BCSSA-VMD and ICOA-ELM based fault diagnosis method for analogue circuits

Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high non...

Full description

Saved in:
Bibliographic Details
Published inAnalog integrated circuits and signal processing Vol. 123; no. 2; p. 20
Main Authors You, Dazhang, Liu, Shan, Yuan, Ye, Zhang, Yepeng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-1030
1573-1979
DOI10.1007/s10470-025-02360-w

Cover

Abstract Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high nonlinearity, and susceptibility to environmental interference of analog circuit components, the development of related research on fault diagnosis has been hindered, and it cannot meet the current practical requirements for high safety and reliability of electronic devices. With the continuous increase in circuit scale and integration level, how to effectively and as much as possible extract more discriminative fault features is the key research direction of analog circuit fault diagnosis. Therefore, this article proposes a variational model decomposition (VMD) feature extraction method that combines Butterfly and Cauchy Sparrow search algorithms (BCSSA) and relies on an improved crayfish optimization algorithm (COA) to optimize the Extreme Learning Machine (ELM). Decomposition (VMD) feature extraction method, and rely on Improved Crayfish Optimization Algorithm (COA) Optimized Extreme Learning Machine (ELM) to complete the classification of faults. Firstly, the BCSSA algorithm is used to optimize the number of VMD decomposition modes K and the penalty factor α to achieve the optimal VMD decomposition of the original fault signal, obtain a series of Intrinsic Mode Function (IMF) and calculate its envelope entropy, determine the optimal IMF component by selecting the IMF component with the lowest envelope entropy., and calculate its time-domain parameter, then normalize and reduce the dimensionality to construct the vector that contains the characteristics of the fault. The normalized dimensionality reduction process constitutes the fault feature vector; secondly, the ICOA algorithm is introduced to optimize the ELM; Ultimately, the fault feature vector is fed into the ELM to acquire the fault diagnosis results. The simulation test examples of the Sallen-Key bandpass filter circuit and the Four-op-amp circuit show that the accuracy of the proposed improved VMD and ELM fault diagnosis method is as high as 99.68%.
AbstractList Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high nonlinearity, and susceptibility to environmental interference of analog circuit components, the development of related research on fault diagnosis has been hindered, and it cannot meet the current practical requirements for high safety and reliability of electronic devices. With the continuous increase in circuit scale and integration level, how to effectively and as much as possible extract more discriminative fault features is the key research direction of analog circuit fault diagnosis. Therefore, this article proposes a variational model decomposition (VMD) feature extraction method that combines Butterfly and Cauchy Sparrow search algorithms (BCSSA) and relies on an improved crayfish optimization algorithm (COA) to optimize the Extreme Learning Machine (ELM). Decomposition (VMD) feature extraction method, and rely on Improved Crayfish Optimization Algorithm (COA) Optimized Extreme Learning Machine (ELM) to complete the classification of faults. Firstly, the BCSSA algorithm is used to optimize the number of VMD decomposition modes K and the penalty factor α to achieve the optimal VMD decomposition of the original fault signal, obtain a series of Intrinsic Mode Function (IMF) and calculate its envelope entropy, determine the optimal IMF component by selecting the IMF component with the lowest envelope entropy., and calculate its time-domain parameter, then normalize and reduce the dimensionality to construct the vector that contains the characteristics of the fault. The normalized dimensionality reduction process constitutes the fault feature vector; secondly, the ICOA algorithm is introduced to optimize the ELM; Ultimately, the fault feature vector is fed into the ELM to acquire the fault diagnosis results. The simulation test examples of the Sallen-Key bandpass filter circuit and the Four-op-amp circuit show that the accuracy of the proposed improved VMD and ELM fault diagnosis method is as high as 99.68%.
Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of electronic devices. Therefore, it is necessary to efficiently diagnose and maintain faults in analog circuits. However, due to the tolerance, high nonlinearity, and susceptibility to environmental interference of analog circuit components, the development of related research on fault diagnosis has been hindered, and it cannot meet the current practical requirements for high safety and reliability of electronic devices. With the continuous increase in circuit scale and integration level, how to effectively and as much as possible extract more discriminative fault features is the key research direction of analog circuit fault diagnosis. Therefore, this article proposes a variational model decomposition (VMD) feature extraction method that combines Butterfly and Cauchy Sparrow search algorithms (BCSSA) and relies on an improved crayfish optimization algorithm (COA) to optimize the Extreme Learning Machine (ELM). Decomposition (VMD) feature extraction method, and rely on Improved Crayfish Optimization Algorithm (COA) Optimized Extreme Learning Machine (ELM) to complete the classification of faults. Firstly, the BCSSA algorithm is used to optimize the number of VMD decomposition modes K and the penalty factor α to achieve the optimal VMD decomposition of the original fault signal, obtain a series of Intrinsic Mode Function (IMF) and calculate its envelope entropy, determine the optimal IMF component by selecting the IMF component with the lowest envelope entropy., and calculate its time-domain parameter, then normalize and reduce the dimensionality to construct the vector that contains the characteristics of the fault. The normalized dimensionality reduction process constitutes the fault feature vector; secondly, the ICOA algorithm is introduced to optimize the ELM; Ultimately, the fault feature vector is fed into the ELM to acquire the fault diagnosis results. The simulation test examples of the Sallen-Key bandpass filter circuit and the Four-op-amp circuit show that the accuracy of the proposed improved VMD and ELM fault diagnosis method is as high as 99.68%.
ArticleNumber 20
Author Zhang, Yepeng
Liu, Shan
Yuan, Ye
You, Dazhang
Author_xml – sequence: 1
  givenname: Dazhang
  surname: You
  fullname: You, Dazhang
  organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering
– sequence: 2
  givenname: Shan
  surname: Liu
  fullname: Liu, Shan
  email: lsfc888888@163.com
  organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering
– sequence: 3
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering
– sequence: 4
  givenname: Yepeng
  surname: Zhang
  fullname: Zhang, Yepeng
  organization: College of Mechanical Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Modern Manufacturing Quality Engineering
BookMark eNp9kE1PwzAMhiM0JLbBH-BUiXPAadKmPY4yYNKmHQZcozQfo9PWjKTVxL8nUCRuHCxL9vNa1jNBo9a1BqFrArcEgN8FAowDhjSLRXPApzM0JhmnmJS8HKExlHFFgMIFmoSwA4CUMxijxX212czw2-ohka1OFtV6hufLVVLLYHRiZb_vEt3IbetCE5KD6d5dHDsfabl3294kqvGqb7pwic6t3Adz9dun6PVx_lI94-X6aVHNllilAB1WhaSUlDLPudFMZVKnRcGNJLlitLaskJAbbTNta6uMZdxaYzStgXJZ1rymU3Qz3D1699Gb0Imd6338JgiaZiylJcuLSKUDpbwLwRsrjr45SP8pCIhvZWJQJqIy8aNMnGKIDqEQ4XZr_N_pf1Jf6ClwTQ
Cites_doi 10.1155/2016/7657054
10.1109/TSP.2013.2288675
10.1080/21642583.2019.1708830
10.1109/TIM.2020.2969008
10.12733/jics20102329
10.1016/j.isatra.2021.01.060
10.1098/rspa.1998.0193
10.1007/978-3-540-74581-5_37
10.1016/j.jsv.2018.12.033
10.1109/TIM.2018.2836058
10.1109/ACCESS.2020.2968382
10.1371/journal.pone.0109166
10.1109/TSP.2013.2265222
10.1016/j.ress.2024.110143
10.1109/TIM.2002.1017726
10.3390/machines10070548
10.1016/j.neucom.2005.12.126
10.3390/machines11010027
10.1088/1361-6501/ac0034
10.1007/978-3-030-61111-8_11
10.1093/oso/9780198538493.001.0001
10.1016/j.measurement.2011.12.010
10.1016/j.neucom.2013.03.059
10.1016/j.measurement.2016.07.018
10.1016/j.measurement.2024.115417
10.1007/s10462-023-10567-4
10.1016/j.measurement.2020.108185
10.3390/electronics11030451
10.1109/IJCNN.2012.6252809
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SP
7TG
8FD
KL.
L7M
DOI 10.1007/s10470-025-02360-w
DatabaseName CrossRef
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Electronics & Communications Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1979
ExternalDocumentID 10_1007_s10470_025_02360_w
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
7SP
7TG
8FD
KL.
L7M
ID FETCH-LOGICAL-c200t-c8a3319a667ed4c5ad2887ea16c43bf48a06edf5dfbfcef47ffeed3b037a9b7b3
IEDL.DBID AGYKE
ISSN 0925-1030
IngestDate Tue Oct 07 10:53:39 EDT 2025
Wed Oct 01 06:30:44 EDT 2025
Sun Apr 20 01:10:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fault diagnosis
Crayfish algorithm
Sparrow algorithm
Analogue circuits
Extreme learning machine
VMD algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c200t-c8a3319a667ed4c5ad2887ea16c43bf48a06edf5dfbfcef47ffeed3b037a9b7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254239468
PQPubID 2043739
ParticipantIDs proquest_journals_3254239468
crossref_primary_10_1007_s10470_025_02360_w
springer_journals_10_1007_s10470_025_02360_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Analog integrated circuits and signal processing
PublicationTitleAbbrev Analog Integr Circ Sig Process
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References D He (2360_CR12) 2025; 239
J Gilles (2360_CR7) 2013; 61
Y Cui (2360_CR26) 2016; 93
W He (2360_CR10) 2020; 69
J Ding (2360_CR6) 2020; 8
K Zhu (2360_CR20) 2013; 10
Liu Xiaolong (2360_CR3) 2021; 17
NE Huang (2360_CR5) 1998; 454
H Li (2360_CR19) 2020; 166
J Xue (2360_CR18) 2020; 8
X Kui (2360_CR37) 2019; 36
CM Bishop (2360_CR21) 1995
L Meirong (2360_CR36) 2021; 44
B Wang (2360_CR22) 2021; 118
2360_CR34
Y Shanjun (2360_CR30) 2008; 44
C Li (2360_CR32) 2007
2360_CR31
GB Huang (2360_CR27) 2006; 70
2360_CR33
H Luo (2360_CR24) 2012; 45
D Binu (2360_CR35) 2019; 68
PK Wong (2360_CR28) 2014; 128
H Jia (2360_CR29) 2023; 56
H Chang (2360_CR16) 2022; 10
K Dragomiretskiy (2360_CR4) 2013; 62
V Khemani (2360_CR2) 2022; 11
LP Ji (2360_CR11) 2021; 68
W Jinxin (2360_CR13) 2024; 247
J Xiong (2360_CR9) 2016; 2016
X Zhang (2360_CR14) 2022; 11
Y Huang (2360_CR15) 2019; 444
F Aminian (2360_CR23) 2002; 51
D Binu (2360_CR1) 2017; 73
H Wang (2360_CR8) 2014; 9
J Sun (2360_CR25) 2020; 50
Q Wang (2360_CR17) 2021; 32
References_xml – volume: 2016
  start-page: 7657054
  year: 2016
  ident: 2360_CR9
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2016/7657054
– volume: 44
  start-page: 51
  issue: 04
  year: 2021
  ident: 2360_CR36
  publication-title: Electronic Measurement Technology
– volume: 44
  start-page: 179
  issue: 36
  year: 2008
  ident: 2360_CR30
  publication-title: Computer Engineering & Applications
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 2360_CR4
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2288675
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 2360_CR18
  publication-title: Systems Science & Control Engineering
  doi: 10.1080/21642583.2019.1708830
– volume: 69
  start-page: 6640
  year: 2020
  ident: 2360_CR10
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2020.2969008
– volume: 10
  start-page: 5189
  issue: 16
  year: 2013
  ident: 2360_CR20
  publication-title: Journal of Information & Computational Science
  doi: 10.12733/jics20102329
– volume: 118
  start-page: 207
  year: 2021
  ident: 2360_CR22
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2021.01.060
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 2360_CR5
  publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume-title: A Fast Particle Swarm Optimization Algorithm with Cauchy Mutation and Natural Selection Strategy
  year: 2007
  ident: 2360_CR32
  doi: 10.1007/978-3-540-74581-5_37
– volume: 444
  start-page: 216
  year: 2019
  ident: 2360_CR15
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2018.12.033
– volume: 68
  start-page: 2
  issue: 1
  year: 2019
  ident: 2360_CR35
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2018.2836058
– volume: 73
  start-page: 68
  year: 2017
  ident: 2360_CR1
  publication-title: AEU-International Journal of Electronics and Communications
– volume: 36
  start-page: 16
  issue: 01
  year: 2019
  ident: 2360_CR37
  publication-title: Microelectronics and Computer
– volume: 8
  start-page: 18456
  year: 2020
  ident: 2360_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968382
– volume: 9
  issue: 10
  year: 2014
  ident: 2360_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0109166
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 2360_CR7
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2265222
– volume: 247
  start-page: 110143
  year: 2024
  ident: 2360_CR13
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2024.110143
– ident: 2360_CR34
– volume: 51
  start-page: 544
  issue: 3
  year: 2002
  ident: 2360_CR23
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2002.1017726
– volume: 10
  start-page: 548
  issue: 7
  year: 2022
  ident: 2360_CR16
  publication-title: Machines
  doi: 10.3390/machines10070548
– volume: 70
  start-page: 489
  issue: 1-3
  year: 2006
  ident: 2360_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 11
  start-page: 27
  issue: 1
  year: 2022
  ident: 2360_CR14
  publication-title: Machines
  doi: 10.3390/machines11010027
– volume: 50
  start-page: 227
  issue: 2
  year: 2020
  ident: 2360_CR25
  publication-title: Microelectronics
– volume: 32
  start-page: 104007
  issue: 10
  year: 2021
  ident: 2360_CR17
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/ac0034
– ident: 2360_CR31
  doi: 10.1007/978-3-030-61111-8_11
– volume-title: Neural Networks for Pattern Recognition
  year: 1995
  ident: 2360_CR21
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 45
  start-page: 769
  issue: 4
  year: 2012
  ident: 2360_CR24
  publication-title: Measurement
  doi: 10.1016/j.measurement.2011.12.010
– volume: 128
  start-page: 249
  issue: 27
  year: 2014
  ident: 2360_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.059
– volume: 93
  start-page: 421
  year: 2016
  ident: 2360_CR26
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.018
– volume: 239
  start-page: 115417
  year: 2025
  ident: 2360_CR12
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115417
– volume: 56
  start-page: 1919
  issue: Suppl 2
  year: 2023
  ident: 2360_CR29
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-023-10567-4
– volume: 166
  start-page: 108185
  year: 2020
  ident: 2360_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108185
– volume: 11
  start-page: 451
  issue: 3
  year: 2022
  ident: 2360_CR2
  publication-title: Electronics
  doi: 10.3390/electronics11030451
– volume: 17
  start-page: 90
  year: 2021
  ident: 2360_CR3
  publication-title: International Journal of Low-Carbon Technologies.
– volume: 68
  start-page: 2841
  year: 2021
  ident: 2360_CR11
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– ident: 2360_CR33
  doi: 10.1109/IJCNN.2012.6252809
SSID ssj0002740
Score 2.384113
Snippet Analog circuits are an important component of integrated circuit systems, and circuit systems are the foundation for ensuring the normal operation of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 20
SubjectTerms Accuracy
Algorithms
Analog circuits
Bandpass filters
Bandwidths
Circuits
Circuits and Systems
Classification
Data processing
Decision trees
Decomposition
Electrical Engineering
Electronic devices
Engineering
Entropy
Fault diagnosis
Feature extraction
Fourier transforms
Integrated circuits
Machine learning
Neural networks
Optimization
Pattern recognition
Search algorithms
Signal,Image and Speech Processing
Support vector machines
Wavelet transforms
Title BCSSA-VMD and ICOA-ELM based fault diagnosis method for analogue circuits
URI https://link.springer.com/article/10.1007/s10470-025-02360-w
https://www.proquest.com/docview/3254239468
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1979
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002740
  issn: 0925-1030
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1979
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002740
  issn: 0925-1030
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1979
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002740
  issn: 0925-1030
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB414QKH0hYQKTTaA7d2I9v78ObohATSEnqAoHCy9ilFrdIqcYTEr2f9IhDBIWev1va8d3bmG4CzWDLntBVYWEoxZV2KRagp9uy2lDEiA5PnIcfX_HJCf07ZtGoKW9bV7vWVZGGpXzS70XxISpR3FBMe4IcG7BR4W03YSS7ufw2eLbA_aRW5lW6Uo2ySoGqWeXuX1w5pHWVuXIwW_ma4D5P6S8sykz-dVaY6-nEDxHHbX_kEH6sAFCWlxHyGD3b-BfZewBIewKjXv7lJ8N34HMm5QaP-7wQPrsYo93gGObn6myFTlujNlqicQY188OtXl6kgpGcLvZply0OYDAe3_UtcjVzA2qtLhrWQxCul5Dy2hmomTeStkJUh15QoR4UMuDWOGac8hx2NnfNOlqiAxLKrYkWOoDn_N7fHgBwPhRKWx1GgaKisYEEgTRiHzPpXxLYF32u6p_9LZI10jaGcEyj1BEoLAqUPLTitWZNWWrZMiT_d5qPduWjBj5rS68fv7_Z1u-UnsBsVzMrrHE-hmS1W9puPRTLV9qI37PWu25UItqExiZIn687V6w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD-rB-Iwoag_etMnu9rHluCIElMUDYLht2m2bkBg0sIS_b7sPQaMHz23a5Jt2Zjqd-QaA21BQY1LNEdeEIEKbBHE_JciKWxNKsfCUi0PGA9Ydk6cJnZRFYYsq2736ksw19UaxG3FNUgJXUYyZh1bbYMcRWDnG_HEQfelf-87KIyvNwHFsYq8slfl9je_maO1j_vgWza1N5xAclG4ijAq5HoEtPTsG-xvkgSeg99AaDiP0Gj9CMVOw13qJULsfQ2eXFDRi-ZZBVSTSTRew6BQNrYtqZxcBG5hO5-lymi1OwbjTHrW6qGyMgFJ7qDOUcoHt1RGMhVqRlAoVWF2hhc9SgqUhXHhMK0OVkVYOhoTGWFOIpYdD0ZShxGegNnuf6XMADfO55JqFgSeJLzWnnieUH_pU2y1CXQd3FT7JR8F_kayZjh2aiUUzydFMVnXQqCBMyruwSLB9g7oG7IzXwX0F63r479Uu_jf9Bux2R3E_6fcGz5dgL8il7DITG6CWzZf6ynoPmbzOD8snEaS5OA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE6MH4zOiqD1404bd7WPLceURUEATxHDbtNs2ITErgSX8fdtdEDR68NymTb6ZdqbTmW8AuA0FNSbRHHFNCCK0RhD3E4KsuDWhFAtPuThkr8_aQ_I4oqONKv482331JVnUNDiWpjSrTpSpbhS-EdcwJXDVxZh5aLENdogjSrAaPQyir7vYvrnyKEstcHyb2FuWzfy-xnfTtPY3f3yR5pandQgOli4jjAoZH4EtnR6D_Q0iwRPQeagPBhF66zWgSBXs1J8j1Oz2oLNRChoxf8-gKpLqxjNYdI2G1l21s4vgDUzG02Q-zmanYNhqvtbbaNkkASVWwTOUcIHtMRKMhVqRhAoV2HtDC58lBEtDuPCYVoYqI61MDAmNsWYRSw-HoiZDic9AKf1I9TmAhvlccs3CwJPEl5pTzxPKD32q7RahLoO7FT7xpODCiNesxw7N2KIZ52jGizKorCCMl-diFmP7HnXN2Bkvg_sVrOvhv1e7-N_0G7D70mjF3U7_6RLsBbmQXZJiBZSy6VxfWUcik9e5rnwCL7-9dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCSSA-VMD+and+ICOA-ELM+based+fault+diagnosis+method+for+analogue+circuits&rft.jtitle=Analog+integrated+circuits+and+signal+processing&rft.au=You%2C+Dazhang&rft.au=Liu%2C+Shan&rft.au=Yuan%2C+Ye&rft.au=Zhang%2C+Yepeng&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0925-1030&rft.eissn=1573-1979&rft.volume=123&rft.issue=2&rft.spage=20&rft_id=info:doi/10.1007%2Fs10470-025-02360-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1030&client=summon