BCSSA-VMD and ICOA-ELM based fault diagnosis method for analogue circuits
Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high non...
Saved in:
| Published in | Analog integrated circuits and signal processing Vol. 123; no. 2; p. 20 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-1030 1573-1979 |
| DOI | 10.1007/s10470-025-02360-w |
Cover
| Abstract | Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high nonlinearity, and susceptibility to environmental interference of analog circuit components, the development of related research on fault diagnosis has been hindered, and it cannot meet the current practical requirements for high safety and reliability of electronic devices. With the continuous increase in circuit scale and integration level, how to effectively and as much as possible extract more discriminative fault features is the key research direction of analog circuit fault diagnosis. Therefore, this article proposes a variational model decomposition (VMD) feature extraction method that combines Butterfly and Cauchy Sparrow search algorithms (BCSSA) and relies on an improved crayfish optimization algorithm (COA) to optimize the Extreme Learning Machine (ELM). Decomposition (VMD) feature extraction method, and rely on Improved Crayfish Optimization Algorithm (COA) Optimized Extreme Learning Machine (ELM) to complete the classification of faults. Firstly, the BCSSA algorithm is used to optimize the number of VMD decomposition modes K and the penalty factor
α
to achieve the optimal VMD decomposition of the original fault signal, obtain a series of Intrinsic Mode Function (IMF) and calculate its envelope entropy, determine the optimal IMF component by selecting the IMF component with the lowest envelope entropy., and calculate its time-domain parameter, then normalize and reduce the dimensionality to construct the vector that contains the characteristics of the fault. The normalized dimensionality reduction process constitutes the fault feature vector; secondly, the ICOA algorithm is introduced to optimize the ELM; Ultimately, the fault feature vector is fed into the ELM to acquire the fault diagnosis results. The simulation test examples of the Sallen-Key bandpass filter circuit and the Four-op-amp circuit show that the accuracy of the proposed improved VMD and ELM fault diagnosis method is as high as 99.68%. |
|---|---|
| AbstractList | Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high nonlinearity, and susceptibility to environmental interference of analog circuit components, the development of related research on fault diagnosis has been hindered, and it cannot meet the current practical requirements for high safety and reliability of electronic devices. With the continuous increase in circuit scale and integration level, how to effectively and as much as possible extract more discriminative fault features is the key research direction of analog circuit fault diagnosis. Therefore, this article proposes a variational model decomposition (VMD) feature extraction method that combines Butterfly and Cauchy Sparrow search algorithms (BCSSA) and relies on an improved crayfish optimization algorithm (COA) to optimize the Extreme Learning Machine (ELM). Decomposition (VMD) feature extraction method, and rely on Improved Crayfish Optimization Algorithm (COA) Optimized Extreme Learning Machine (ELM) to complete the classification of faults. Firstly, the BCSSA algorithm is used to optimize the number of VMD decomposition modes K and the penalty factor
α
to achieve the optimal VMD decomposition of the original fault signal, obtain a series of Intrinsic Mode Function (IMF) and calculate its envelope entropy, determine the optimal IMF component by selecting the IMF component with the lowest envelope entropy., and calculate its time-domain parameter, then normalize and reduce the dimensionality to construct the vector that contains the characteristics of the fault. The normalized dimensionality reduction process constitutes the fault feature vector; secondly, the ICOA algorithm is introduced to optimize the ELM; Ultimately, the fault feature vector is fed into the ELM to acquire the fault diagnosis results. The simulation test examples of the Sallen-Key bandpass filter circuit and the Four-op-amp circuit show that the accuracy of the proposed improved VMD and ELM fault diagnosis method is as high as 99.68%. Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high nonlinearity, and susceptibility to environmental interference of analog circuit components, the development of related research on fault diagnosis has been hindered, and it cannot meet the current practical requirements for high safety and reliability of electronic devices. With the continuous increase in circuit scale and integration level, how to effectively and as much as possible extract more discriminative fault features is the key research direction of analog circuit fault diagnosis. Therefore, this article proposes a variational model decomposition (VMD) feature extraction method that combines Butterfly and Cauchy Sparrow search algorithms (BCSSA) and relies on an improved crayfish optimization algorithm (COA) to optimize the Extreme Learning Machine (ELM). Decomposition (VMD) feature extraction method, and rely on Improved Crayfish Optimization Algorithm (COA) Optimized Extreme Learning Machine (ELM) to complete the classification of faults. Firstly, the BCSSA algorithm is used to optimize the number of VMD decomposition modes K and the penalty factor α to achieve the optimal VMD decomposition of the original fault signal, obtain a series of Intrinsic Mode Function (IMF) and calculate its envelope entropy, determine the optimal IMF component by selecting the IMF component with the lowest envelope entropy., and calculate its time-domain parameter, then normalize and reduce the dimensionality to construct the vector that contains the characteristics of the fault. The normalized dimensionality reduction process constitutes the fault feature vector; secondly, the ICOA algorithm is introduced to optimize the ELM; Ultimately, the fault feature vector is fed into the ELM to acquire the fault diagnosis results. The simulation test examples of the Sallen-Key bandpass filter circuit and the Four-op-amp circuit show that the accuracy of the proposed improved VMD and ELM fault diagnosis method is as high as 99.68%. |
| ArticleNumber | 20 |
| Author | Zhang, Yepeng Liu, Shan Yuan, Ye You, Dazhang |
| Author_xml | – sequence: 1 givenname: Dazhang surname: You fullname: You, Dazhang organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering – sequence: 2 givenname: Shan surname: Liu fullname: Liu, Shan email: lsfc888888@163.com organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering – sequence: 3 givenname: Ye surname: Yuan fullname: Yuan, Ye organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering – sequence: 4 givenname: Yepeng surname: Zhang fullname: Zhang, Yepeng organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering |
| BookMark | eNp9kE1PwzAMhiM0JLbBH-BUiXPAadKmPY4yYNKmHQZcozQfo9PWjKTVxL8nUCRuHCxL9vNa1jNBo9a1BqFrArcEgN8FAowDhjSLRXPApzM0JhmnmJS8HKExlHFFgMIFmoSwA4CUMxijxX212czw2-ohka1OFtV6hufLVVLLYHRiZb_vEt3IbetCE5KD6d5dHDsfabl3294kqvGqb7pwic6t3Adz9dun6PVx_lI94-X6aVHNllilAB1WhaSUlDLPudFMZVKnRcGNJLlitLaskJAbbTNta6uMZdxaYzStgXJZ1rymU3Qz3D1699Gb0Imd6338JgiaZiylJcuLSKUDpbwLwRsrjr45SP8pCIhvZWJQJqIy8aNMnGKIDqEQ4XZr_N_pf1Jf6ClwTQ |
| Cites_doi | 10.1155/2016/7657054 10.1109/TSP.2013.2288675 10.1080/21642583.2019.1708830 10.1109/TIM.2020.2969008 10.12733/jics20102329 10.1016/j.isatra.2021.01.060 10.1098/rspa.1998.0193 10.1007/978-3-540-74581-5_37 10.1016/j.jsv.2018.12.033 10.1109/TIM.2018.2836058 10.1109/ACCESS.2020.2968382 10.1371/journal.pone.0109166 10.1109/TSP.2013.2265222 10.1016/j.ress.2024.110143 10.1109/TIM.2002.1017726 10.3390/machines10070548 10.1016/j.neucom.2005.12.126 10.3390/machines11010027 10.1088/1361-6501/ac0034 10.1007/978-3-030-61111-8_11 10.1093/oso/9780198538493.001.0001 10.1016/j.measurement.2011.12.010 10.1016/j.neucom.2013.03.059 10.1016/j.measurement.2016.07.018 10.1016/j.measurement.2024.115417 10.1007/s10462-023-10567-4 10.1016/j.measurement.2020.108185 10.3390/electronics11030451 10.1109/IJCNN.2012.6252809 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SP 7TG 8FD KL. L7M |
| DOI | 10.1007/s10470-025-02360-w |
| DatabaseName | CrossRef Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Electronics & Communications Abstracts |
| DatabaseTitleList | Meteorological & Geoastrophysical Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1979 |
| ExternalDocumentID | 10_1007_s10470_025_02360_w |
| GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION 7SP 7TG 8FD KL. L7M |
| ID | FETCH-LOGICAL-c200t-c8a3319a667ed4c5ad2887ea16c43bf48a06edf5dfbfcef47ffeed3b037a9b7b3 |
| IEDL.DBID | AGYKE |
| ISSN | 0925-1030 |
| IngestDate | Tue Oct 07 10:53:39 EDT 2025 Wed Oct 01 06:30:44 EDT 2025 Sun Apr 20 01:10:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fault diagnosis Crayfish algorithm Sparrow algorithm Analogue circuits Extreme learning machine VMD algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c200t-c8a3319a667ed4c5ad2887ea16c43bf48a06edf5dfbfcef47ffeed3b037a9b7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254239468 |
| PQPubID | 2043739 |
| ParticipantIDs | proquest_journals_3254239468 crossref_primary_10_1007_s10470_025_02360_w springer_journals_10_1007_s10470_025_02360_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250500 2025-05-00 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Analog integrated circuits and signal processing |
| PublicationTitleAbbrev | Analog Integr Circ Sig Process |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | D He (2360_CR12) 2025; 239 J Gilles (2360_CR7) 2013; 61 Y Cui (2360_CR26) 2016; 93 W He (2360_CR10) 2020; 69 J Ding (2360_CR6) 2020; 8 K Zhu (2360_CR20) 2013; 10 Liu Xiaolong (2360_CR3) 2021; 17 NE Huang (2360_CR5) 1998; 454 H Li (2360_CR19) 2020; 166 J Xue (2360_CR18) 2020; 8 X Kui (2360_CR37) 2019; 36 CM Bishop (2360_CR21) 1995 L Meirong (2360_CR36) 2021; 44 B Wang (2360_CR22) 2021; 118 2360_CR34 Y Shanjun (2360_CR30) 2008; 44 C Li (2360_CR32) 2007 2360_CR31 GB Huang (2360_CR27) 2006; 70 2360_CR33 H Luo (2360_CR24) 2012; 45 D Binu (2360_CR35) 2019; 68 PK Wong (2360_CR28) 2014; 128 H Jia (2360_CR29) 2023; 56 H Chang (2360_CR16) 2022; 10 K Dragomiretskiy (2360_CR4) 2013; 62 V Khemani (2360_CR2) 2022; 11 LP Ji (2360_CR11) 2021; 68 W Jinxin (2360_CR13) 2024; 247 J Xiong (2360_CR9) 2016; 2016 X Zhang (2360_CR14) 2022; 11 Y Huang (2360_CR15) 2019; 444 F Aminian (2360_CR23) 2002; 51 D Binu (2360_CR1) 2017; 73 H Wang (2360_CR8) 2014; 9 J Sun (2360_CR25) 2020; 50 Q Wang (2360_CR17) 2021; 32 |
| References_xml | – volume: 2016 start-page: 7657054 year: 2016 ident: 2360_CR9 publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2016/7657054 – volume: 44 start-page: 51 issue: 04 year: 2021 ident: 2360_CR36 publication-title: Electronic Measurement Technology – volume: 44 start-page: 179 issue: 36 year: 2008 ident: 2360_CR30 publication-title: Computer Engineering & Applications – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 2360_CR4 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2013.2288675 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 2360_CR18 publication-title: Systems Science & Control Engineering doi: 10.1080/21642583.2019.1708830 – volume: 69 start-page: 6640 year: 2020 ident: 2360_CR10 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2020.2969008 – volume: 10 start-page: 5189 issue: 16 year: 2013 ident: 2360_CR20 publication-title: Journal of Information & Computational Science doi: 10.12733/jics20102329 – volume: 118 start-page: 207 year: 2021 ident: 2360_CR22 publication-title: ISA Transactions doi: 10.1016/j.isatra.2021.01.060 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 2360_CR5 publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – volume-title: A Fast Particle Swarm Optimization Algorithm with Cauchy Mutation and Natural Selection Strategy year: 2007 ident: 2360_CR32 doi: 10.1007/978-3-540-74581-5_37 – volume: 444 start-page: 216 year: 2019 ident: 2360_CR15 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2018.12.033 – volume: 68 start-page: 2 issue: 1 year: 2019 ident: 2360_CR35 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2018.2836058 – volume: 73 start-page: 68 year: 2017 ident: 2360_CR1 publication-title: AEU-International Journal of Electronics and Communications – volume: 36 start-page: 16 issue: 01 year: 2019 ident: 2360_CR37 publication-title: Microelectronics and Computer – volume: 8 start-page: 18456 year: 2020 ident: 2360_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968382 – volume: 9 issue: 10 year: 2014 ident: 2360_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0109166 – volume: 61 start-page: 3999 issue: 16 year: 2013 ident: 2360_CR7 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2013.2265222 – volume: 247 start-page: 110143 year: 2024 ident: 2360_CR13 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2024.110143 – ident: 2360_CR34 – volume: 51 start-page: 544 issue: 3 year: 2002 ident: 2360_CR23 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2002.1017726 – volume: 10 start-page: 548 issue: 7 year: 2022 ident: 2360_CR16 publication-title: Machines doi: 10.3390/machines10070548 – volume: 70 start-page: 489 issue: 1-3 year: 2006 ident: 2360_CR27 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 11 start-page: 27 issue: 1 year: 2022 ident: 2360_CR14 publication-title: Machines doi: 10.3390/machines11010027 – volume: 50 start-page: 227 issue: 2 year: 2020 ident: 2360_CR25 publication-title: Microelectronics – volume: 32 start-page: 104007 issue: 10 year: 2021 ident: 2360_CR17 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/ac0034 – ident: 2360_CR31 doi: 10.1007/978-3-030-61111-8_11 – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: 2360_CR21 doi: 10.1093/oso/9780198538493.001.0001 – volume: 45 start-page: 769 issue: 4 year: 2012 ident: 2360_CR24 publication-title: Measurement doi: 10.1016/j.measurement.2011.12.010 – volume: 128 start-page: 249 issue: 27 year: 2014 ident: 2360_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.059 – volume: 93 start-page: 421 year: 2016 ident: 2360_CR26 publication-title: Measurement doi: 10.1016/j.measurement.2016.07.018 – volume: 239 start-page: 115417 year: 2025 ident: 2360_CR12 publication-title: Measurement doi: 10.1016/j.measurement.2024.115417 – volume: 56 start-page: 1919 issue: Suppl 2 year: 2023 ident: 2360_CR29 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-023-10567-4 – volume: 166 start-page: 108185 year: 2020 ident: 2360_CR19 publication-title: Measurement doi: 10.1016/j.measurement.2020.108185 – volume: 11 start-page: 451 issue: 3 year: 2022 ident: 2360_CR2 publication-title: Electronics doi: 10.3390/electronics11030451 – volume: 17 start-page: 90 year: 2021 ident: 2360_CR3 publication-title: International Journal of Low-Carbon Technologies. – volume: 68 start-page: 2841 year: 2021 ident: 2360_CR11 publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – ident: 2360_CR33 doi: 10.1109/IJCNN.2012.6252809 |
| SSID | ssj0002740 |
| Score | 2.384113 |
| Snippet | Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 20 |
| SubjectTerms | Accuracy Algorithms Analog circuits Bandpass filters Bandwidths Circuits Circuits and Systems Classification Data processing Decision trees Decomposition Electrical Engineering Electronic devices Engineering Entropy Fault diagnosis Feature extraction Fourier transforms Integrated circuits Machine learning Neural networks Optimization Pattern recognition Search algorithms Signal,Image and Speech Processing Support vector machines Wavelet transforms |
| Title | BCSSA-VMD and ICOA-ELM based fault diagnosis method for analogue circuits |
| URI | https://link.springer.com/article/10.1007/s10470-025-02360-w https://www.proquest.com/docview/3254239468 |
| Volume | 123 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1979 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002740 issn: 0925-1030 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1979 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002740 issn: 0925-1030 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1979 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002740 issn: 0925-1030 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB414QKH0hYQKTTaA7d2I9v78ObohATSEnqAoHCy9ilFrdIqcYTEr2f9IhDBIWev1va8d3bmG4CzWDLntBVYWEoxZV2KRagp9uy2lDEiA5PnIcfX_HJCf07ZtGoKW9bV7vWVZGGpXzS70XxISpR3FBMe4IcG7BR4W03YSS7ufw2eLbA_aRW5lW6Uo2ySoGqWeXuX1w5pHWVuXIwW_ma4D5P6S8sykz-dVaY6-nEDxHHbX_kEH6sAFCWlxHyGD3b-BfZewBIewKjXv7lJ8N34HMm5QaP-7wQPrsYo93gGObn6myFTlujNlqicQY188OtXl6kgpGcLvZply0OYDAe3_UtcjVzA2qtLhrWQxCul5Dy2hmomTeStkJUh15QoR4UMuDWOGac8hx2NnfNOlqiAxLKrYkWOoDn_N7fHgBwPhRKWx1GgaKisYEEgTRiHzPpXxLYF32u6p_9LZI10jaGcEyj1BEoLAqUPLTitWZNWWrZMiT_d5qPduWjBj5rS68fv7_Z1u-UnsBsVzMrrHE-hmS1W9puPRTLV9qI37PWu25UItqExiZIn687V6w |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD-rB-Iwoag_etMnu9rHluCIElMUDYLht2m2bkBg0sIS_b7sPQaMHz23a5Jt2Zjqd-QaA21BQY1LNEdeEIEKbBHE_JciKWxNKsfCUi0PGA9Ydk6cJnZRFYYsq2736ksw19UaxG3FNUgJXUYyZh1bbYMcRWDnG_HEQfelf-87KIyvNwHFsYq8slfl9je_maO1j_vgWza1N5xAclG4ijAq5HoEtPTsG-xvkgSeg99AaDiP0Gj9CMVOw13qJULsfQ2eXFDRi-ZZBVSTSTRew6BQNrYtqZxcBG5hO5-lymi1OwbjTHrW6qGyMgFJ7qDOUcoHt1RGMhVqRlAoVWF2hhc9SgqUhXHhMK0OVkVYOhoTGWFOIpYdD0ZShxGegNnuf6XMADfO55JqFgSeJLzWnnieUH_pU2y1CXQd3FT7JR8F_kayZjh2aiUUzydFMVnXQqCBMyruwSLB9g7oG7IzXwX0F63r479Uu_jf9Bux2R3E_6fcGz5dgL8il7DITG6CWzZf6ynoPmbzOD8snEaS5OA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zOiqD1404bd7WPLceURUEATxHDbtNs2ITErgSX8fdtdEDR68NymTb6ZdqbTmW8AuA0FNSbRHHFNCCK0RhD3E4KsuDWhFAtPuThkr8_aQ_I4oqONKv482331JVnUNDiWpjSrTpSpbhS-EdcwJXDVxZh5aLENdogjSrAaPQyir7vYvrnyKEstcHyb2FuWzfy-xnfTtPY3f3yR5pandQgOli4jjAoZH4EtnR6D_Q0iwRPQeagPBhF66zWgSBXs1J8j1Oz2oLNRChoxf8-gKpLqxjNYdI2G1l21s4vgDUzG02Q-zmanYNhqvtbbaNkkASVWwTOUcIHtMRKMhVqRhAoV2HtDC58lBEtDuPCYVoYqI61MDAmNsWYRSw-HoiZDic9AKf1I9TmAhvlccs3CwJPEl5pTzxPKD32q7RahLoO7FT7xpODCiNesxw7N2KIZ52jGizKorCCMl-diFmP7HnXN2Bkvg_sVrOvhv1e7-N_0G7D70mjF3U7_6RLsBbmQXZJiBZSy6VxfWUcik9e5rnwCL7-9dA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCSSA-VMD+and+ICOA-ELM+based+fault+diagnosis+method+for+analogue+circuits&rft.jtitle=Analog+integrated+circuits+and+signal+processing&rft.au=You%2C+Dazhang&rft.au=Liu%2C+Shan&rft.au=Yuan%2C+Ye&rft.au=Zhang%2C+Yepeng&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-1030&rft.eissn=1573-1979&rft.volume=123&rft.issue=2&rft.spage=20&rft_id=info:doi/10.1007%2Fs10470-025-02360-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1030&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1030&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1030&client=summon |