O Anusandhan (Deemed to be University)
– sequence: 2
  givenname: Rajashree
  surname: Dash
  fullname: Dash, Rajashree
  email: rajashreedash@soa.ac.in
  organization: Computer Science and Engineering Department, Siksha O Anusandhan (Deemed to be University)
BookMark eNp9kM1OxCAURokZE2fUF3BF4rpKSyvt0oy_ySRudE1u28uI00IFOhPnFXxp0Zq4c8UX-M4FzoLMjDVIyFnKLlLGxKVPWVFeJSzLE5aXokiqAzJPC8ETUeR8FjOPx6IsxBFZeP_GGKtEVs3J5w1usbODNmsKNOws9QHWSO0QdK_32FIHprU93WITrKNqNE3Q1kBHO2021ODoYjYYUbehNfiIDA5b_VPvbYsdHYPu9H66wu-0CrRxdkc9gmteKXRr63R47U_IoYLO4-nvekxe7m6flw_J6un-cXm9SpqMsZA0qgZRtwo41nWV5yAqTPPmqmhUTEpxUQJAluaC1bXKaqEKwaoSGULcy4Afk_Np7uDs-4g-yDc7uvglL3l0Fo1VjMdWNrXiW713qOTgdA_uQ6ZMfkuXk3QZpcsf6bKKEJ8gH8tmje5v9D_UF4Xsi0o
Cites_doi 10.1016/0925-2312(94)90053-1
10.1007/s00521-019-04236-3
10.1016/j.eswa.2019.01.012
10.1016/j.neucom.2018.02.046
10.1109/TSP.2013.2288675
10.1016/j.neucom.2005.12.126
10.1016/j.swevo.2019.100573
10.1109/TSMCB.2011.2168604
10.1016/j.dss.2010.08.028
10.1016/j.asoc.2019.105784
10.1016/j.asoc.2020.107059
10.1016/j.neucom.2015.06.083
10.1016/j.neucom.2018.02.095
10.1016/j.eswa.2016.02.006
10.1007/s00521-019-04290-x
10.1109/ACCESS.2019.2924353
10.1016/j.asoc.2019.04.026
10.1016/j.asoc.2018.11.008
10.1109/PCITC.2015.7438176
10.1016/j.swevo.2016.01.004
10.1007/s10462-018-9663-x
10.1016/j.eswa.2014.07.040
10.1016/j.swevo.2012.09.002
10.1098/rspa.1998.0193
10.1186/s40854-020-00177-2
10.1016/j.renene.2021.04.088
10.1007/978-3-030-20257-6_38
10.1109/ACCESS.2018.2806180
10.1016/j.econmod.2013.09.033
10.1016/j.neucom.2014.06.067
10.1016/j.jksuci.2017.09.006
10.1016/j.ins.2015.09.025
10.1016/j.asoc.2017.02.013
10.1109/TCYB.2016.2588526
10.35940/ijeat.A1603.109119
10.1109/TII.2019.2892873
10.1016/j.physa.2015.05.067
10.1098/rsta.2017.0237
10.3934/math.2021081
10.1016/j.knosys.2010.11.001
10.1016/j.swevo.2014.07.003
10.1007/978-3-642-19893-9_32
10.1016/j.renene.2018.05.031
10.1016/j.bspc.2019.101787
10.1016/j.swevo.2017.05.003
10.1016/j.jocs.2013.10.002
10.1016/j.eswa.2020.113464
10.1016/j.eswa.2017.02.044
10.1016/j.eswa.2010.10.027
10.1109/TEVC.2014.2341451
10.1109/TEVC.2010.2059031
10.1016/j.asoc.2012.01.008
10.1016/j.eswa.2012.07.048
10.1109/UKSim.2014.67
10.1007/s10489-018-1308-x
10.1016/j.compstruc.2016.03.001
10.1109/SIS.2008.4668277
10.1109/PCITC.2015.7438204
10.3390/e22111239
10.1109/ACCESS.2020.3015966
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10586-024-04875-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 1573-7543
ExternalDocumentID 10_1007_s10586_024_04875_9
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29B
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9O
PF0
PHGZM
PHGZT
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABRTQ
CITATION
PQGLB
PUEGO
JQ2
ID FETCH-LOGICAL-c200t-cfba7bdfa3ebb944a79e14c65cf79eff378aaa21470bbf2b7f57098e0ea1472a3
IEDL.DBID AGYKE
ISSN 1386-7857
IngestDate Mon Aug 11 05:51:17 EDT 2025
Wed Oct 01 06:30:39 EDT 2025
Wed May 21 12:01:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Feature selection
Crow search algorithm
Random vector functional link network
Financial trend analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-cfba7bdfa3ebb944a79e14c65cf79eff378aaa21470bbf2b7f57098e0ea1472a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3157754903
PQPubID 2043865
ParticipantIDs proquest_journals_3157754903
crossref_primary_10_1007_s10586_024_04875_9
springer_journals_10_1007_s10586_024_04875_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle The Journal of Networks, Software Tools and Applications
PublicationTitle Cluster computing
PublicationTitleAbbrev Cluster Comput
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Askarzadeh (4875_CR43) 2016; 169
G-B Huang (4875_CR15) 2006; 70
AH Gandomi (4875_CR59) 2014; 5
4875_CR46
S Das (4875_CR56) 2016; 27
W Shen (4875_CR6) 2011; 24
4875_CR47
R Bisoi (4875_CR28) 2019; 74
B Premanode (4875_CR68) 2013; 40
BM Henrique (4875_CR44) 2019; 124
D He (4875_CR58) 2001; 48
LFS Vilela (4875_CR8) 2019
R Dash (4875_CR27) 2019
Y Song (4875_CR33) 2019; 49
R Dash (4875_CR14) 2014; 19
L Zhang (4875_CR20) 2016; 367
C-F Tsai (4875_CR51) 2010; 50
S Samal (4875_CR17) 2021; 15
F Fernández-Navarro (4875_CR13) 2012; 12
M Siddique (4875_CR42) 2018; 119
Q Wang (4875_CR29) 2018; 299
4875_CR31
M Nabipour (4875_CR45) 2020; 8
E Emary (4875_CR50) 2016; 172
V Ravi (4875_CR11) 2017; 36
SK Rout (4875_CR38) 2020; 57
M Siddique (4875_CR40) 2019; 9
R Bisoi (4875_CR18) 2019; 80
DY Harvey (4875_CR73) 2014; 19
SC Nayak (4875_CR25) 2020; 6
4875_CR71
S Opricovic (4875_CR74) 1998; 2
4875_CR72
G Dong (4875_CR64) 2018
M Siddique (4875_CR41) 2019; 8
RC Cavalcante (4875_CR2) 2016; 55
G-B Huang (4875_CR16) 2011; 42
SR Das (4875_CR24) 2019; 4
K Dragomiretskiy (4875_CR69) 2013; 62
H Chung (4875_CR30) 2020; 32
D Tian (4875_CR57) 2019; 51
Y Kara (4875_CR7) 2011; 38
Y Guo (4875_CR9) 2018; 6
S Mirjalili (4875_CR63) 2013; 9
Y-H Pao (4875_CR19) 1994; 6
C Lian (4875_CR22) 2018; 291
4875_CR4
AN Dana (4875_CR5) 2016; 8
J Patel (4875_CR32) 2015; 42
S Das (4875_CR55) 2011
JM Li (4875_CR53) 2018; 38
Y Chen (4875_CR10) 2017; 80
A Ntakaris (4875_CR34) 2019; 7
4875_CR3
S Kashef (4875_CR49) 2015; 147
4875_CR61
J Naik (4875_CR65) 2018; 129
C-H Cheng (4875_CR67) 2014; 36
4875_CR26
M Sahani (4875_CR23) 2019; 15
H Li (4875_CR54) 2021; 6
I Majumder (4875_CR36) 2020; 32
DR Dash (4875_CR35) 2021; 174
M Kohli (4875_CR60) 2018; 5
O Bustos (4875_CR1) 2020; 156
S Lahmiri (4875_CR70) 2015; 437
L Tang (4875_CR39) 2018; 70
NE Huang (4875_CR66) 1998; 454
AN Gorban (4875_CR48) 2018; 376
L-Y Chuang (4875_CR62) 2011; 217
F Ecer (4875_CR12) 2020; 22
I Majumder (4875_CR52) 2021; 101
L Zhang (4875_CR21) 2016; 47
SR Das (4875_CR37) 2020; 32
References_xml – volume: 6
  start-page: 163
  year: 1994
  ident: 4875_CR19
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)90053-1
– volume: 32
  start-page: 7897
  year: 2020
  ident: 4875_CR30
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04236-3
– volume: 124
  start-page: 226
  year: 2019
  ident: 4875_CR44
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.012
– volume: 291
  start-page: 1
  year: 2018
  ident: 4875_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.046
– volume-title: Feature Engineering for Machine Learning and Data Analytics
  year: 2018
  ident: 4875_CR64
– volume: 62
  start-page: 531
  year: 2013
  ident: 4875_CR69
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 70
  start-page: 489
  year: 2006
  ident: 4875_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 51
  start-page: 100573
  year: 2019
  ident: 4875_CR57
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100573
– volume: 42
  start-page: 513
  year: 2011
  ident: 4875_CR16
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2011.2168604
– volume: 15
  start-page: 201
  year: 2021
  ident: 4875_CR17
  publication-title: Intell. Decis. Technol.
– volume: 4
  start-page: 100016
  year: 2019
  ident: 4875_CR24
  publication-title: Expert Syst. Appl. X
– volume: 217
  start-page: 6900
  year: 2011
  ident: 4875_CR62
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 258
  year: 2010
  ident: 4875_CR51
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2010.08.028
– year: 2019
  ident: 4875_CR27
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105784
– volume: 101
  start-page: 107059
  year: 2021
  ident: 4875_CR52
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107059
– volume: 172
  start-page: 371
  year: 2016
  ident: 4875_CR50
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: 4875_CR71
– volume: 299
  start-page: 51
  year: 2018
  ident: 4875_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.095
– volume: 55
  start-page: 194
  year: 2016
  ident: 4875_CR2
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.006
– volume: 32
  start-page: 8011
  year: 2020
  ident: 4875_CR36
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04290-x
– volume: 7
  start-page: 82390
  year: 2019
  ident: 4875_CR34
  publication-title: Ieee Access.
  doi: 10.1109/ACCESS.2019.2924353
– volume: 80
  start-page: 475
  year: 2019
  ident: 4875_CR18
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.026
– volume: 74
  start-page: 652
  year: 2019
  ident: 4875_CR28
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.008
– ident: 4875_CR46
  doi: 10.1109/PCITC.2015.7438176
– volume: 27
  start-page: 1
  year: 2016
  ident: 4875_CR56
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– year: 2019
  ident: 4875_CR8
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9663-x
– volume: 42
  start-page: 259
  year: 2015
  ident: 4875_CR32
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.07.040
– volume: 9
  start-page: 1
  year: 2013
  ident: 4875_CR63
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 454
  start-page: 903
  year: 1998
  ident: 4875_CR66
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 6
  start-page: 1
  year: 2020
  ident: 4875_CR25
  publication-title: Financ. Innov.
  doi: 10.1186/s40854-020-00177-2
– volume: 174
  start-page: 513
  year: 2021
  ident: 4875_CR35
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.04.088
– ident: 4875_CR31
  doi: 10.1007/978-3-030-20257-6_38
– volume: 6
  start-page: 11397
  year: 2018
  ident: 4875_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2806180
– volume: 36
  start-page: 136
  year: 2014
  ident: 4875_CR67
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2013.09.033
– volume: 147
  start-page: 271
  year: 2015
  ident: 4875_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.067
– volume: 32
  start-page: 345
  year: 2020
  ident: 4875_CR37
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
  doi: 10.1016/j.jksuci.2017.09.006
– volume: 367
  start-page: 1094
  year: 2016
  ident: 4875_CR20
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.09.025
– volume: 70
  start-page: 1097
  year: 2018
  ident: 4875_CR39
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.013
– volume: 47
  start-page: 3243
  year: 2016
  ident: 4875_CR21
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2588526
– volume: 38
  start-page: 1343
  year: 2018
  ident: 4875_CR53
  publication-title: Syst. Eng. Theory Pract.
– volume: 9
  start-page: 3032
  issue: 1
  year: 2019
  ident: 4875_CR40
  publication-title: Int. J. Eng. Adv. Technol.
  doi: 10.35940/ijeat.A1603.109119
– volume: 15
  start-page: 4614
  year: 2019
  ident: 4875_CR23
  publication-title: IEEE Trans. Industr. Inf.
  doi: 10.1109/TII.2019.2892873
– volume: 8
  start-page: 3186
  issue: 2
  year: 2019
  ident: 4875_CR41
  publication-title: Int. J. Recent Technol. Eng.
– volume: 437
  start-page: 130
  year: 2015
  ident: 4875_CR70
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2015.05.067
– volume: 376
  start-page: 20170237
  year: 2018
  ident: 4875_CR48
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2017.0237
– volume: 6
  start-page: 1309
  year: 2021
  ident: 4875_CR54
  publication-title: AIMS Math.
  doi: 10.3934/math.2021081
– volume: 24
  start-page: 378
  year: 2011
  ident: 4875_CR6
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2010.11.001
– volume: 48
  start-page: 900
  year: 2001
  ident: 4875_CR58
  publication-title: IEEE Trans. Circ. Syst. I Fundam. Theory Appl.
– volume: 19
  start-page: 25
  year: 2014
  ident: 4875_CR14
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.07.003
– ident: 4875_CR72
  doi: 10.1007/978-3-642-19893-9_32
– volume: 129
  start-page: 357
  year: 2018
  ident: 4875_CR65
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.05.031
– volume: 57
  start-page: 101787
  year: 2020
  ident: 4875_CR38
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101787
– volume: 36
  start-page: 136
  year: 2017
  ident: 4875_CR11
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.05.003
– volume: 5
  start-page: 224
  year: 2014
  ident: 4875_CR59
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2013.10.002
– volume: 156
  start-page: 113464
  year: 2020
  ident: 4875_CR1
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113464
– volume: 5
  start-page: 458
  year: 2018
  ident: 4875_CR60
  publication-title: J. Comput. Des. Eng.
– volume: 119
  start-page: 1719
  issue: 14
  year: 2018
  ident: 4875_CR42
  publication-title: Int. J. Pure Appl. Math.
– volume: 80
  start-page: 340
  year: 2017
  ident: 4875_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.044
– volume: 38
  start-page: 5311
  year: 2011
  ident: 4875_CR7
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.10.027
– volume: 8
  start-page: 152
  year: 2016
  ident: 4875_CR5
  publication-title: Asian J. Field Act.
– volume: 19
  start-page: 474
  year: 2014
  ident: 4875_CR73
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2341451
– ident: 4875_CR26
– ident: 4875_CR47
– year: 2011
  ident: 4875_CR55
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 12
  start-page: 1787
  year: 2012
  ident: 4875_CR13
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.01.008
– volume: 40
  start-page: 377
  year: 2013
  ident: 4875_CR68
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.048
– ident: 4875_CR4
  doi: 10.1109/UKSim.2014.67
– volume: 49
  start-page: 897
  year: 2019
  ident: 4875_CR33
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1308-x
– volume: 169
  start-page: 1
  year: 2016
  ident: 4875_CR43
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 4875_CR61
  doi: 10.1109/SIS.2008.4668277
– volume: 2
  start-page: 5
  year: 1998
  ident: 4875_CR74
  publication-title: Fac. Civ. Eng. Belgr.
– ident: 4875_CR3
  doi: 10.1109/PCITC.2015.7438204
– volume: 22
  start-page: 1239
  year: 2020
  ident: 4875_CR12
  publication-title: Entropy
  doi: 10.3390/e22111239
– volume: 8
  start-page: 150199
  year: 2020
  ident: 4875_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015966
SSID ssj0009729
Score 2.3543763
Snippet Investment in financial markets, such as indices, derivatives, commodities, currency exchanges, and so forth, is becoming more and more popular among the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 161
SubjectTerms Algorithms
Benchmarks
Computer Communication Networks
Computer Science
COVID-19
Crude oil
Crude oil prices
Currency exchanges
Data acquisition
Datasets
Engineering
Evolutionary computation
Feature selection
Forecasting
Genetic algorithms
Gold
Neural networks
Operating Systems
Optimization
Processor Architectures
Search algorithms
Search process
Securities markets
Solar energy
Statistical tests
Stock exchanges
Support vector machines
Time series
Trends
Volatility
Title Developing a two stage optimized random vector functional link neural network based predictor model utilizing a swift crow search algorithm
URI https://link.springer.com/article/10.1007/s10586-024-04875-9
https://www.proquest.com/docview/3157754903
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7543
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009729
  issn: 1386-7857
  databaseCode: U2A
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu3DhjRgv-cANiromadLjBAMEghOT4FQlbQIT24q2wqT9Bf40SR8MEBy4RW2UpnYcO7H9GeAwtFqDyER5QtHAo5GhnhCKeCIKBfO1CWjqkpNvbsPLHr26Z_dVUtikjnavXZLFTv0l2Y0JFzDrAiesle1Fi9As8LYa0OxcPFx352C7vKhO1ia2PxeMV8kyv4_yXSHNrcwfjtFC35yvQK-eaRlm8nzymquTZPYDxPG_v7IKy5UBip1yxazBgh6tw0pd3AErWd-A97PPdCqUmE8ztHbko8bM7jHD_kynaLVcmg3xrbj3R6cgy3tFdFNCB5Rp26MyzBydtkzxZez8Qq57UYEH7aof9GflJybTvsnREmmKpfihHDxm437-NNyE3nn37vTSqyo3eImVutxLjJJcpUYSrVREqeSRbtMkZImxLWMIF1JKVyLJV8oEihvG_UhoX0v7LJBkCxqjbKS3AZkkjFsr1udcUK3tAc-klITGGK6JpqwFRzX74pcSoCOeQzE7OseWznFB5zhqwV7N4bgS1klM2szhAEY-acFxzbD5679H2_lf911YClz14OIOZw8a-fhV71uTJlcH1Qo-gMVe0PkA873w8A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3rx24iivoM3XTLWdu2ORCWowAkSbku7tUgCjMCUhH_Bf9p2H6JGD96a7qXL-vr63t7H7yF07RutgUUkHS6J55BAE4dziR0e-Jy6SnsktsXJna7f6pOnAR0URWGLMtu9DElmN_WXYjfKbcKsTZwwVrYTbKItC2BlEfP7XmMNtcuy3mR1bKgZp6wolfl9je_qaG1j_giLZtqmuY92CzMRGjlfD9CGmh6ivbIFAxQSeYTe7z-LnkBAukzAWHtDBYm5CSajlYrB6KI4mcBb5p0Hq8Zy7x_YPQALZ2nG0zwZHKxOi2E2t9EbS571yQFzNsejVf6KxXKkUzAfs4RcSECMh8l8lL5MjlG_-dC7azlFfwUnMrKROpGWgslYC6ykDAgRLFB1Evk00makNWZcCGEbGblSak8yTZkbcOUqYeY8gU9QZZpM1SkCKjBlxtZ0GeNEKfMbpmOCfa01U1gRWkU35TaHsxxGI1wDJlumhIYpYcaUMKiiWsmJsBCpRYjr1KL1BS6uotuSO-vHf6929j_yK7Td6nXaYfux-3yOdjzb7zfzutRQJZ2_qgtjhKTyMjtzH6401eM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI54SNx4IwYDfOAGFV2TNOkRMSbe4sAkblXSJjCJtdMoTOIv8Kdx-mCA4MAtaq1UzRfXbmx_JmQ_RKtBVaI9qVngscgyT0pNPRmFkvvGBix1xcnXN-FZn13c8_svVfxltnsTkqxqGhxLU1YcjVJ79KXwjUuXPOuSKNDj9qJZMs8cUQLu6H5wPKXdFWWfsg5FaSG5qMtmfp_ju2ma-ps_QqSl5ektk8XaZYTjCuMVMmOyVbLUtGOAWjvXyHv3swAKFBSTHNDzezCQ41dhOHgzKaBdSvMhvJYn9eBMWnUSCG49wFFb4jirEsPB2bcURmMXyXHiZc8cwH36NHirHvE8GdgC8GUmUCkMqKeHfDwoHofrpN87vTs58-peC16CelJ4idVK6NQqarSOGFMiMh2WhDyxOLKWCqmUck2NfK1toIXlwo-k8Y3Ca4GiG2QuyzOzSYArygX6nb4QkhmDv2Q2ZTS01gpDDeMtctAsczyqKDXiKXmyAyVGUOISlDhqkXaDRFyr13NMO9wx90U-bZHDBp3p7b9n2_qf-B5ZuO324qvzm8ttR8ck_SpLrE3mivGL2UF_pNC75Zb7APYa2h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+two+stage+optimized+random+vector+functional+link+neural+network+based+predictor+model+utilizing+a+swift+crow+search+algorithm&rft.jtitle=Cluster+computing&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=3&rft.spage=161&rft_id=info:doi/10.1007%2Fs10586-024-04875-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon